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The Local Hamiltonain Problem
Input:

H1, . . . , Hr :
Hermetian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm ‖Hi‖ ≤ 1.
n quidits in the system.

Two real numbers E and ∆ ≥ 1/poly(n)

Output:

Is the smallest eigenvalue of H = H1 + · · · + Hr ≤ E
or are all eigenvalues ≥ E + ∆?
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The class QMA (Quantum Merlin Arthur)

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x , where
|x | = n:

If x ∈ L, then there is a witness
y such that M(x , y ) accepts.

If x 6∈ L, then for every y ,
M(x , y ) rejects.

NP

Boolean Satisfiability
is NP-complete

|y | ≤ poly(x)
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The class QMA (Quantum Merlin Arthur)

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x , where
|x | = n:

If x ∈ L, then there is a witness
y such that M(x , y ) accepts.

If x 6∈ L, then for every y ,
M(x , y ) rejects.

NP

Boolean Satisfiability
is NP-complete

|y | ≤ poly(x)

QMA
A problem is in QMA if there is
a poly-sized uniform quantum
circuit family {Cn} such that on
input x , where |x | = n:

If x ∈ L, then there is a
quantum witness |φ〉 such that
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x 6∈ L, then for every |φ〉,
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

Local Hamiltonian
is QMA-complete

1− 1
2n

1
2n
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Local Hamiltonian is in QMA

Boolean
Satisfiability

∈ NP

Is Φ(y )
satisfiable?

Witness:
Satisfying

assignment y

Local
Hamiltonian

∈ QMA

Is there a state whose
energy (according to H)

is less than E?
〈Φ|H|Φ〉 ≤ E?

Witness: |Φ〉
Guarantee:
There exists |Φ〉 such that 〈Φ|H|Φ〉 ≤ E

OR
For all |Φ〉, 〈Φ|H|Φ〉 ≥ E + ∆

Showed a measurement
whose outcome = 1 with
probability 〈Φ|H|Φ〉/r .

⇒
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Local Hamiltonian is QMA-hard
Start with a generic language L in QMA

Is x ∈ L?

Is there a quantum state φ〉
that causes this quantum circuit
to output 1 with high probability?

0/1
|x〉

|φ〉
Cn

M

|0〉/|1〉
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|0〉/|1〉
|0〉/|1〉
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
Hprop =

∑T
t=1 Ht

1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2
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The Hamiltonian Hx

Ht = 1
2

[
I ⊗ |t〉〈t| + I ⊗ |t − 1〉〈t − 1| + Ut ⊗ |t〉〈t − 1| − U†t ⊗ |t − 1〉〈t|

]
Hprop =

∑T
t=1 Ht

1√
T + 1

T∑
t=0

Ut Ut−1 · · ·U2U1|x〉|ξ〉 ⊗ |t〉
Ground State: Spectral Gap:

≥ 1
2(T+1)2

Hinit =
n∑

j=1

|xj〉〈xj |j ⊗ |0〉〈0|clock

Input x = x1x2 · · · xn

Hout = |0〉〈0|1 ⊗ |T 〉〈T |clock

Computation
accepts:

H = Hprop + Hinit + Hout
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Local Hamiltonian Variations

H =
∑

a Ha

where each Ha acts on at most k qudits

Locality

Particle Dimension

{|0〉, |1〉, . . . , |d − 1〉}

{|j〉

Geometry
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 12-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω( ‖Hfinal − Hstar t‖/∆(H(t)) )
Spectral gap of H(t)

Final measurement to
determine result of

computation
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The Adiabatic Model
Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutman, Lapan, Lundgren, Preda in Science 2001]

Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?
• Can a quantum circuit simulate an adiabatic computation?

• Can an adiabatic computation perform any computation performed
by a quantum circuit?

Yes - [van Dam, Mosca, Vazirani]

Yes...
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Adiabatic Quantum Computation

Hstar t
Start system in the ground
state of a Hamiltonian which
is easy to prepare.
(e.x. |00 · · · 00〉)

Hfinal
Final ground state
encodes the answer to
a computation.

Evolve Hamiltonian from
Hstar t to Hfinal over time T

Adiabatic Theorem
Final state will be close to the

ground state of Hfinal if speed of
transition is

Ω(‖Hfinal − Hstar t‖/∆(H(t))

Hfinal = Hprop

Hamiltonian whose ground
state is the computation state

for Quantum Circuit C with input
x . (No witness)

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

H(t) = (T−t)
T ·Hstar t + t

T ·Hfinal
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Circuit to Adiabatic Computation
Hstar t has unique ground state:

|00 · · · 00〉|00 · · · 00〉

Cn

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

X

X
X

Computation Clock

Hfinal is Hprop for this circuit:

Initial X gates set the input
bits according to input x

Adiabatic computation should end
up in a state close to:

1√
T + 1

T∑
t=0

Ut · · ·U1|00 · · · 00〉|t〉

|T 〉〈T |clock

Measure: Probability to measure the
clock in state T is 1

T +1|1〉〈1|outthen
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Lower Bound Spectral Gap



1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2



Hfinal =Hstar t =

0
1

1
. . .

1
1


Spectral gap of:

(1− s)Hstar t + sHfinal for s ∈ [0, 1] is ≥ 1
2(T + 1)2
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 12-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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2D Local Hamiltonian Reduction

The ”Clock” is distributed throughout the entire quantum system:

State space for a particle:

|0〉 |0〉

|1〉 |1〉

{|0〉, |1〉} ⊗ {| 〉, | 〉, | 〉}

∪ {| 〉, | 〉, | 〉} =

Kitaev Construction:

1√
T+1

∑T
t=0 |ψt〉|1t+10T−t〉

Computation Qubits
Clock Qubits

|0〉

|1〉
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2D Local Hamiltonian Reduction, cont.
Clock state is a pattern of colors on the 2D grid of particles:

n

T

|∗〉

|∗〉

|∗〉

|∗〉

Some particles have a computation bit embedded in their state.

Enforce valid clock state with
”forbidden”

local configurations:
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2D Local Hamiltonian Reduction, cont.

n

T

|∗〉

|∗〉

|∗〉

Advancing the clock and implementing gates:

|∗〉
|∗〉

|∗〉
|∗〉

I
|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

+ I + U + U†

|∗〉

t t t +1 t +1 t +1 t +1t t

Applied to two particles in

|∗〉
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2D Local Hamiltonian Reduction, cont.

n

T

|∗〉

|∗〉

|∗〉

|∗〉

Advancing the clock and implementing gates:

|∗〉
|∗〉

|∗〉
|∗〉

I
|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

|∗〉
|∗〉

+ I + U + U†

|∗〉

|∗〉

t t t +1 t +1 t +1 t +1t t

Applied to two particles in

|∗〉



Quantum Hamiltonian Complexity - Sandy Irani

Clock Configuration Graph

Need to ensure at most one propogation term applied to each valid
clock state.



Quantum Hamiltonian Complexity - Sandy Irani

Clock Configuration Graph

Vertices: Standard basis of clock states
Edge (x , y ) if a propogation term converts x to y

Need to ensure at most one propogation term applied to each valid
clock state.



Quantum Hamiltonian Complexity - Sandy Irani

Clock Configuration Graph

Vertices: Standard basis of clock states
Edge (x , y ) if a propogation term converts x to y

Valid Clock States
Invalid Clock States

···

Need to ensure at most one propogation term applied to each valid
clock state.
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete

2-local 2-state Hamiltoanian is QMA-complete

2-dimensional 2-local Hamiltonian is QMA-complete

1-dimensional 12-state Hamiltonian is
QMA-complete

[Kitaev 1995]

[Kempe, Kitaev, Regev 2005]

[Oliveira Terhal 2008]

[Aharonov, Gottesman, Irani, Kempe, 2009]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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1-Dimensional Local Hamiltonian
Classical Methods:

DMRG (Density Matrix Renormalization Group) [White 1992]

The Classical Anaolg:
1D MAX-2-SAT with d-state variables is in P:

T (n) = 2d2T (n/2) + O(1)
⇒

T (n) = O(nlog(2d2))

Why the
difference?

1√
T +1

∑T
t=0 |ψt〉|1t+10T−t〉
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1D Local Hamiltonian

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉 |∗〉

n qubits n qubits

n

T

n + 2 n + 2 n + 2 n + 2 n + 2

T (n + 2) qubits

Active site triggers
transition to next clock

state.
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n qubits n qubits

n

T

n + 2 n + 2 n + 2 n + 2 n + 2

T (n + 2) qubits

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉|∗〉
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Clairvoyance Lemma

Vertices: Standard basis of clock states
Edge (x , y ) if a propogation term converts x to y

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Clock configuration with cost 0:
Clock configuration with cost ≥ 1: |ab〉〈ab|

Valid
Clock
States
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Clairvoyance Lemma



1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2





0
0

1
. . .

0
0



Need to lower bound lowest eigenvalue of:

+
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Clairvoyance Lemma



1
2 − 1

2
− 1

2 1 − 1
2

0 − 1
2 1 − 1

2
·

·
·

− 1
2 1 − 1

2 0
− 1

2 1 − 1
2

− 1
2

1
2





0
0

1
. . .

0
0



Need to lower bound lowest eigenvalue of:

+

Ω(1/K 3), where K is the length of the chain
Need to upper bound the length of the ”invalid” chains
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1D Local Hamiltonian

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system
is the same for each pair of neighboring particles.

|∗〉 |∗〉 |∗〉 |∗〉 |∗〉 |∗〉

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle
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Two polynomials p(N) or q(N).
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Translational Invariance
How hard is it to find ground states of translationally invariant
quantum systems?

Hamiltonian term H on two d-dimensional particles
Fixed 2d × 2d matrix. H

Problem input: N (the number of particles in the system)

Problem parameters:

Output:

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

≤ p(N) OR ≥ p(N) + 1
q(N)?

Two polynomials p(N) or q(N).

log N bits



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

QMA

L ∈ QMA if there is a
poly-sized uniform

quantum circuit family {Cn}:

If x ∈ L ⇒ ∃ |φ〉
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x 6∈ L ⇒ ∀ |φ〉
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

QMA

L ∈ QMA if there is a
poly-sized uniform

quantum circuit family {Cn}:

If x ∈ L ⇒ ∃ |φ〉
Prob[Cn(x , |φ〉) = 1] ≥ 2/3.

If x 6∈ L ⇒ ∀ |φ〉
Prob[Cn(x , |φ〉) = 1] ≤ 1/3.

|φ〉 has poly(n) qubits.

EXP

EXP

EXP

EXP-time quantum
Turing Machine V

Prob[V (x , |φ〉) accepts] ≥ 2/3

Prob[V (x , |φ〉) accepts] ≤ 1/3



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

L ⇒ finite term H.

Instance x ⇒ N size of the system

To reduce a language L in QMAEXP to T.I. Local Hamiltonian:



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

L ⇒ finite term H.

Instance x ⇒ N size of the system

To reduce a language L in QMAEXP to T.I. Local Hamiltonian:
Description of L
(i.e. the verifier)

needs to be encoded in a
constant-sized H.

Polynomials p and q
(depend on running time of V )



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

L ⇒ finite term H.

Instance x ⇒ N size of the system

To reduce a language L in QMAEXP to T.I. Local Hamiltonian:
Description of L
(i.e. the verifier)

needs to be encoded in a
constant-sized H.

Polynomials p and q
(depend on running time of V )

∃|ψ〉 such that prob
V (x , |ψ〉) accepts ≥ 2/3

⇒ H on N-particle chain has
ground energy ≤ p(N)



Quantum Hamiltonian Complexity - Sandy Irani

Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QMAEXP -complete. [Gottesman, Irani, 2010]

L ⇒ finite term H.

Instance x ⇒ N size of the system

To reduce a language L in QMAEXP to T.I. Local Hamiltonian:
Description of L
(i.e. the verifier)

needs to be encoded in a
constant-sized H.

Polynomials p and q
(depend on running time of V )

∃|ψ〉 such that prob
V (x , |ψ〉) accepts ≥ 2/3

⇒ H on N-particle chain has
ground energy ≤ p(N)

∀|ψ〉:
V (x , |ψ〉) accepts ≤ 1/3

⇒ H on N-particle chain has
ground energy ≥ p(N)+1/q(N)
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1) ”Count” the number of particles and
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Translationally Invariant Local Hamiltonian

Ground State of H is ”computation state” encoding a process:

1) ”Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine MBC :

Contents of the tape are a binary counter.
Start with 0 and continually increment the couner.

Function f : Z→ {0, 1}∗:
After N steps, f (N) appears on the tape.
Reduction: given string x , find N such that f (N) = x .
|x | ≈ log N

MBC can be made quantum. [Bernstein-Vazirani]
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Ground State of H is ”computation state” encoding a process:

1) Simulate MBC for N steps.

2) Simulate V for N steps using output of MBC as input to V .
where N is the length of the chain.
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Translationally Invariant Local Hamiltonian

Ground State of H is ”computation state” encoding a process:

1) Simulate MBC for N steps.

2) Simulate V for N steps using output of MBC as input to V .
where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice.

Each ”tick” of the clock triggers a step of a QTM.
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〈 〉

Particle 1

Particle 2

Particle 3 Particle N

Particle states:
6-tuple denoting the state for each track.

〈OR

Track 6: Quantum witness |ψ〉 for V
Track 5: V state and head location

Track 4: MBC state and head location
Track 3: QTM Work Tape

Track 1: Clock second hand
Track 2: Clock minute hand

〉OR
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〈 〉

Particle 1

Particle 2

Particle 3 Particle N

Particle states:
6-tuple denoting the state for each track.

〈OR

Track 6: Quantum witness |ψ〉 for V
Track 5: V state and head location

Track 4: MBC state and head location
Track 3: QTM Work Tape

〉OR
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The Thermodynamic Limit

Input: Hamiltonian term H on two d-dimenaional particles. (n bits)

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Determining the Energy Density to within
the nth bit of precision is QMAEXP -complete.

Determining the Spectral Gap of H is undecidable.
Is ∆ ≥ 1 or is H gapless?

[Gottesman, Irani, 2010]

[Cubitt, Perez-Garcia, Wolf Nature, 2015]

In 2D: H = (Hhor iz , Hver t )

2n × 2n

[Bausch, Cubitt, Lucia, Perez-Garcia, 2018]
2D

1D
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OR if E(H) approaches 0 from below.
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Energy Density ∝ Spectral Gap
HL is the Hamiltonian H appied to an L× L grid.

Energy Density of H is: E(H) = limL→∞
λ0(HL)

L2

Given H determine if:
E(H) ≥ c > 0

OR if E(H) approaches 0 from below.

Implies limL→∞ λ0(HL) =∞

Reduction: Ĥ → H ′:

E(Ĥ) ≥ c ⇒ ∆(H ′) ≥ 1

E(Ĥ) = 0
λ0(ĤL) < 0

⇒ H ′ is gapless
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Let Hd be a gapless translationally invariant Hamiltonian.
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∆ ≥ 1

S
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Energy Density ∝ Spectral Gap
Let Hd be a gapless translationally invariant Hamiltonian.

Spec(H’) = {0} ∪ S ∪ {Spec(Ĥ) + Spec(Hd )}
≥ 1

0
∆ ≥ 1

S

0
∆ ≥ 1

S

If λ0(Ĥ) < 0

λ0(Ĥ) + Spec(Hd )

If λ0(Ĥ) =∞

λ0(Ĥ) + Spec(Hd )
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|0〉

H ⊗ Ĥd
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Particle 1

|0〉

H ⊗ Ĥd
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Energy Density ∝ Spectral Gap

H′ = |0〉 ⊕ (H ⊗ Ĥ)

H = |0〉〈0| ⊗ (I − |0〉〈0|) + (I − |0〉〈0|)⊗ |0〉〈0|
d

+ Hd ⊗ I + I ⊗ Ĥ

|0〉

H ⊗ Ĥd

Particle 1

|0〉

H ⊗ Ĥd

Particle 2

|00〉 is a 0 energy state.
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Energy Density ∝ Spectral Gap

H′ = |0〉 ⊕ (H ⊗ Ĥ)

H = |0〉〈0| ⊗ (I − |0〉〈0|) + (I − |0〉〈0|)⊗ |0〉〈0|
d

+ Hd ⊗ I + I ⊗ Ĥ

|0〉

H ⊗ Ĥd

Particle 1

|0〉

H ⊗ Ĥd

Particle 2

{Spec(Ĥ) + Spec(Hd )}
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Energy Density is Undecidable

Reduction:

The Universal
Turing Machine

on input n
halts.

⇒

n ⇒ H(n)

E(H(n)) ≥ c > 0

The Universal
Turing Machine

on input n
does not halt.

⇒
E(H(n))

approaches 0
from below.
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2D Wang Tiles

Set of tiles: T = { . . .}
Two cost functions:

Chor iz ( , ) = d1

Cver t ( , ) = d2

What’s the minimum cost
tiling of an N × N grid?

Or average cost per square
of the infinite grid?

Tiling is a (classical) special
case of Local Hamiltonian:

d1| 〉〈 |

d2

Robinson Tiling:

Minimum cost tiling of the
infinite grid is aperiodic.

For every k :
squares of size 4k × 4k

frequency ∼ 1/4k

[Wang 1961] [Robinson 1971]
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Two Layers of the Construction

Particle Space: H ⊗Hcomp tile

⊗
H

Hcomp

tile

⊗
H

Hcomp

tileTiling rules

Computation
Hamiltonian

Computation Hamiltonian:
Ground state is a history
state of a computational

process.
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The Computational Process Encoded in H(n)
Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape
Phase estimation on the quantum gate:

[
1 0
0 e2πiφ

]
φ = n/2|n| rational number whose binary expansion is n.

2) Simulate Universal TM U on input n for 4k steps.

4k is the dimension of the square ”hosting” the computation.
Use the clock from Gottesman-I to count the number of steps.

3) Add an energy charge for halting
|qhalt〉〈qhalt |

Number of step of Hprop

T = poly(n, 4k )
Energy per square Ω(1/T 3)
Energy density Ω(1/(4k T 3))If the computation halts...



Quantum Hamiltonian Complexity - Sandy Irani

Energy Density is Undecidable

Reduction: n ⇒ H(n)



Quantum Hamiltonian Complexity - Sandy Irani

Energy Density is Undecidable

Reduction:
The Universal

Turing Machine
on input n

halts in ≤ 4k steps.

⇒

n ⇒ H(n)

E(H(n)) = Ω
(

1
p(n,4k )

)



Quantum Hamiltonian Complexity - Sandy Irani

Energy Density is Undecidable

Reduction:
The Universal

Turing Machine
on input n

halts in ≤ 4k steps.

⇒

n ⇒ H(n)

E(H(n)) = Ω
(

1
p(n,4k )

)
The Universal

Turing Machine
on input n

does not halt.

⇒ ( E(H(n)) approaches 0
from below. )

E(H(n))?



Quantum Hamiltonian Complexity - Sandy Irani

Energy Density is Undecidable

Reduction:
The Universal

Turing Machine
on input n

halts in ≤ 4k steps.

⇒

n ⇒ H(n)

E(H(n)) = Ω
(

1
p(n,4k )

)
The Universal

Turing Machine
on input n

does not halt.

⇒ ( E(H(n)) approaches 0
from below. )

E(H(n))?

Complexity in the thermodynamic limit:?



Quantum Hamiltonian Complexity - Sandy Irani

Energy Density is Undecidable

Reduction:
The Universal

Turing Machine
on input n

halts in ≤ 4k steps.

⇒

n ⇒ H(n)

E(H(n)) = Ω
(

1
p(n,4k )

)
The Universal

Turing Machine
on input n

does not halt.

⇒ ( E(H(n)) approaches 0
from below. )

E(H(n))?

Complexity in the thermodynamic limit:?

How stable are hard Translationally Invariant instances with respect to
some measure on the Hamiltonian terms?
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Bose-Hubbard Model is QMA-Complete [Childs, Gosset Webb 2013]

H = thop

∑
(i ,j)∈E

aja
†
i + J

∑
j∈V

nj (nj − 1)
a†i : removes a particle

from node i
aj : adds a particle to

node j

nj : number of
particles
at node j

Input: interaction graph G = (V , E)

H preserves the number of
particles in the system.

λ0(H |N ) ≥ N · λ0(A(G)) (A(G) is the adjacency matrix of graph G)

It’s QMA-hard to determine if λ0(H|N ) is close to N · λ0(A(G)).

∑
(i ,j)∈E ,i 6=j

σi
xσ

j
x + σi

yσ
j
y

2
+
∑

(i ,i)∈E

1− σi
z

2

Equivalent to:
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Bose-Hubbard and X-Y Model

H = thop

∑
(i ,j)∈E

aja
†
i + J

∑
j∈V

nj (nj − 1)

Bose-Hubbard:

∑
(i ,j)∈E ,i 6=j

σi
xσ

j
x + σi

yσ
j
y

2
+
∑

(i ,i)∈E

1− σi
z

2

In the ”Hard Core” regine is equivalent to:

=
∑

(i ,j)∈E ,i 6=j

(|01〉〈10| + |10〉〈01|)i j +
∑

(i ,i)∈E

|1〉〈1|
Self-loops

XY model

[Childs, Gosset Webb 2015]Input graph has no self-loops
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Bose-Hubbard and X-Y Model
Input graph encodes the computation of a quantum circuit.

(Graph image from CGW)

New directions:

Variations on Bose-Hubbard
thop < 0 and/or J < 0.

H = thop

∑
(i ,j)∈E

aj a
†
i + J

∑
j∈V

nj (nj − 1)

thop < 0 ⇒ in AM ∩ QMA
[Bravyi, DiVincenzo, Oliveira, Terhal 2007]

Simpler Graphs
Planar?
Subset of a grid?
N × N grid?
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Classifying 2-Qubit Terms
When is a k -qubit Hamiltonian term useful for building gadets?

S = set of k -qubit Hamiltonian terms

S-Hamiltonian Problem: special case of local Hamiltonian where for
each term Hi , there is an αi ∈ R, such that αiHi ∈ S.

[Cubitt, Montanaro 2016]

If U is a 1-qudit unitary
Then U locally diaginalizes S if

U⊗k H(U†)⊗k

is diagonal for every H ∈ S

α’s can be ±
and

can be poly-sized

Interaction graph
is arbitrary
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Perturbation Gadgets
[Kempe Kitaev Regev 05]

[Oliveira Terhal 08]

2-local Hamiltonian is QMA complete

2-local 2D qubit Hamiltonian is QMA complete

⇒

5-local term H
Sum of

2-local terms
H ′

H ≈ H ′|≤∆
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Classifying 2-Qubit Terms
S is a set of 2-qubit Hamiltonian terms:

1) If S is 1-local then S-Hamiltonian ∈ P

2) If ∃U such that U locally diagonalizes S,
then S-Hamiltonian is NP-complete.

3) ∃U such that for every Hi ∈ S,

U⊗2Hi (U†)⊗2 = αiZZ + Ai ⊗ I + | ⊗ Bi

[Cubitt, Montanaro 2016]

4) Otherwise, S-Hamiltonian is QMA-complete.

[Bravyi, Hastings 2016]StoqMA-complete

{ZZ , X}-Hamiltonian

Un-physical aspects:

1) Negative and positive
coefficients.
2) Arbitrary interaction
graph.

3) Large (poly in system
size) coefficients.
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Classifying 2-Qubit Terms

β

γ

β

γ

1
1−1

−1

β

γ

1
1−1

−1

H = −XX +
βYY + γZZ

H =
βYY + γZZ

H = XX +
βYY + γZZ

[Piddock, Montanaro 2015]

H = αXX + βYY + γZZ {H}+-Hamiltonian

positive coeffients

NP-complete

P StoqMA-
complete

QMA-completeStoqMA
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Classifying 2-Qubit Terms

β

γ

β

γ

1
1−1

−1

β

γ

1
1−1

−1

H = −XX +
βYY + γZZ

H =
βYY + γZZ

H = XX +
βYY + γZZ

[Piddock, Montanaro 2015]

H = αXX + βYY + γZZ {H}+-Hamiltonian

positive coeffients

NP-complete

P StoqMA-
complete

QMA-complete

Important special cases: XX + YY + ZZ and XX + YY

StoqMA
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Classifying 2-Qubit Terms [Piddock, Montanaro 2015]

H =
∑

Mi jσi ⊗ σj+ 1-qubit terms.

Theorem: If the Pauli rank of H is at least 2 and the 2-local part of H
is not proportional to XX + YY + ZZ , then {H}+-Hamiltonian is QMA-
complete on the 2D grid.

Pauli rank of H = rank(M)

Theorem: Let H = αXX + βYY + γZZ , such that
α + β > 0, α + γ > 0, and β + γ > 0

and H is not proportional to XX + YY + ZZ .
Then {H}+-Hamiltonian is QMA-complete on the 2D triangular lattice.

Restricting the size of the coefficients?

P ⊆ NP ⊆ StoqMA ⊆ QMA
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Ground State Preparation (Hybrid)

|φs〉 |φf 〉 |v0〉
Phase

Estimator
for eiH

Adiabatic
Algorithm

High
overlap

with |v0〉?

Can be combined with Amplitude Amplification [Grover 1996]

To improve dependence on |〈v0|φf 〉| from 1/|〈v0|φf 〉|2 to 1/|〈v0|φf 〉|.

Also concerned about:
Number of qubits used
Dependence on spectral gap, required accuracy, etc.

[Oh 2007] [Poulin,Wocjan 2009] [Ge, Tura, Cirac 2018]
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Area Laws and Hamiltonian Complexity

Set A of qudits.

Entropy of Entanglement:
SA = −

∑
j (λj )2 log(λj )2

Schmidt Decomposition:

|Ω〉 =
∑

j λj |aj〉A|bj〉B

SA = −Tr(ρA log ρA)

Area Law:
If |Ω〉 is the ground state of a ”gapped” local Hamiltonian, then

SA is proportional to the size of the boundary of A.

1D Area Law:

[Hastings 08] [Arad, Kitaev, Landau, Vazirani 13]

A B

SA = O
(

log3 d
ε

)
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Area Laws and Tensor Networks
Area law in 1D implies that ground states of gapped Hamiltonians can
be closely approximated by Matrix Product States.

0/1 0/1 0/1 0/1 0/1 0/1 0/1

· · ·α β

Tensor: Ab
α,β

b = 0/1, 1 ≤ α,β ≤ B
B = ”bond dimension”

B = o(n)
[Arad, Kitaev, Landau, Vazirani 13]

In 2D: PEPS (Projected Entangled Pair States)
0/10/10/10/10/1[Verstraete, Cirac]
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Critical Systems and the Log Correction

Let {Hn} be a family of Hamiltonians on n-particle chains.

Gapped: limn→∞ ∆(Hn) = c

Entanglement entropy of the ground state does not depend on n.

Non-gapped (critical): limn→∞ ∆(Hn) = o(1)

In most examples from physics,
entropy of ground state scales as O(log n).

Not a universal rule:
Examples with ∆(Hn) = Θ(1/poly (n)) and ground state entropy Ω(n).

[Gottesman, Hastings]
[Irani]
[Movassagh, Shor]
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Thank You!


