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The Local Hamiltonain Problem
Input:

H1, c ey H,—:
Hermetian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm || H;|| < 1.
n quidits in the system.
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The Local Hamiltonain Problem
Input:

H1, c ey H,—:
Hermetian positive semi-definite matrices
operating on k qudits of dimension d
with bounded norm || H;|| < 1.
n quidits in the system.

Two real numbers E and A > 1/poly(n)

Output:

Is the smallest eigenvalueoft H=H; +---+ H, < E
or are all eigenvalues > E + A?
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The class QMA (Quantum Merlin Arthur)
NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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The class QMA (Quantum Merlin Arthur)

NP QMA

A problem is in NP if there is a A problem is in QMA if there is
polynomial time Turing Machine  a poly-sized uniform quantum
M such that on input x, where circuit family {C,} such that on
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The class QMA (Quantum Merlin Arthur)

NP QMA

A problem is in NP if there is a A problem is in QMA if there is
polynomial time Turing Machine  a poly-sized uniform quantum

M such that on input x, where circuit family { C,} such that on

x| = n: input x, where |x| = n:

If x € L, then there is a witness T X € L, then there is a

y such that M(x, y) accepts. quantum witness |¢) such that
Prob[Cn(x, ) = 1] > 2/3.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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QMA

A problem is in QMA if there is
a poly-sized uniform quantum
circuit family {C,} such that on
input x, where |x| = n:

If x € L, then there is a
quantum witness |¢) such that
Prob[Ca(x, |$)) = 1] > 2/3.

If x &€ L, then for every |¢),
Prob[C,(x, |d)) = 1] < 1/8.

/) has poly(n) qubits.
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A problem is in NP if there is a
polynomial time Turing Machine
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The class QMA (Quantum Merlin Arthur)

NP

A problem is in NP if there is a
polynomial time Turing Machine
M such that on input x, where
x| = n:

If x € L, then there is a withess
y such that M(x, y) accepts.

If x & L, then for every y,
M(x, y) rejects.

ly| < poly(x)

Boolean Satisfiability
Is NP-complete
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QMA

A problem is in QMA if there is
a poly-sized uniform quantum
circuit family {C,} such that on
input x, where |x| = n:

If x € L, then there is a
quantum W|tness /&) such that

Prob[C,,(x =11>28.1— 5

If x & L, then for every |¢),
Prob[Ca(x, |)) = 11 < D&,

/) has poly(n) qubits.
Local Hamiltonian
is QMA-complete

1

2[7




Local Hamiltonian is in QMA

s O(y)

Boolean satisfiable?
C e c NP Witness:
Satisfiability Satisfying

assignment y
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Local Hamiltonian is in QMA

Boolean
NP
Satisfiability -

ocal - quA
Hamiltonian
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s O(y)

satisfiable?
Witness:

Satisfying
assignment y

Is there a state whose
energy (according to H)
IS less than E?
(O|H|D) < E?

Witness: |®)



Local Hamiltonian is in QMA

s O(y)

Boolean satisfiable?
C o c NP Witness:
Satisfiability Satisfying

assignment y

Is there a state whose

| energy (according to H)
(.)Cal. c QMA s less than E?
Hamiltonian (O|H|D) < E?
Witness: |®)
Guarantee:
There exists |®) such that (O|H|®) < E  |Showed a measurement
OR —> |whose outcome = 1 with
Forall |®@), (D|H|®) > E+ A probability (O |H|D)/r.
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Local Hamiltonian is QMA-hard

Start with a generic language L in QMA

Is x € L?

- 0/1

X

o O O O O
~— T T T T

)
)
)
)
)

—h —h —h —h —h
S~ S~ S~ S~~~

Chn

)

s there a quantum state ¢)
that causes this quantum circuit
to output 1 with high probability?
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Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is x € L?
it -0/
X)) oo = k-Local
1 L
| 10)/11) C, | —  Hamiltonian:
— (Hx, E, A)
b) — ’

s there a quantum state ¢) Is the ground energy of
that causes this quantum circuit H,
to output 1 with high probability? < Eor>E+A?
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Local Hamiltonian is QMA-hard [Kitaev 1995]

Start with a generic language L in QMA

Is x € L?

X

o O O O O
~— T T T T

)
)
)
)
)

—h —h —h —h —h
S~ S~ S~ S~~~

Chn

)

s there a quantum state ¢)
that causes this quantum circuit
to output 1 with high probability?
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-0/1 5
“k-Local
—> Hamiltonian:
(Hy, E, A)
PN Is the ground energy of

H,
< Eor> E +A?



The Hamiltonian H,

He= 5 1|t + 1@ |t= 1)t — 1]+ U |t —1] = Uf @ [t— 1)(]
Hprop:z; H;

Ground State: Spectral Gap:

)
1
m;UtUt_1 LU BN > gy
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The Hamiltonian H,
Hy =1 [/® B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

.
1 1
m;UtUt_1 UIE S 2 gy
|ﬂpUtX=X1X2'-'Xn n
Hinit = ‘7/> <7/’/ & |O><O’c/ock

=1
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The Hamiltonian H,
Hy =1 [/® B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

i
1
D Uiy i) e) o[ty > S
VT +1 &= 2(T+1)
|ﬂpUtX=X1X2'-'Xn n
Hinit = 1X;) (Xj|; @ 10) (0| crock
j=1
Computation
accepts:
P Hout = [0)(0]1 ® | TN T oi0ck
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The Hamiltonian H,
Hy =1 [/@) B+ 1@t — -1+ U@ |t —1] — U @[t — 1><t|}
Hprop = Z; H;

Ground State: Spectral Gap:

i
1
D Uiy i) e) o[ty > S
VT +1 &= 2(T+1)
|ﬂpUtX=X1X2'-°Xn n
Hinit = 1X;) (Xj|; @ 10) (0| crock
j=1
Computation
accepts:
P Hout = [0)(0]1 ® | TN T oi0ck

H = Hprop + Hinit + Hout
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits

Particle Dimension
/V
{10),[1),..., d—1)}
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Local Hamiltonian Variations

@ Locality
OANEE
@ where each H, acts on at most k qudits

Particle Dimension
el

U0, [1), s ld = 1)}

Geometry
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

®

* o
o —o-
*—o-
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 12-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 12-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00
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Adiabatic Quantum Computation

o

Hstart
Start system in the ground

state of a Hamiltonian which
IS easy to prepare.
(e.x. |00 ---00))
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Adiabatic Quantum Computation

O O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 ---00))
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - --00))
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - --00)) (T—1) t
H(t) = T Hstart + T° Hyinai
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinai

Adiabatic Theorem
Final state will be close to the
ground state of Hy,y if speed of
transition is
Q) HHfina/ — HstartH/A(H(t)) )
Spectral gap of H(t)
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O 4 »O
Hstart Hiinar
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinai
Adiabatic Theorem Final measurement to
Final state will be close to the determine result of
ground state of Hy,y if speed of computation
transition is

Q( HHﬁna/ _ HstartH/A(H(t)) )
Spectral gap of H(t)
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutman, Lapan, Lundgren, Preda in Science 2001]

Adiabatic computation may be more robust against certain kinds of
errors.
[Childs, Farhi, Preskill]
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutman, Lapan, Lundgren, Preda in Science 2001]

Adiabatic computation may be more robust against certain kinds of

errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?
® Can a quantum circuit simulate an adiabatic computation?

® Can an adiabatic computation perform any computation performed
by a quantum circuit?
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The Adiabatic Model

Originally suggested in the context of solving NP-hard problems
[Farhi, Goldstone, Gutman, Lapan, Lundgren, Preda in Science 2001]

Adiabatic computation may be more robust against certain kinds of

errors.
[Childs, Farhi, Preskill]

How Powerful is the Adiabatic Model?

® Can a quantum circuit simulate an adiabatic computation?
Yes - [van Dam, Mosca, Vazirani]

® Can an adiabatic computation perform any computation performed
by a quantum circuit?
Yes...
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 - - -00)) (T—1) ¢
H(t) = T Hstart + T° Hyinar

Adiabatic Theorem
Final state will be close to the
ground state of Hy,y if speed of
transition is
Q(HHﬁnal _ HstartH/A(H(t))
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Adiabatic Quantum Computation

Evolve Hamiltonian from

O A »O
Hstart Hiinal
Start system in the ground Final ground state
state of a Hamiltonian which encodes the answer to
IS easy to prepare. a computation.

(e.x. |00 ---00)) T_t t
H(t) = | T x Hstart + T° Hyinar
Adiabatic Theorem Hfinai = Hprop
Final state will be close to the Hamiltonian whose ground
ground state of Hy,y if speed of state is the computation state
transition is for Quantum Circuit C with input
O(||Hsinas — Hstart|| / A(H(t)) x. (No witness)

[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state:
|00---00)|00---00)
Computation Clock
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
I|OO---OO>”\OO---OO>I ] od
Computation Clock —
/ —X— —
Initial X gates set the input | 0)—1X— —
bits according to input x Cn

OO O O O O O O O O
N i i g N T S S i
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
|00---00)|00---00) ]
Computation Clock

Initial X gates set the input / i

bits according to input x

:

Cn

Adiabatic computation should end
up in a state close to:

OO O O O O O O O O
N i i g N T S S i

\/Tiz:u, . U;]00 - - - 00) 1)
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Circuit to Adiabatic Computation

Hg:2r+ Nas unique ground state: Hfinal 1S Hprop for this circuit:
|00---00)|00---00) ]

:

Computation Clock

Initial X gates set the input / i

bits according to input x

Cn

Adiabatic computation should end
up in a state close to:

OO O O O O O O O O
N i i g N T S S i

1

T
> Up--- U4]00- - - 00) 1)
v T +1 -

Measure: probabilty to measure the
|T><T‘C/OCK then ‘1><1 ‘OUZ‘ clock in state T is TLH

Quantum Hamiltonian Complexity - Sandy Irani



Lower Bound Spectral Gap

Hstart — Hﬁna/ —
0 1 [z 2
—1 1

1 2
o -

Spectral gap of:

(1 — S)Hstart + SHiina for s € [0,1]is >

Quantum Hamiltonian Complexity - Sandy Irani
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 12-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
*—<0—0 00
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2D Local Hamiltonian Reduction

Kitaev Construction:

T AT—
\/%ZEOlN)f?l“t ‘o’ t>

\
Clock Qubits

Computation Qubits
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2D Local Hamiltonian Reduction

Kitaev Construction:

T AT—
\/;-*HZEOlN)t?l“t ‘o’ t>

Computation Qubits Clock Qubits

The ”Clock” is distributed throughout the entire quantum system:

State space for a particle:

{10}, 10} @ {l@), @), 1O} o
v{@) @, 0} @@ @ e
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2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
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2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.

Quantum Hamiltonian Complexity - Sandy Irani



2D Local Hamiltonian Reduction, cont.

Clock state is a pattern of colors on the 2D grid of particles:
Some particles have a computation bit embedded in their state.

Enforce valid clock state with
"forbidden”
local configurations:

C@)O0
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

R d X JOIOIOI0
00000

00O OO
@000 CO0
T

)
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

‘1900
000

®\0 |©

t t t+1  t+1

bt 88t vi8) gl v

Applied to two particles in
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2D Local Hamiltonian Reduction, cont.

Advancing the clock and implementing gates:

o)

t

Applied to two particles in

(+)
()

t

+ /

‘1900
000

Ne

t+1  t+1




Clock Configuration Graph

Need to ensure at most one propogation term applied to each valid
clock state.
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Clock Configuration Graph

Need to ensure at most one propogation term applied to each vali

clock state.

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y
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Clock Configuration Graph

Need to ensure at most one propogation term applied to each valid

clock state.

Vertices: Standard basis of clock states

Edge (x, y) if a propogation term converts x to y

Valid Clock States

(@)

Q

0000
0000
0000
0000
0000
0000
0000

P

°
o

0000
[p S—

Quantum Hamiltonian Complexity - Sandy Irani

Invalid Clock States

0000
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0000

0000

0000
0000
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QMA-complete Problems

5-local 2-state Hamiltonian is QMA-Complete  [Kitaev 1995]

2-dimensional 2-local 6-state Hamiltoanian is QMA-complete
[Aharonov, van Dam, Kempe, Landau, Lloyd, Regev 2004]

2-local 2-state Hamiltoanian is QMA-complete ® O -
[Kempe, Kitaev, Regev 2005]

o o —&—o-
2-dimensional 2-local Hamiltonian is QMA-complete +——
[Oliveira Terhal 2008]

@ O @

1-dimensional 12-state Hamiltonian is
QMA-complete
[Aharonov, Gottesman, Irani, Kempe, 2009]

U
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Anaolg:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN Ul IU NN AN |
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Anaolg:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN Ul IU NN AN |

T(n) =2d°T(n/2) + O(1)
—
T(n) _ O(nlog(2d2))
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1-Dimensional Local Hamiltonian

Classical Methods:

DMR(G (Density Matrix Renormalization Group) [White 1992]

The Classical Anaolg:
1D MAX-2-SAT with d-state variables is in P:

Q A A A WA WA WA WA WA O
| NN AN Ul IU NN AN |

Why the
= 20° difference?
T(n) = 2d°T(n/2) + O(1)
~ 1N 11Tt
T(n) = o(nlog(Zdz)) VT+1 Zt=0 |1|)t>‘ >
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

n qubits n qubits
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

Active site triggers
transition to next clock
/ state.

O@@Q{}C}Q{}O{){}G@{}O—

| | | | >
n qubits n qubits
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1D Local Hamiltonian

O000O0

n 0000

O000O0

O000O0

-« T >
T(n+ 2) qubits

000000000000000000000000000000

n+2 n+2 n+2 n+2 n+2

9202020000, 20, J0L0020208 20,020
| | | | L,

n qubits n qubits
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|

Valid
Clock
States
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Clairvoyance Lemma

1D clock: can’t eliminate all invalid clock states with a local term

Configuration Graph:

Vertices: Standard basis of clock states
Edge (x, y) if a propogation term converts x to y

Clock configuration with cost 0: O
Clock configuration with cost > 1: @  |ab)(ab|

Valid
Clock
States
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Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

N|—
N|—

0

o

Quantum Hamiltonian Complexity - Sandy Irani
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Clairvoyance Lemma

Need to lower bound lowest eigenvalue of:

N|—
N —

N|—

0

o
-
=
|
=

0

N =

N|—=

N —=

1

N|—=

N|—

N = o
=
[

Q(1/K?), where K is the length of the chain

Need to upper bound the length of the "invalid” chains
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)
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1D Local Hamiltonian

n qubits n qubits

[AGIK]: 12 states per particle
[Narayanaswami, Hallgren]: 9 states per particle

Hamiltonian: sum of terms on each neighboring pair.

Terms are position-dependent. (Very non-physical!)

In most systems of physical interest:

The Hamlitonian describing the energy of the system
IS the same for each pair of neighboring particles.
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '
Fixed 29 x 29 matrix.

Quantum Hamiltonian Complexity - Sandy Irani



Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.

Problem input: N (the number of particles in the system)
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.
Two polynomials p(N) or g(N).

Problem input: N (the number of particles in the system)

Output:

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

<p(N) OR > p(N)+ 7
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Translational Invariance

How hard is it to find ground states of translationally invariant
guantum systems?

Problem parameters:

O—=0O

Hamiltonian term H on two d-dimensional particles | [ '

Fixed 29 x 29 matrix.
Two polynomials p(N) or g(N).

Problem input: N (the number of particles in the system)

Output: log N bits

When H is applied to every pair of neighboring particles in a
line of n particles, is the ground energy

<p(N) OR > p(N)+ 7

Quantum Hamiltonian Complexity - Sandy Irani



Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMA

L € QMA if there is a
poly-sized uniform
quantum circuit family {C,}:

fxel = 3|d)
Prob[C,(x, |d)) = 1] > 2/8.

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/8.

/&) has poly(n) qubits.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMAExp

L € QMA if there is a

EXP pefy-sized uniform
quantum circuit family {C,}:

fxel = 3|d)
Prob[C,(x, |d)) = 1] > 2/8.

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/8.

EXP
|d) has paty(n) qubits.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

QMAExp

L € QMA if there is a

EXP pefy-sized uniform EXP-time quantum
quantum circuit family {C,}: Turing Machine V

fxel = 3|d)
Prob[C,(x, |)) = 1] > 2/3. «— Prob[V/(x,

fx gL = V|b)
Prob[C,(x, |d)) = 1] < 1/3. <«— Prob[V/(x,

EXP
|d) has paty(n) qubits.

¢)) accepts] > 2/3

¢)) accepts] < 1/3
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

L = finiteterm H.

Instance x = N size of the system
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

; finite 1 . Description of L
= finteterm H. -——___ ..
Polynomials p and g (I.e. the verifier)

(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

. Description of L
[ = fintetermH. «—_

Polynomials p and g (I.e. the verifier) |
(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.

) such that prob

— H on N-particle chain has
V(x,

) accepts > 2/3 ground energy < p(N)
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Translationally Invariant Local Hamiltonian

1-Dimensional Translationally Invariant Local Hamiltonian is
QM AEexp-complete. [Gottesman, Irani, 2010]

To reduce a language L in QMAEgxp to T.l. Local Hamiltonian:

. Description of L
[ = fintetermH. +——__

Polynomials p and g (l.e. the verifier)
(depend on running time of V) needs to be encoded in a
Instance x = N size of the system constant-sized H.
) such that prob — H on N-particle chain has
V(x, 1)) accepts > 2/3 ground energy < p(N)
V): —. | H on N-particle chain has
V(x, [\)) accepts < 1/3 ground energy > p(N)+1/q(N)
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the couner.
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the couner.

Function f : Z — {0, 1}*:

After N steps, f(N) appears on the tape.

Reduction: given string x, find N such that f(N) = x.
x| ~ log N
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) "Count” the number of particles and
write the number in binary on the tape.

2) Use the result of Step 1 as the input to Verifier V

Binary Counter Turing Machine Mpg¢:

Contents of the tape are a binary counter.
Start with 0 and continually increment the couner.

Function f : Z — {0, 1}*:

After N steps, f(N) appears on the tape.
Reduction: given string x, find N such that f(N) = x.
x| ~ log N

Mgc can be made quantum. [Bernstein-Vazirani]
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) Simulate Mg¢ for N steps.

2) Simulate V for N steps using output of Mgc as input to V.
where N is the length of the chain.
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Translationally Invariant Local Hamiltonian

Ground State of H is "computation state” encoding a process:

1) Simulate Mg¢ for N steps.

2) Simulate V for N steps using output of Mgc as input to V.
where N is the length of the chain.

Need a clock that counts the number of particles in the chain twice.

Each tick” of the clock triggers a step of a QTM.
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Translationally Invariant Local Hamiltonian

Track 1: Clock second hand
Track 2: Clock minute hand
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

AN \

Particle 3 Particle N

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [{] OR [}
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Translationally Invariant Local Hamiltonian

00/00000000 00000000000 0

Track 2: Clock minute hand
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Particle 1

Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [{] OR [}
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Translationally Invariant Local Hamiltonian

0000000000 00000000000
Ol 0000000000000 00000000 0
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Q@O

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [(] OR [}
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Translationally Invariant Local Hamiltonian

00000000000 0000000000O
O10C0000000CO0000000000000
< Track 3: QTM Work Tape >
Track 4: Mpgc state and head location

Track 5: V state and head location

Track 6: Quantum witness [\b) for V

/ \ Particle 3 Particle N

Q@O

Particle 1
Particle 2

Particle states:
6-tuple denoting the state for each track.

OR [(] OR [}
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimenaional particles. (n bits)
In2D: H = (Hhoriz= Hvert)
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimenaional particles. (n bits)
In2D: H = (Hhoriz= Hvert)

Determining the Energy Density to within

the n'" bit of precision is QMAgxp-complete.
[Gottesman, Irani, 2010]

21 x 21
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The Thermodynamic Limit

What is the ground Energy Density (energy per particle) when H is
applied to an infinite grid/line?

Input: Hamiltonian term H on two d-dimenaional particles. (n bits)
In2D: H = (Hhoriz= Hvert)

Determining the Energy Density to within

the n'" bit of precision is QMAgxp-complete.
[Gottesman, Irani, 2010]

\

Determining the Spectral Gap of H is undecidable. 2" x 2"
Is A > 1 oris H gapless?
[Cubitt, Perez-Garcia, Wolf Nature, 2015] «—2D
[Bausch, Cubitt, Lucia, Perez-Garcia, 2018] «— 1D
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Energy Density o< Spectral Gap
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Energy Density o< Spectral Gap
H, is the Hamiltonian H appied to an L x L grid.

Energy Density of H is: E(H) = lim,_, Ao(HL)
- o0 [ 2

Given H determine if:
E(H >c>0

OR if E(H) approaches 0 from below.
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Energy Density o< Spectral Gap
H, is the Hamiltonian H appied to an L x L grid.

Energy Density of H is: E(H) = lim,_, Ao(HL)
- o0 [ 2

Given H determine if:
E(H >c>0

OR if E(H) approaches 0 from below.

PR Implies lim; oo Ag(HL) = o0
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Energy Density o< Spectral Gap
H, is the Hamiltonian H appied to an L x L grid.

Energy Density of H is: E(H) = lim,_, Ao(HL)
- o0 [ 2

Given H determine if: Implies  lim;_, o Ag(H,) = 00
EH) >c>0 4
OR if E(H) approaches 0 from below.

Reduction: H — H':

E(H) > c = AH) > 1
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Energy Density o< Spectral Gap
H, is the Hamiltonian H appied to an L x L grid.

Energy Density of H is: E(H) = lim,_, Ao(HL)
- o0 [ 2

Given H determine if: Implies  lim;_, o Ag(H,) = 00
EH) >c>0 4

OR if E(H) approaches 0 from below.
Reduction: H — H':
E(H) > c = A(H') > 1

>
|

) = H' is gapless

E(
Ao(H,

O
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Energy Density o< Spectral Gap

Let Hy be a gapless translationally invariant Hamiltonian.

Spec(H') = {0} U SU {Spec(H) + Spec(Hy)}
> 1
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Energy Density o< Spectral Gap

Let Hy be a gapless translationally invariant Hamiltonian.

Spec(H') = {0} U SU {Spec(H) + Spec(Hy)}
> 1

0 A >

If Ag(H) < 0

Quantum Hamiltonian Complexity - Sandy Irani



Energy Density o< Spectral Gap

Let Hy be a gapless translationally invariant Hamiltonian.

Spec(H') = {0} U SU {Spec(H) + Spec(Hy)}
> 1

N A >

™

Ao(H) + Spec(Hy)
H) <

If Aof
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Energy Density o< Spectral Gap

Let Hy be a gapless translationally invariant Hamiltonian.

Spec(H’) = {0} U S U {Spec(H) + Spec(Hy)}

> 1
S A
0 yA > S
Ao(F) :Epec(Hm 0 Az
If Ao(H) < If Ag(H) = 00
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Energy Density o< Spectral Gap

Let Hy be a gapless translationally invariant Hamiltonian.

Spec(H’) = {0} U S U {Spec(H) + Spec(Hy)}

\ - Ao(H) + Spec(Hy)
° A
0 bA> 1 S
Ao(H) :-Epec(Hd) 0 b A > 1
f Ao(H) < If Ao(H) = oc
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Energy Density o< Spectral Gap

=10) &

Quantum Hamiltonian

D (Hy® H)
= 10)(0] @ (1 = [0){0f) +

(I—=10){0]) ©|0)(0

+ Hy®! + I®H

0)

H,® H

Particle 1

Complexity - Sandy Irani
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Energy Density o< Spectral Gap
=10) ® (H,® H)

H ={/0)(0] ® (I — [0)(0])|+ (/ — |0)(0]) ® |0)(O]
+ Hy®! + I®QH

0) 0)
H,@ H H, @ H
Particle 1 Particle 2

Spectrum S > 1
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Energy Density o< Spectral Gap

=10) &

Quantum Hamiltonian

D (Hy® H)
= 10)(0] @ (1 = [0){0f) +

(I—=10){0]) ©|0)(0

+ Hy®! + I®H

0)

H,® H

Particle 1

0)
H,® H

Particle 2

00) is a 0 energy state.
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Energy Density o< Spectral Gap
D (Hy, @ H)
=10)(0] ® (/ = 0)(0]) +

=10) &

Quantum Hamiltonian

+

Hy ® |

0)

H, @ H

(1 —10)(0[) ® |0)(0
+ IQH

0)
H, @ H

Particle 1

Complexity - Sandy Irani
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Energy Density o< Spectral Gap
=10) ® (H,® H)

= |0){0] ® (/ —|0){0]) + (/ — 0)(0]) ® |0) (0
t[Hyol + 1o HA

0) 0)
H, @ H H, @ H
Particle 1 Particle 2

{Spec(H) + Spec(Hy)}
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Energy Density is Undecidable

Reduction: n = H(n)
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Energy Density is Undecidable

Reduction: n = H(n)

The Universal
Turing Machine
on input n
halts.

= E(H(n)) > ¢ >0

Quantum Hamiltonian Complexity - Sandy Irani



Energy Density is Undecidable

Reduction: n = H(n)

The Universal

Turing Machine — E(H(n)) > C > 0

on input n
halts.

The Universal E(H(n))

Turing Machine — approaches 0
on input n

does not halt. from below.
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2D Wang Tiles
Setoftiles: T={OOOMW ...}
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2D Wang Tiles

Set oftiles: T={OO XMW ...

Two cost functions:
Choriz( ], O ) = d1
Cverz‘( [] ) [] ) = d2
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2D Wang Tiles

Setoftiles: T={OOOMW ...}
Two cost functions:

Choriz( O, O ) = d1
Cverz‘( O, O ) = d2

What’s the minimum cost
tiling of an N x N grid?

OECONO
O00O0 .
ONCONN
OO0OEO
OEONO

Or average cost per square
of the infinite grid?  [Wang 1961]
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2D Wang Tiles

Setoftiles: T = {DOD DM ...} Tiling is a (classical) special
Two cost functions: case of Local Hamiltonian:
Choriz(D,D)=d1 d1‘|:||:|><|:||:|’

Cvert([l, |:|)=d2 a
2

O\ /O
O /\ O
What’s the minimum cost

tiling of an N x N grid?

OECONO
O00O0 .
ONCONN
OO0OEO
OEONO

Or average cost per square
of the infinite grid?  [Wang 1961]
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2D Wang Tiles

Set oftiles: T={OO XMW ...

Two cost functions:
Choriz( ], O ) = d1
Cverz‘( [] ) [] ) = d2

What’s the minimum cost
tiling of an N x N grid?

OECONO
O00O0 .
ONCONN
OO0OEO
OEONO

Or average cost per square

of the infinite grid?  [Wang 1961]
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Tiling is a (classical) special
case of Local Hamiltonian:

d;| 0@ )(0m |
(8

Robinson Tiling:

a>

Minimum cost tiling of the
infinite grid is aperiodic.



2D Wang Tiles

Setoftiles: T={OOOMW ...}
Two cost functions:

Choriz( O, O ) = d1
Cverz‘( 1, O ) = d2

What’s the minimum cost
tiling of an N x N grid?

OECONO
O00O0 .
ONCONN
OO0OEO
OEONO

Or average cost per square
of the infinite grid?  [Wang 1961]

Quantum Hamiltonian Complexity - Sandy Irani

Tiling is a (classical) special
case of Local Hamiltonian:

d;| 0@ )(0m |
(8

Robinson Tiling:

a>

Minimum cost tiling of the
infinite grid is aperiodic.

For every K:
squares of size 4% x 4
frequency ~ 1/4k
[Robinson 1971]



Robinson Tiling
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Robinson Tiling

‘\\\\EEEB
[ [

[ [
HEBEH
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Two Layers of the Construction
Particle Space: Heomp @ H e
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Two Layers of the Construction
Particle Space: Heomp @ H e

Computation

Hamiltonian
-

%Comp > Hcomp
2 2
H. H.
tle 1 Tiling rules © L—1e
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Two Layers of the Construction
Particle Space: Heomp @ H e

Computation

Hamiltonian
- >

¢ — P>
Tiling rules

HEHEBHEHBEHEHBHEHEBHBEHBEBHEAE
] ]
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Two Layers of the Construction
Particle Space: Heomp @ H e

Computation

Hamiltonian
Hcomp < - Hcomp
® ®
Hy H.
tle I Tiling rules  L—1e

Computation Hamiltonian:

Ground state is a history
state of a computational
1] 1] process.
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape

Phase estimation on the quantum gate: [(1) ezg,d)]

¢ = n/2!" rational number whose binary expansion is n.
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape

" [ 1
Phase estimation on the quantum gate: [O ezg,d)]

¢ = n/2!" rational number whose binary expansion is n.

2) Simulate Universal TM U on input n for 4% steps.

4% is the dimension of the square “hosting” the computation.
Use the clock from Gottesman-| to count the number of steps.
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape

" [ 1
Phase estimation on the quantum gate: [O ezg,d)]

¢ = n/2!" rational number whose binary expansion is n.

2) Simulate Universal TM U on input n for 4% steps.

4% is the dimension of the square “hosting” the computation.
Use the clock from Gottesman-| to count the number of steps.

3) Add an energy charge for halting
|Qhait) { Ghait|
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape

" [ 1
Phase estimation on the quantum gate: [O ezg,d)]

¢ = n/2!" rational number whose binary expansion is n.

2) Simulate Universal TM U on input n for 4% steps.

4% is the dimension of the square “hosting” the computation.
Use the clock from Gottesman-| to count the number of steps.

3) Add an energy charge for halting
|Qhait) { Ghait|

If the computation halts...
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The Computational Process Encoded in H(n)

Computation Hamiltonian: H(n)

1) Write n in binary on the QTM tape

" [ 1
Phase estimation on the quantum gate: [O 822,¢]

¢ = n/2!" rational number whose binary expansion is n.

2) Simulate Universal TM U on input n for 4% steps.
4% is the dimension of the square “hosting” the computation.
Use the clock from Gottesman-| to count the number of steps.

| Number of step of Hp,op
3) Add an energy charge for halting T = poly(n, 4%)

|Qhait) (Ghait] Energy per square Q(1/T3)
If the computation halts... Energy density Q(1/(4*T?))
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Energy Density is Undecidable

Reduction: n = H(n)
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Energy Density is Undecidable

Reduction: n = H(n)

The Universal
Turing Machine — _ 1
on input n E(H(n)) = Q2 (P(n,4k))
halts in < 4% steps.
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Energy Density is Undecidable

Reduction: n = H(n)

The Universal

Tuing Machine  — E£(H(n)) = Q ( 1 )

on input n p(n,4%)
halts in < 4% steps.
The Universal E(H(n))?
Turing Machine —

( E(H(n)) approaches 0

on input n
P from below. )

does not halt.
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Energy Density is Undecidable

Reduction: n = H(n)

The Universal

Tuing Machine = E£(H(n)) = Q( 1 )

on input n p(n,4k)
halts in < 4% steps.
The Universal E(H(n))?
Turing Machine —
on input n ( E(H(n)) approaches 0

does not halt. from below. )

Complexity in the thermodynamic limit:?
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Energy Density is Undecidable

Reduction: n = H(n)

The Universal

Turing Machine — E(H(n)) -0 (p(n14k))

on input n
halts in < 4% steps.
The Universal E(H(n))?
Turing Machine —
on input n ( E(H(n)) approaches 0

does not halt. from below. )

Complexity in the thermodynamic limit:?

How stable are hard Translationally Invariant instances with respect to
some measure on the Hamiltonian terms?
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More "natural” Hamiltonians?

Bose-Hubbard Model is QMA-Complete [Childs, Gosset Webb 2013]

Input: interaction graph G = (V, E)
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More "natural” Hamiltonians?

Bose-Hubbard Model is QMA-Complete [Childs, Gosset Webb 2013]

n;: number of

particles
/ at node j

Input: interaction graph G = (V, E)

H = thop Z ezjaz;r +Jan(nj— 1)

a': removes a particle (ij)EE jev
from node |

a;: adds a particle to H preserves the number of
node particles in the system.
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More "natural” Hamiltonians?
Bose-Hubbard Model is QMA-Complete [Childs, Gosset Webb 2013]

n;: number of

particles
/ at node j

Input: interaction graph G = (V, E)

H = thop Z ezjaz;r +Jan(nj— 1)

a': removes a particle (ij)EE jev
from node |

a;: adds a particle to H preserves the number of
node particles in the system.

Ao(H |n) > N - Ag(A(G))  (A(G) is the adjacency matrix of graph G)
It's QMA-hard to determine if Ag(H|yn) is close to N - Ag(A(G)).
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More "natural” Hamiltonians?

Bose-Hubbard Model is QMA-Complete [Childs, Gosset Webb 2013]

, _ n;: number of
Input: interaction graph G = (V, E) " articles
/ at node j
a': removes a particle (ij)EE jev
from node /

aj: adds a particle to

node |

H preserves the number of

particles in the system.

Ao(H |n) > N - Ag(A(G))  (A(G) is the adjacency matrix of graph G)
It's QMA-hard to determine if Ag(H|yn) is close to N - Ag(A(G)).

Equivalent to:

J I ~J

o o, + ol o 1— 0o
Z Xx2yy+z 262

(i,))EE,i (i,HeE
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Bose-Hubbard and X-Y Model
Bose-Hubbard:

—thopZa, +J2nj

(,))eE jev

In the "Hard Core” regine is equivalent to:

i i i

0,0x + 0,0y 1—0
XY model > > + Y 5
I (i,))EE,i# : (,heE
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Bose-Hubbard and X-Y Model
Bose-Hubbard:

—thm }::Ey -FJ}E:Q

(,))eE jev

In the "Hard Core” regine is equivalent to:

i i

0} 0% + 07,0, 1—o0
XY model > > + Y 5
IUﬁEEJ# : (i, eE

= ) ([01){10[+ [10)(01]); + »  [1){

(i,))EE, i (i,)€E </
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Bose-Hubbard and X-Y Model
Bose-Hubbard:

—thm }::Ey -FJ}E:Q

(,))eE jev

In the "Hard Core” regine is equivalent to:

i i

0} 0% + 07,0, 1—o0
XY model > > + Y 5
IUﬁEEJ# : (i, eE

= ) ([01){10[+ [10)(01]); + »  [1){

(i )CE.id (ieE /Self-loops

Input graph has no self-loops [Childs, Gosset Webb 2015]
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Bose-Hubbard and X-Y Model

Input graph encodes the computation of a quantum circuit.

(Graph image from CGW)
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Bose-Hubbard and X-Y Model

Input graph encodes the computation of a quantum circuit.

New directions:

Variations on Bose-Hubbard
thop < 0 and/or J < 0.

= thop Z a;a; +Jan

(iLH)eE jev

[Bravyi, DiVincenzo, Oliveira, Terhal 2007]

(Graph image from CGW)
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Bose-Hubbard and X-Y Model

Input graph encodes the computation of a quantum circuit.

New directions:

Variations on Bose-Hubbard
thop < 0 and/or J < 0.

= thop Z a;a; +Jan

(iLH)eE jev

[Bravyi, DiVincenzo, Oliveira, Terhal 2007]

Simpler Graphs

Planar?
Subset of a grid?
N x N grid?

Quantum Hamiltonian Complexity - Sandy Irani
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

When is a k-qubit Hamiltonian term useful for building gadets?
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

When is a k-qubit Hamiltonian term useful for building gadets?
S = set of k-qubit Hamiltonian terms

S-Hamiltonian Problem: special case of local Hamiltonian where for
each term H,, there is an o; € R, such that o(;H; € S.
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

When is a k-qubit Hamiltonian term useful for building gadets?
S = set of k-qubit Hamiltonian terms

S-Hamiltonian Problem: special case of local Hamiltonian where for
each term H,, there is an o; € R, such that o(;H; € S.

'S can be +
and
can be poly-sized

Interaction graph
IS arbitrary

Quantum Hamiltonian Complexity - Sandy Irani



Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

When is a k-qubit Hamiltonian term useful for building gadets?
S = set of k-qubit Hamiltonian terms

S-Hamiltonian Problem: special case of local Hamiltonian where for
each term H,, there is an o; € R, such that o(;H; € S.

o’s can be +

and
Then U locally diaginalizes S if

Interaction graph

QK T\&®k
U= H(UY) IS arbitrary

is diagonal forevery H € S
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Perturbation Gadgets

Kempe Kitaev Regev 05]  2-local Hamiltonian is QMA complete

Oliveira Terhal 08] 2-local 2D qubit Hamiltonian is QMA complete
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Perturbation Gadgets

Kempe Kitaev Regev 05]  2-local Hamiltonian is QMA complete

Oliveira Terhal 08] 2-local 2D qubit Hamiltonian is QMA complete

5-local term H
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Perturbation Gadgets

Kempe Kitaev Regev 05]  2-local Hamiltonian is QMA complete

Oliveira Terhal 08] 2-local 2D qubit Hamiltonian is QMA complete

Sum of

5-local term H 2-local terms
H/
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Perturbation Gadgets

Kempe Kitaev Regev 05]  2-local Hamiltonian is QMA complete

Oliveira Terhal 08] 2-local 2D qubit Hamiltonian is QMA complete

Sum of
5-local term H 2-local terms

H/
H = Hl‘gA
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P

2) If 4U such that U locally diagonalizes S,
then S-Hamiltonian is|[NP-complete.

Quantum Hamiltonian Complexity - Sandy Irani



Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P

2) If 4U such that U locally diagonalizes S,
then S-Hamiltonian is|[NP-complete.

3) dU such that for every H; € S,

UP2H, (UN®2 = x,ZZ + Ai® 1+ | ® B
{ZZ, X}-Hamiltonian
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P

2) If 4U such that U locally diagonalizes S,
then S-Hamiltonian is|[NP-complete.

3) dU such that for every H; € S,

UP2H, (UN®2 = x,ZZ + Ai® 1+ | ® B
{ZZ, X}-Hamiltonian

StogMA-complete| [Bravyi, Hastings 2016]
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P

2) If 4U such that U locally diagonalizes S,
then S-Hamiltonian is|[NP-complete.

3) dU such that for every H; € S,

UP2H, (UN®2 = x,ZZ + Ai® 1+ | ® B
{ZZ, X}-Hamiltonian

StogMA-complete| [Bravyi, Hastings 2016]

4) Otherwise, S-Hamiltonian is|QMA-complete.
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Classifying 2-Qubit Terms [Cubitt, Montanaro 2016]

S is a set of 2-qubit Hamiltonian terms:

1) If Sis 1-local then S-Hamiltonian (P

2) If 4U such that U locally diagonalizes S,
then S-Hamiltonian is|[NP-complete.

3) dU such that for every H; € S,

Un-physical aspects:
1) Negative and positive
coefficients.

2) Arbitrary interaction
graph.

3) Large (poly in system
size) coefficients.

UP2H, (UN®2 = x,ZZ + Ai® 1+ | ® B
{ZZ, X}-Hamiltonian

StogMA-complete| [Bravyi, Hastings 2016]

4) Otherwise, S-Hamiltonian is|QMA-complete.
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

positive coeffients

e
A=aXX+bYY+yzz — LH1+_Hamiltonian
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

positive coeffients

e
A=aXX+bYY+yzz — LH1+_Hamiltonian

H=—XX+
BYY +vZZ

——— NP-complete

— P

Quantum Hamiltonian Complexity - Sandy Irani
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H = H == XX +
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StogMA QMA-complete
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complete



Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

positive coeffients

e
A=aXX+bYY+yzz — LH1+_Hamiltonian

B B ;
A 4 !
— ]
>Y >Y = 1’ ~Y
T—1
H= —XX+ H = H=XX+
BYY +yZZ BYY +yZZ BYY+yZZ
——— NP-complete StogMA QMA-complete
= StogMA-
complete

Important special cases: XX + YY +ZZand XX+ YY
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

H = Z M,‘jO',' X O+ 1-CIUbit terms.
Pauli rank of H = rank(M)

Theorem: If the Pauli rank of H is at least 2 and the 2-local part of H
is not proportional to XX + YY + ZZ, then {H}*-Hamiltonian is QMA-

complete on the 2D grid.
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

H = Z M,‘jO',' X O+ 1-CIUbit terms.
Pauli rank of H = rank(M)

Theorem: If the Pauli rank of H is at least 2 and the 2-local part of H
is not proportional to XX + YY + ZZ, then {H}*-Hamiltonian is QMA-
complete on the 2D grid.

Theorem: Let H = a XX +RBYY +vZZ, such that
x+p>0,x+y>0,andp+y >0
and H is not proportionalto XX + YY + ZZ.
Then {H}*-Hamiltonian is QMA-complete on the 2D triangular lattice.
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

H = Z M,‘jO',' X O+ 1-CIUbit terms.
Pauli rank of H = rank(M)

Theorem: If the Pauli rank of H is at least 2 and the 2-local part of H
is not proportional to XX + YY + ZZ, then {H}*-Hamiltonian is QMA-
complete on the 2D grid.

Theorem: Let H = a XX +RBYY +vZZ, such that
x+p>0,x+y>0,andp+y >0
and H is not proportionalto XX + YY + ZZ.
Then {H}*-Hamiltonian is QMA-complete on the 2D triangular lattice.

Restricting the size of the coefficients?
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Classifying 2-Qubit Terms  [Piddock, Montanaro 2015]

H = Z M,‘jO',' X O+ 1-CIUbit terms.
Pauli rank of H = rank(M)

Theorem: If the Pauli rank of H is at least 2 and the 2-local part of H
is not proportional to XX + YY + ZZ, then {H}*-Hamiltonian is QMA-
complete on the 2D grid.

Theorem: Let H = a XX +RBYY +vZZ, such that
x+p>0,x+y>0,andp+y >0
and H is not proportionalto XX + YY + ZZ.
Then {H}*-Hamiltonian is QMA-complete on the 2D triangular lattice.

Restricting the size of the coefficients?
P C NP C StogMA € QMA
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Ground State Preparation (Hybrid)

S Algorithm f stimator
High for e'f
overlap

with [vp)?
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Ground State Preparation (Hybrid)

' i Phase
Adiabatic
M)S>_> Algorithm ! |¢f> > Estimator —>\VO>
High for e
overlap
with |vp)?

Can be combined with Amplitude Amplification [Grover 1996]

To improve dependence on |{vp|dy)| from 1/[{vo|ds)|? to 1/]{vo|ds)].
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Ground State Preparation (Hybrid)

' i Phase
Adiabatic
M)S>_> Algorithm ! |¢f> > Estimator —>\VO>
High for e
overlap
with |vp)?

Can be combined with Amplitude Amplification [Grover 1996]

To improve dependence on |{vp|dy)| from 1/[{vo|ds)|? to 1/]{vo|ds)].

Also concerned about:
Number of qubits used
Dependence on spectral gap, required accuracy, etc.

[Oh 2007] [Poulin,Wocjan 2009] [Ge, Tura, Cirac 2018]
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Area Laws and Hamiltonian Complexity

Set A of qudits.
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Area Laws and Hamiltonian Complexity

Set A of qudits.
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Area Laws and Hamiltonian Complexity

Schmidt Decomposition:
Q) =) Ajlaj)alb)s

Entropy of Entanglement:
Sa = —;(Aj)? log(\))?
Sa = —Tr(palog pa)

Set A of qudits.

Area Law:

If |Q)) is the ground state of a "gapped” local Hamiltonian, then
S, is proportional to the size of the boundary of A.
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Area Laws and Hamiltonian Complexity

Schmidt Decomposition:
Q) =) Ajlaj)alb)s

Entropy of Entanglement:
Sa = —;(Aj)? log(\))?
Sa = —Tr(palog pa)

Set A of qudits.

Area Law:

If |Q)) is the ground state of a "gapped” local Hamiltonian, then
S, is proportional to the size of the boundary of A.

A B
1D Area Law: 4.—.—.—.%.—.—.—.7

[Hastings 08] [Arad, Kitaev, Landau, Vazirani 13] S, = O (Iog3 d)

€
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Area Laws and Tensor Networks

Area law in 1D implies that ground states of gapped Hamiltonians can
be closely approximated by Matrix Product States.

O|/1 O|/1 O|/1 O|/1 O|/1 O|/1 0/1
|

\

Tensor: A2 g
b=0/1, 1< P <B
B = "bond dimension”
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Area Laws and Tensor Networks

Area law in 1D implies that ground states of gapped Hamiltonians can
be closely approximated by Matrix Product States.

O|/1 O|/1 O|/1 O|/1 O|/1 O|/1 0/1
|

\

Tensor: A2 g
B_O(n) b=0/1, 1<o,p<B

[Arad, Kitaev, Landau, Vazirani 13] B = "bond dimension”
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Area Laws and Tensor Networks

Area law in 1D implies that ground states of gapped Hamiltonians can
be closely approximated by Matrix Product States.

O|/1 O|/1 O|/1 O|/1 O|/1 O|/1 O|/1

\

Tensor: A2 g
B_O(n) b=0/1, 1<o,p<B

[Arad, Kitaev, Landau, Vazirani 13] B = "bond dimension”

In 2D: PEPS (Projected Entangled Pair States)

[Verstraete, Cirac] o/t o/t 0/t 0o/1 0/1
Nz Az Az Az A=
e ) ) e )
A A A A S
e e e e e
A A S A~ S
e e e e e
A A A A
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Critical Systems and the Log Correction

Let {H,} be a family of Hamiltonians on n-particle chains.

Gapped: lim,_~ A(H,) = ¢

Entanglement entropy of the ground state does not depend on n.
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Critical Systems and the Log Correction

Let {H,} be a family of Hamiltonians on n-particle chains.

Gapped: lim,_~ A(H,) = ¢

Entanglement entropy of the ground state does not depend on n.

Non-gapped (critical): lim,_, oo A(Hp) = o(1)
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Critical Systems and the Log Correction

Let {H,} be a family of Hamiltonians on n-particle chains.
Gapped: lim,_~ A(H,) = ¢

Entanglement entropy of the ground state does not depend on n.
Non-gapped (critical): lim,_, .o A(H,) = o(1)

In most examples from physics,
entropy of ground state scales as O(log n).
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Critical Systems and the Log Correction

Let {H,} be a family of Hamiltonians on n-particle chains.

Gapped: lim,_~ A(H,) = ¢

Entanglement entropy of the ground state does not depend on n.

Non-gapped (critical): lim,_, oo A(Hp) = o(1)

In most examples from physics,
entropy of ground state scales as O(log n).

Not a universal rule:
Examples with A(H,) = ©(1/poly(n)) and ground state entropy Q(n).

0-0-0-0-0-0-0-0-0-0-00 (Gottesman, Hastings

— Irani]
& % [Movassagh, Shor]
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Thank You!

Quantum Hamiltonian Complexity - Sandy Irani



