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What are Multilinear Maps?



3

> Multilinear maps: motivated in [ Boneh, Silverberg 03 ] with the potential applications 
of constructing unique signature, broadcast encryption, etc.

gS1, gS2, gS3, ... → gT
∏S

> Discrete-log problem [ Diffie, Hellman 76 ] 

Given g, gS mod q,  finding s is hard
> Bilinear maps from Weil pairing over elliptic curve groups 

[ Miller 86 ]  How to compute Weil pairing
[ Sakai, Ohgishi, Kasahara 00 ]   Identity-based key-exchange
[ Joux 00 ]   Three-party non-interactive key-exchange   
[ Boneh, Franklin 02 ]    Identity-base encryption

gS1, gS2 → gT
S1S2

Multilinear maps 
in cryptography
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Gödel Prize

Turing Award

J
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Where to find multilinear maps?

“If an n-multilinear map is computable, it is reasonable to expect it to come 
from geometry, as is the case for Weil and Tate pairings when n = 2.” 
…
“If varieties giving rise to n-multilinear maps cannot be found for n > 2, one 
could at least hope that such maps might arise from motives.”

– Boneh, Silverberg, 2003

*New: Trilinear maps from abelian varieties  [ Huang 2019 ], requires further investigation.

Multilinear maps 
in cryptography

J
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What are multilinear maps?
Why from lattices?



Garg, Gentry, Halevi [ GGH 13 ] propose a candidate based on a variant of the NTRU problem 
No security reduction is given; cryptanalysis attempts are mentioned. 

Think of as homomorphic encryption + public zero-test

i.e. everyone can test whether you get gT
0 or gT

non-zero

Coron, Lepoint, Tibouchi [ CLT 13 ] propose a candidate based on a variant of approx-gcd

Gentry, Gorbunov, Halevi [ GGH 15 ] propose another candidate inspired by the FHE scheme 
of [ Gentry, Sahai, Waters 13 ]

Multilinear maps 
since 2013
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> Multilinear maps: motivated in [ Boneh, Silverberg 2003 ] 

g, gS1, gS2, gS3, ... → gT
∏S



Multilinear maps
GGH13, CLT13, GGH15

Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.)

Private constrained PRFs

Multiparty key agreement
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Multilinear maps 
Applications overview

Witness encryption

Deniable encryptionFunctional encryption



Multilinear maps Indistinguishability obfuscation
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[ Garg, Gentry, Halevi, Raykova, Sahai, Waters 13 ] 

Multilinear maps 
Applications overview



Indistinguishability obfuscation
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Defined by [ Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang 01 ]

iO[ P0 ] ≈ iO[ P1 ]adv

Program Obfuscation:  P => Obf(P)

Correctness:  Obf(P) preserves the functionality of P

Security: For two programs P0 and P1 with identical functionality



Multilinear maps
GGH13, CLT13, GGH15

Indistinguishability obfuscation

Private constrained PRFs
Multiparty key agreement
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Witness encryption

Deniable encryptionFunctional encryption

Hardness of Nash

Fiat-Shamir

Self-bilinear maps

The big bang in crypto



Indistinguishability 
obfuscation
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Functional encryption
[ Waters 14 ]

ç The whiteboard on the 3rd floor of Simons 
Institute, in a sunny day in Summer 2015. 

The big bang in crypto



Indistinguishability obfuscation
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Self-bilinear maps

Self-bilinear maps: gS1, gS2 → gS1S2

[ Yamakawa, Yamada, Hanaoka, Kunihiro 14 ]: When the obfuscation is iO
and N is an RSA modulus, the following idea works:

Encoding(S) = { gS mod N, Obf[ fS(x) = xS mod N ] }

The big bang in crypto



Where are we right now?
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Lattices
=> Multilinear maps 

=> obfuscation
=> …

The big bang in crypto



Multilinear maps
GGH13, CLT13, GGH15

Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.)

Private constrained PRFs

Multiparty key agreement
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Multilinear maps & their friends 
security overview

Witness encryption

Deniable encryption

With a reduction from LWE (via safe use of GGH15); Candidates exists

Functional encryption

Without 
multilinear 
maps
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https://malb.io/are-graded-encoding-schemes-broken-yet.html

https://sites.google.com/view/iostate-of-the-art/

Current status of multilinear maps and iO

ç Screenshot of my 
slides at DIMACS 
workshop in 2016, 
about delegating RAM 
computation from iO

https://malb.io/are-graded-encoding-schemes-broken-yet.html
https://sites.google.com/view/iostate-of-the-art/
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LWE => iO = $100
Open Problem 1

Update: During the talk, Amit raised the award to $1000.



Multilinear maps
GGH13, CLT13, GGH15

Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.)

Private constrained PRFs

18With a reduction from LWE (via safe use of GGH15); Candidates exists

Today: Lattice behind 
the big bang in crypto

Gentry, Gorbunov, Halevi (TCC 2015)
“Graph-induced multilinear maps from lattices”



Multilinear maps
GGH13, CLT13, GGH15

Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.)

Private constrained PRFs

19With a reduction from LWE (via safe use of GGH15); Candidates exists

Today: Lattice behind 
the big bang in crypto

- Multilinear maps with security based on LWE
- A new methodology of building lattice applications 
after “[GSW13]” and “[BGG+14]”



Plan of today:

1. Introduction
2. GGH15: functionality and 
security overview
3. Applications: Obfuscators & 
Private constrained PRFs

Open problems will be mentioned 
during the talk

20



Gentry, Gorbunov, Halevi (TCC 2015)
“Graph-induced multilinear maps from lattices”

21

Concerto in D minor (BWV 1052)
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[ Gentry, Gorbunov, Halevi 15 ]: functionality, cryptanalytic attempts, candidate 
N-party key-exchange and iO.

[ Brakerski, Vaikuntanathan, Wee, Wichs 16 ]: First proof methodology => 
obfuscating conjunctions

[ Coron, Lee, Lepoint, Tibouchi 16 ]: breaking the candidate N-party key exchange 
[ Chen, Gentry, Halevi 17 ]: breaking iO for some  parameters

[ Canetti, Chen 17 ]: Private Constrained PRF from LWE
[ Goyal, Koppula, Waters 17a ]: Circular security counterexample from LWE
[ Goyal, Koppula, Waters 17b ], [ Wichs, Zirdelis 17 ]: Lockable obfuscation, 
compute & compare obfuscation from LWE

The development of GGH15-like applications: 2015 - 2017
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[ GGH15 ] Via a different view of the FHE 
scheme of Gentry, Sahai, Waters 13

Different motives / 
views of GGH15

[ Chen, Vaikuntanathan, Wee 18 ]  
A generalization of Kilian randomization

Today: chaining LWE samples

[ Canetti, Chen 17 ]   
GGH15 captures two lattice-based PRFs

[ Alamati, Peikert 16 ], 
[ Koppula, Waters 16 ], 
[ Goyal, Koppula, Waters 17 ] 
“cascaded products” or
“telescoping cancelation”, 
motivated by showing circular 
security counterexamples.
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+ mod qAS ExY =

A

Uniform Small Unspecified
Recall Learning with Errors

[ Regev 05 ]

𝐴 ∈ 𝑍$%×' (m > n log q)
Search LWE:  Given 𝐴, 𝑌 = 𝑆𝐴 + 𝐸, find S. 
Decisional LWE: Given A, distinguish Y from random.

Secret     Public matrix            noise/error
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+ mod qAs ExY =

A

Uniform Small Unspecified

Secret     Public matrix            noise/error

Entries of S from the error distribution
As hard as normal LWE [ Applebaum, Cash, Peikert, Sahai 09 ]

Recall Learning with Errors
[ Regev 05 ]
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> Multilinear maps: motivated in [ Boneh, Silverberg 2003 ] 

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

g, gS1, gS2, gS3, ... → gT
∏S

GGH15
in a nutshell

How to compute the map?
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> Multilinear maps: motivated in [ Boneh, Silverberg 2003 ] 

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

g, gS1, gS2, gS3, ... → gT
∏S

GGH15
in a nutshell

Idea: using lattice trapdoor sampling to chain them together
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Recall lattice trapdoor  
[ Ajtai 99 ], [ Alwen, Peikert 09 ], 
[ Micciancio, Peikert 12 ]

=      mod qYxA

YGiven an image , find a short vector D s.t.

AThe trapdoor for

can be used to solve SIS and LWE.

D
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Lattice trapdoor  
[Ajtai 99]

=                 mod q0xA T

T is short and full rank in Z



GGH15
in a nutshell
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A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

> GGH15:



GGH15
in a nutshell
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A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

Di is sampled using the trapdoor of Ai-1

> GGH15:



=            mod q

GGH15
in a nutshell
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A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

Di is sampled using the trapdoor of Ai-1

=            mod qA1 D2

A0 D1 S1A1+E1

S2A2+E2

> GGH15:



=
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Di is sampled using the trapdoor of Ai-1

Ai-1 Di + Ei mod q  x AiSi

A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q



GGH15
in a nutshell

A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

Publish A0 , D1 , D2 as the encodings of S1 , S2

> GGH15:



GGH15
in a nutshell
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A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

A0D1D2 = (S1A1+E1)D2 = S1A1D2+E1D2 
= S1(S2A2+E2)+E1D2 = S1S2A2 + S1E2 + E1D2

small errorfunctionality

> (Ring)LWE analogy:

A, S1A+E1,..., SkA+Ek →  ∏SA+E   mod q

Publish A0 , D1 , D2 as the encodings of S1 , S2

> GGH15:
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D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

A0

D1,1

D1,0

A typical evaluation pattern for GGH15: subset product

=Ai-1 Di, b + Ei,b mod q  x Ai

A4

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

Si,bx

=>

secrets encodings

=> =>

via



D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

A0

D1,1

D1,0

Subset 
product
evaluation

<= The input is a bit string that selects 
which Di,b to multiply

Eval(0110) 
=  A0D1,0D2,1D3,1D4,0



A1

S1,1

S1,0

+ E1,1

+ E1,0( )
Eval(0110) 

=  A0D1,0D2,1D3,1D4,0
=  (s1,0A1+E1,0)D2,1D3,1D4,0

D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

Subset 
product
evaluation
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+ “small”Eval(0110) 
=  A0D1,0D2,1D3,1D4,0

=  (s1,0A1+E1,0)D2,1D3,1D4,0

=  s1,0A1D2,1D3,1D4,0 + “small” 

A1

S1,1

S1,0

D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

Subset 
product
evaluation
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A2

S2,1

S2,0

S1,1

S1,0

+ “small”

+ E2,1

+ E2,0( )
Eval(0110) 

=  A0D1,0D2,1D3,1D4,0

=  (s1,0A1+E1,0)D2,1D3,1D4,0

=  s1,0A1D2,1D3,1D4,0 + “small” 
=  s1,0(s2,1A2+E2,1)D3,1D4,0 + “small” 

D4,1

D4,0

D3,1

D3,0

Subset 
product
evaluation
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A2

S2,1

S2,0

S1,1

S1,0

“still small”

D4,1

D4,0

D3,1

D3,0

Eval(0110) 
=  A0D1,0D2,1D3,1D4,0

=  (s1,0A1+E1,0)D2,1D3,1D4,0

=  s1,0A1D2,1D3,1D4,0 + “small” 
=  s1,0(s2,1A2+E2,1)D3,1D4,0 + “small” 
=  s1,0s2,1A2D3,1D4,0 + “still small”

+

Subset 
product
evaluation



Eval(0110) 
=  A0D1,0D2,1D3,1D4,0

=  (s1,0A1+E1,0)D2,1D3,1D4,0

=  s1,0A1D2,1D3,1D4,0 + “small” 
=  s1,0(s2,1A2+E2,1)D3,1D4,0 + “small” 
=  s1,0s2,1A2D3,1D4,0 + “still small”
=  s1,0s2,1s3,1A3D4,0 + “still smallish”
=  s1,0s2,1s3,1s4,0A4 + “small” 43

A4

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

+ “still small”

Subset 
product
evaluation

The “small” noise grows exponentially with 
#levels, becomes a problem in the efficiency.
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A4

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0
+ “small”

D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

A0

D1,1

D1,0

Eva
lua

te

Subset 
product
evaluation
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Functionality

Functionality: evaluate and test whether ∏S is zero or not.
(Designing GGH15 applications: put structures in Si, b)

A0, S1A1+E1,..., SkAk+Ek →  ∏SAk+E mod q

D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

A0

D1,1

D1,0
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Functionality
and Security

Functionality: evaluate and test whether ∏S is zero or not.
(Designing GGH15 applications: put structures in Si, b)

A0, S1A1+E1,..., SkAk+Ek →  ∏SAk+E mod q

Security (goal): hides Si, b for all i, b. But the reality is … 

D4,1

D4,0

D3,1

D3,0

D2,1

D2,0

A0

D1,1

D1,0
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Security (goal): hides Si, b for all i, b. But the reality is … 

complicated, depends on the structure inside Si, b
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What does “structure” 
in Si,b look like?
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D1,1

D1,0

A2S +E  S

Toy example 1

D2,1

D2,0

A1

A2 +E  S

=

=A1

A1S
S

A1
S

=

=

+E  

+E  

F(00) = 0
F(01) = 1
F(10) = 1
F(11) = 1

A0

A0

∏SA2+E

Each Si, b = Mi, b ⊗ si, b

= 0,  else = 1



50

D1,1

D1,0

A2
S +E  SD2,1

D2,0

A1

A2
S +E  S

=

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Claim: this construction 
hides all the structures 
in the S matrices.

A0

A0

Toy example 2

F(00) = 1
F(01) = 1
F(10) = 1
F(11) = 1

∏SA2+E
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S + E  Recall decisional LWE

≈ computational

AA ,

UA ,

x

Permutation - LWE:
S

+ E  

≈ computational

,

U,

xS

S

A(1)
A(2)
A(3)

A(1)
A(2)
A(3)

A(1)
A(2)
A(3)
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D1,1

D1,0

A2
S +E  S

Functionality & Security
toy examples

D2,1

D2,0

A1

A2
S +E  S

=

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Claim: this construction 
hides all the structures 
in the S matrices.

A0

A0
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D1,1

D1,0

U2,1

Functionality & Security
toy examples

D2,1

D2,0

A1 =

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Permutation LWE
U2,0

A0

A0
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Preimage sampling
[Gentry, Peikert, Vaikuntanathan 08]

For random images, there is a way to sample 
the preimage without revealing the trapdoor. 
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=     mod qUxA D

For random images, there is a way to sample 
the preimage without revealing the trapdoor. 

A DU s.t.

=     mod qUxA DA D U s.t.

≈ statistical

Real:

Simulated:

Preimage sampling
[Gentry, Peikert, Vaikuntanathan 08]
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D1,1

D1,0

U2,1

Functionality & Security
toy examples

D2,1

D2,0

A1 =

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Turn off the trapdoor 
using GPV

U2,0

A0

A0
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D1,1

D1,0

U2,1

Functionality & Security
toy examplesA0

D2,1

D2,0

=

=

=

=

Permutation LWE
U2,0

U1,1

U1,0A0

A1

A1
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D1,1

D1,0

U2,1

Functionality & Security
toy examplesA0

D2,1

D2,0

=

=

=

=

U2,0

U1,1

U1,0A0

Turn off the trapdoor 
using GPV

A1

A1
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Looks simple to achieve security based on LWE!
How do the insecure examples look like? 



Insecure 
example

60

For example, let S2 = 0 in
A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

=            mod q

=            mod qA1 D2

A0 D1 S1A1+E1

E2



Insecure 
example
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For example, let S2 = 0 in
A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

D2 becomes a “weak trapdoor” of A1, then S1 is in danger

=            mod q

=            mod qA1 D2

A0 D1 S1A1+E1

E2In risk



Insecure 
example
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For example, let S2 = 0 in
A0 D1 = S1A1+E1,    A1 D2 = S2A2+E2 mod q

D2 becomes a “weak trapdoor” of A1, then S1 is in danger

=            mod q

=            mod qA1 D2

A0 D1 S1A1+E1

E2

Eval = A0 D1 D2 = (S1A1+E1)D2 = S1E2 + E1D2 mod q
Recover S1E2 + E1D2 over integers, can do many things.

In risk
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Public key: A, SA+E;  secret key: S;   message: (SA+E)*R + m*(q/2)

“Regev-like schemes” [Regev 05]

“Dual-Regev-like schemes” [Gentry, Peikert, Vaikuntanathan 08 ]

A0, S1A1+E1,..., SkAk+Ek →  ∏SAk+E“GGH15-like”

Public key: A0, A1, …, Ad,  (master) secret key: the trapdoor of A0

Both the message/function to be hidden are in the LWE secret terms

Compared to other lattice application frameworks
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Plan of today:

1. Introduction
2. GGH15: functionality and 
security overview
3. Applications: Obfuscators & 
Private constrained PRFs

Open problems will be mentioned 
during the talk



Multilinear maps
GGH13, CLT13, GGH15

2. General-purpose obfuscation
[ Gentry, Gorbunov, Halevi 15 ], …

1. Private Constrained PRFs 
[ Canetti, Chen 17 ]

65With a reduction from LWE (via safe use of GGH15); Candidates exists



66

Private Constrained PRFs
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Private Constrained Pseudorandom Function in 3 slides
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Private Constrained Pseudorandom Function in 3 slides

adv

PRF A truly random function

With oracle access 
to either left or right

[ Goldreich, Goldwasser, Micali 86 ]
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Private Constrained Pseudorandom Function in 3 slides
[ Boneh, Waters 13 ], [ Kiayias, Papadopoulos, Triandopoulos, Zacharias 13 ], [ Boyle, Goldwasser, Ivan 14 ]

original key modified key 

******
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Private Constrained Pseudorandom Function in 3 slides

Private key owner

adv either the original key 
or the modified one

[ Boneh, Lewi, Wu 17 ]

original key privately modified key 
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What are private constrained PRFs?
What is the motive?
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[ Canetti Chen 17 ]: Two-key secure PCPRF (for a circuit class C) 
implies obfuscation (for C)

C
Z

Obfuscation

Obf = {  K[ C ], K[ original ]  }
Eval( Obf, x ): Compare K[ C ](x) and K[ original ](x) 
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[ Canetti Chen 17 ]: Two-key secure PCPRF (for a circuit class C) 
implies obfuscation (for C)

C
Z

Obfuscation

Obf = {  K[ C ], K[ original ]  }
Eval( Obf, x ): Compare K[ C ](x) and K[ original ](x) 

But if two constrained keys are published, 
then we don’t know how to prove 
constraint-hiding based on LWE.



Construction:

Enc(m;r):       ct = EncSym.K(m;r);    tag = PRF.K[ original ]( ct )

Functional_SK[Sym.K, PRF.K, C]: 
A private constrained key for the “decryption and eval” functionality

PRF.K[ C( DecSym.K( . ) ) ]

Eval: compute PRF.K[ C( DecSym.K( . ) ) ]( ct ), and compare with tag

[ Canetti, Chen 17 ]  1-key PCPRF implies 1-key private-key 
functional encryption (a.k.a. reusable garbled circuits).
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Applications of Private Constrained PRFs:
Obfuscation (if it is 2-key secure)*
Reusable garbled circuits
Privately-detectable watermarking
With key homomorphism => traitor tracing
Maybe more …

adv

original key privately modified key 
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What are private constrained PRFs?
What is the motive?

How to construct from lattices?
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Private Constrained PRFs 
from Lattices?

Step 1: Start from a lattice PRF.
[Banerjee, Peikert, Rosen 12]

Step 2: Embed a constraint.
[Barrington 86] 

Step 3: Do Step 2 privately.
[GGH15]
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mod qA
s2,1

s2,0

sn,1

sn,0

s1,1

s1,0

F(x) = { ∏si,xi A }2

[ Banerjee, Peikert, Rosen 12 ]

Key:

Eval:

...

...

si,b are LWE secrets from low-norm distributions
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Rounding:   {t}p:  Zq -> Zp

Compute t*p/q, then round to the nearest integer

In this talk, p=2, q/p>exp(L), q/p ∼ super-polynomial

q

Amount of noise
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Main observation: After rounding, can inject noises 
without changing the functionality with high probability.

F(x) = { ∏si,xi A }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]
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F(x) = { ∏si,xi A }2F(0110) 
=  { s1,0s2,1s3,1s4,0 A }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]
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F(x) = { ∏si,xi A }2F(0110) 
=  { s1,0s2,1s3,1s4,0 A }2
≈s { s1,0s2,1s3,1(s4,0 A+E4,0) }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]
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F(x) = { ∏si,xi A }2F(0110) 
=  { s1,0s2,1s3,1s4,0 A }2
≈s { s1,0s2,1s3,1(s4,0 A+E4,0) }2
≈c { s1,0s2,1s3,1Y***0 }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]



84

F(x) = { ∏si,xi A }2F(0110) 
=  { s1,0s2,1s3,1s4,0 A }2
≈s { s1,0s2,1s3,1(s4,0 A+E4,0) }2
≈c { s1,0s2,1s3,1Y***0 }2
≈s { s1,0s2,1(s3,1Y***0+E3,1) }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]
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F(x) = { ∏si,xi A }2F(0110) 
=  { s1,0s2,1s3,1s4,0 A }2
≈s { s1,0s2,1s3,1(s4,0 A+E4,0) }2
≈c { s1,0s2,1s3,1Y***0 }2
≈s { s1,0s2,1(s3,1Y***0+E3,1) }2
≈c { s1,0s2,1Y**10 }2
≈ … ≈ { Y0110 }2

mod qA
S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

[ Banerjee, Peikert, Rosen 12 ]
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mod qA
s2,1

s2,0

sn,1

sn,0

s1,1

s1,0

F(x) = { ∏si,xi A }2

Key:

Eval:

...

...

Exercise: show that taking matrix subset-product 
without rounding does not give a PRF.
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mod qA
s2,1

s2,0

sn,1

sn,0

s1,1

s1,0

F(x) = { ∏si,xi A }2

Key:

Eval:

...

...

Open problem: prove or disprove that when q is a polynomial, 
the construction is a PRF.
The distribution of the S matrices can be uniformly from Zq

Open Problem 2
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Private Constrained PRFs 
from Lattices?

Step 1: Start from a lattice PRF.
[Banerjee, Peikert, Rosen 12]

Step 2: Embed a constraint.
[Barrington 86] 

Step 3: Do Step 2 privately.
[GGH15]
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Barrington 1986: log-depth circuit => matrix branching program

Example: how to represent an AND gate

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

P-1P Q Q-1

I I I I
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Example: how to represent an AND gate    0 and 0

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

I I I I

Barrington 1986: log-depth circuit => matrix branching program
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Example: how to represent an AND gate    0 and 1

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

I I

Q Q-1

Barrington 1986: log-depth circuit => matrix branching program
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Example: how to represent an AND gate    1 and 0

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

I I

P-1P

Barrington 1986: log-depth circuit => matrix branching program
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Example: how to represent an AND gate    1 and 1    PQP-1Q-1 = C ≠ I

1

0

Input wire 1 Input wire 1Input wire 2 Input wire 2

P-1P Q Q-1

Barrington 1986: log-depth circuit => matrix branching program
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Private Constrained PRFs 
from Lattices?

Step 1: Start from a lattice PRF.
[Banerjee, Peikert, Rosen 12]

Step 2: Embed a constraint.
[Barrington 86] 

Step 3: Do Step 2 privately.
[GGH15]
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Embed the permutation matrices in the LWE secret Bi,b⊗si,b

e.g.  I⊗ s =

S

S

S

S

S

P⊗ s =

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

S

S

S

S

S

A4

S

S

S

S

S



Embed the permutation matrices in the LWE secret Bi,b⊗si,b

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

S

S

S

S

S

A4

D2,1Constrained key: 
the GGH15 encoding

D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

1          2          1         2 

A’0
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D2,1
A0

D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

How to prove the branching program 
is hidden by GGH15 encoding?

S
xS

S

A(1)
A(2)
A(3)

The real constrained key
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D1,1

D1,0

A2
S +E  SD2,1

D2,0

A1

A2
S +E  S

=

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Claim: this construction 
hides all the structures 
in the S matrices.

A0

A0

Recall Toy example 2
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D1,1

D1,0

U2,1

A0

D2,1

D2,0

=

=

=

=

U2,0

U1,1

U1,0A0

Perm-LWE + Turning off 
the trapdoor using GPV

A1

A1

Recall Toy example 2
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The real constrained key

A0

D1,1 D3,1 D4,1

D1,0 D3,0 D4,0D2,0

D2,1

D2,1
A0

D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

The simulated constrained key

S
xS

S

A(1)
A(2)
A(3)



Takeaway from the Private Constrained PRF:
It is safe to use GGH15 to encode permutation matrices, 
and make it useful.

101

D2,1 D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

1          2          1         2 

A’0

S
xS

S

A(1)
A(2)
A(3)
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Genealogy of Lattices-based PRFs

[BPR12] -- the first lattice-based PRF
[BLMR13] -- key homomorphic

*[BP14] -- better key homomorphic, embed a tree
*[BFPPS15] -- [BP14] is puncturable
*[BV15] -- embed a circuit, constrained for P
*[BKM17] -- puncture privately, built from [BV15]
[CC17] -- constrained privately for NC1, influenced by GGH15 mmaps

*[BTVW17] -- constrained privately for all P, built from [BV15]
*[PS18] -- constrained and program privately for all P, built from [BV15]
[CVW18] -- constrained privately for BP, influenced by GGH15 mmaps

* uses gadget matrix G, adapted from the lattices-based FHE, ABE, PE

Open Question: Is there a transformation between Dual-Regev-
based homomorphic schemes and GGH15-based ones?

Open Problem 3



Multilinear maps
GGH13, CLT13, GGH15

2. General-purpose obfuscation
[ Gentry, Gorbunov, Halevi 15 ], …

1. Private Constrained PRFs 
[ Canetti, Chen 17 ]

103
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Recall [ Canetti Chen 17 ]
“Obfuscation is almost private constrained PRF with two keys:

One for the constraint C, the other one for all 1.”



105

Recall [ Canetti Chen 17 ]
“Private constrained PRF is almost 

[GGHRSW 13] + [GGH 15] obfuscator with only one branch.”

Recall [ Canetti Chen 17 ]
“Obfuscation is almost private constrained PRF with two keys:

One for the constraint C, the other one for all 1.”

The more “historically correct” view 
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The constrained key for C

D2,1
A0

D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

S
xS

S

A(1)
A(2)
A(3)

D’2,1
A’0

D’3,1

D’2,0 D’3,0

D’1,1

D’1,0

D’4,1

D’4,0

S x
S

S

A(1)
A(2)
A(3)

The constrained key for all 1

Recall [ Canetti Chen 17 ]
“Private constrained PRF is almost 

[GGHRSW 13] + [GGH 15] obfuscator with only one branch.”
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The constrained key for C

D2,1
A0

D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

S
xS

S

A(1)
A(2)
A(3)

D’2,1
A’0

D’3,1

D’2,0 D’3,0

D’1,1

D’1,0

D’4,1

D’4,0

S x
S

S

A(1)
A(2)
A(3)

The constrained key for all 1

Claim 1: the proof strategy mentioned does not work. 
Claim 2: when a sufficient amount of evaluation-to-0 is available, we 
can break the obfuscation scheme. 
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A2
S +E  SD2,1

D2,0

A1

A2
S +E  S

=

=A1

Recall Toy example 2

Claim 1: the proof strategy mentioned does not work. 
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A2
S +E  SD’2,1

D’2,0

A1

A2
S +E  S

=

=A1

In the GGH15 
obfuscator, it 
looks like …

Claim 1: the proof 
strategy mentioned 
does not work. 

A2
S

SD2,1

D2,0

A1

A2
S

S

=

=A1

+E  

+E  
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A2
S +E  SD’2,1

D’2,0

A1

A2
S +E  S

=

=A1

In the GGH15 
obfuscator, it 
looks like …

Claim 1: the proof 
strategy mentioned 
does not work. 

A2
S

SD2,1

D2,0

A1

A2
S

S

=

=A1

+E  

+E  Correlated

Can apply LWE, 
but don’t know 
how to use GPV
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Claim 2: when a sufficient amount of evaluation-to-0 is available, we 
can break the obfuscation scheme. 

For x such that C(x) = 0,  Eval(x) = … = S1E2 + E1D2 mod q
Recover S1E2 + E1D2 over integers, can do many things.
[ Cheon, Han, Lee, Ryu, Stehle 15], [ Coron, Lee, Lepoint, Tibouchi 16 ], [ Chen, Gentry, Halevi 17 ] 
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Claim 2: when a sufficient amount of evaluation-to-0 is available, we 
can break the obfuscation scheme. 

For x such that C(x) = 0,  Eval(x) = … = S1E2 + E1D2 mod q
Recover S1E2 + E1D2 over integers, can do many things.
[ Cheon, Han, Lee, Ryu, Stehle 15], [ Coron, Lee, Lepoint, Tibouchi 16 ], [ Chen, Gentry, Halevi 17 ] 

D2,1 D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

A0

1          2          1         2 

[ Chen, Vaikuntanathan, Wee 18 ] 
shows a classical polynomial attack, 
works as long as the inputs repeat 
for at most constant times. 
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W1,1 …W1,k

…  …  …
Wj,1 …Wj, k

= Results on many inputs that eval to small

First compute a matrix, then compute the rank of the matrix. 

[ Chen, Vaikuntanathan, Wee 18 ] 
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First compute a matrix, then compute the rank of the matrix. 

S1,1W1,1 …W1,k

…  …  …
Wj,1 …Wj, k

D2,1

=
E1,1 E2,1

xS1,2 E1,2

S1,j E1,j

... D2,k

E2,k

...

S’

0

S’

Heuristically 
random

[ Chen, Vaikuntanathan, Wee 18 ] 
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D2,1 D3,1

D2,0 D3,0

D1,1

D1,0

D4,1

D4,0

A0

1          2          1         2 

Survey of iO candidates related to GGH15:
[ Gentry, Gorbunov, Halevi 15 ]: translate GGHRSW13 into GGH15
[ Chen, Gentry, Halevi 17 ]: quantum attack for simple branching program
[ Chen, Vaikuntanathan, Wee 18 ]: Break GGH15 with constant repetition, propose a 
candidate that enforce repetitions, non-commutative scalars, etc.
[ Bartusek, Guan, Ma, Zhandry 18 ]: Another candidate, proof in the idealized model
[ Cheon, Cho, Hhan, Kim, Lee 19 ]: Statistical attack on CVW18 for polynomial noise
[ Chen, Hhan, Vaikuntanathan, Wee 19 ]: Proof in a weaker idealized model, using super-
polynomial noise.

Short summary:
Take [ Gentry, Gorbunov, Halevi 15 ], or     
[ Chen, Vaikuntanathan, Wee 18 ], using 
branching programs with super-constant 
repetitions, super-polynomial noise, no 
attacks are known, even quantum ones.



What to play next?116



Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.) Private constrained PRFs

117

Permutation branching program, almost always output 1 (random)

Open Problem 4: classify

Output 0 (small) very often

Witness encryption

General evasive function obfuscators

Multi-party key agreement



Thought 1: on the proof technique118



Thought 1: on the proof technique119
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D1,1

D1,0

A2
S +E  SD2,1

D2,0

A1

A2
S +E  S

=

=A1

A1
S

S

A1
S

S

=

=

+E  

+E  

Proof works when A1 and 
A2 are public, but they 
don’t have to be public …  

A0

A0

Recall Toy example 2



Indistinguishability obfuscation

Lockable obfuscation
(Compute-then-Compare obf.) Private constrained PRFs

121

Permutation branching program, almost always output 1 (random)

Open Problem 4

Output 0 (small) very often

[ Chen, Vaikuntanathan, Wee 18 ]: proof beyond permutation BPs, 
using the fact that A matrices are hidden, but the S matrices are public

Still, witness encryption and general 
evasive function obfuscators are open



Thought 2: need new hard problems ”without mod q”122
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[ Barak, Hopkins, Jain, Kothari, Sahai 19 ], [ Jain, Lin, Matt, Sahai 19 ]

LWE + degree 3 functions over Z:
A,   sTA + eT mod q,  {Qi, Qi(x, y, e) }, i = 1 to N

LWE + low-degree “PRG”

The adversary is asked to recover e. Here x, y, e are small and of dimension m, 
Qi are degree-3 “small” polynomials over Z, N = m1.01

Bilinear maps + LWE + low-degree “PRG” 
Þ Succinct Functional Encryption for low-degree function
Þ iO

Open Problem 5: break it.
Open Problem 6: if not, build iO from it directly.



Eval(0110) 
=  A0D1,0D2,1D3,1D4,0

=  (s1,0A1+E1,0)D2,1D3,1D4,0

=  s1,0A1D2,1D3,1D4,0 + “small” 
=  s1,0(s2,1A2+E2,1)D3,1D4,0 + “small” 
=  s1,0s2,1A2D3,1D4,0 + “still small”
=  s1,0s2,1s3,1A3D4,0 + “still smallish”
=  s1,0s2,1s3,1s4,0A4 + “small” 124

A4

S4,1

S4,0

S3,1

S3,0

S2,1

S2,0

S1,1

S1,0

+ “still small”

The efficiency of GGH15

The “small” noise grows exponentially with 
#levels, becomes a problem in the efficiency.



Multilinear maps
GGH13, CLT13, GGH15

Lockable Obfuscation
(Compute-then-Compare obf.)

Private Constrained PRFs

125

Open Problem 7: construct PCPRF or LO 
based on GGH13 or CLT13, prove security 
from a concrete assumption, like NTRU or 
approx-gcd. 

Likely to give new insights on GGH13 and 
CLT13, and improve efficiency.



126

LWE => iO = $100 The Last Open Problems

#7 with further investigation

Update: During the talk, Amit raised the award for “iO from LWE” to $1000.



THE END. THANKS 127Happy lunar new year!


