The Mathematics of Lattices

Daniele Micciancio

January 2020
Outline

1. Point Lattices and Lattice Parameters

2. Computational Problems
 - Coding Theory

3. The Dual Lattice

4. Q-ary Lattices and Cryptography
1. Point Lattices and Lattice Parameters

2. Computational Problems
 - Coding Theory

3. The Dual Lattice

4. Q-ary Lattices and Cryptography
(Point) Lattices

- Traditional area of mathematics

Lagrange Gauss Minkowski
(Point) Lattices

- Traditional area of mathematics

- Key to many algorithmic applications
 - Cryptanalysis (e.g., breaking low-exponent RSA)
 - Coding Theory (e.g., wireless communications)
 - Optimization (e.g., Integer Programming with fixed number of variables)
 - Cryptography (e.g., Cryptographic functions from worst-case complexity assumptions, Fully Homomorphic Encryption)
Lattice Cryptography: a Timeline

- **1982**: LLL basis reduction algorithm
 - Traditional use of lattice algorithms as a cryptanalytic tool
- **1996**: Ajtai’s connection
 - Relates average-case and worst-case complexity of lattice problems
 - Application to one-way functions and collision resistant hashing
- **2002**: Average-case/worst-case connection for structured lattices.
 Key to efficient lattice cryptography.
- **2005**: (Quantum) Hardness of Learning With Errors (Regev)
 - Similar to Ajtai’s connection, but for injective functions
 - Wide cryptographic applicability: PKE, IBE, ABE, FHE.
Lattices: Definition

The simplest lattice in n-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$
Lattices: Definition

The simplest lattice in n-dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$

Other lattices are obtained by applying a linear transformation

$$\Lambda = B\mathbb{Z}^n \quad (B \in \mathbb{R}^{d \times n})$$
A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $B = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^{n} b_i \cdot \mathbb{Z}$$
A lattice is the set of all integer linear combinations of (linearly independent) basis vectors $B = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n$:

$$L = \sum_{i=1}^{n} b_i \cdot \mathbb{Z} = \{Bx : x \in \mathbb{Z}^n\}$$
Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly independent) basis vectors \(B = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n:\n
\[\mathcal{L} = \sum_{i=1}^{n} b_i \cdot \mathbb{Z} = \{Bx : x \in \mathbb{Z}^n\} \]

The same lattice has many bases

\[\mathcal{L} = \sum_{i=1}^{n} c_i \cdot \mathbb{Z} \]
A lattice is the set of all integer linear combinations of (linearly independent) basis vectors \(\mathbf{B} = \{ \mathbf{b}_1, \ldots, \mathbf{b}_n \} \subset \mathbb{R}^n \):

\[
\mathcal{L} = \sum_{i=1}^{n} \mathbf{b}_i \cdot \mathbb{Z} = \{ \mathbf{B} \mathbf{x} : \mathbf{x} \in \mathbb{Z}^n \}
\]

The same lattice has many bases

\[
\mathcal{L} = \sum_{i=1}^{n} \mathbf{c}_i \cdot \mathbb{Z}
\]

Definition (Lattice)

A discrete additive subgroup of \(\mathbb{R}^n \)
Definition (Determinant)

\[\det(L) = \text{volume of the fundamental region } P = \sum_i b_i \cdot [0, 1) \]
Determinant

Definition (Determinant)

$$\det(\mathcal{L}) = \text{volume of the fundamental region } \mathcal{P} = \sum_i b_i \cdot [0, 1)$$

- Different bases define different fundamental regions
Definition (Determinant)

\[\text{det}(\mathcal{L}) = \text{volume of the fundamental region } \mathcal{P} = \sum_i b_i \cdot [0, 1) \]

- Different bases define different fundamental regions
- All fundamental regions have the same volume
Determinant

Definition (Determinant)

\[
\det(L) = \text{volume of the fundamental region } P = \sum_i b_i \cdot [0, 1)
\]

- Different bases define different fundamental regions
- All fundamental regions have the same volume
- The determinant of a lattice can be efficiently computed from any basis.
Density estimates

Definition (Centered Fundamental Parallelepiped)

\[\mathcal{P} = \sum_i b_i \cdot [-1/2, 1/2) \]

- \(\text{vol}(\mathcal{P}(B)) = \det(\mathcal{L}) \)
- \(\{x + \mathcal{P}(B) \mid x \in \mathcal{L}\} \) partitions \(\mathbb{R}^n \)
- For all sufficiently large \(S \subseteq \mathbb{R}^n \)

\[|S \cap \mathcal{L}| \approx \frac{\text{vol}(S)}{\det(\mathcal{L})} \]
Minimum Distance and Successive Minima

Minimum distance

$$\lambda_1 = \min_{x, y \in L, x \neq y} \|x - y\|$$

Successive minima ($i = 1, \ldots, n$)

$$\lambda_i = \min \{ r : \dim \text{span}(B(r)) \cap L \geq i \}$$

Examples

$$Z_n: \lambda_1 = \lambda_2 = \ldots = \lambda_n = 1$$

Always:

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$
Minimum Distance and Successive Minima

- **Minimum distance**

\[\lambda_1 = \min_{x, y \in \mathcal{L}, x \neq y} \|x - y\| \]

\[= \min_{x \in \mathcal{L}, x \neq 0} \|x\| \]
Minimum Distance and Successive Minima

- **Minimum distance**

\[
\lambda_1 = \min_{x, y \in \mathcal{L}, x \neq y} \|x - y\|
\]

\[
= \min_{x \in \mathcal{L}, x \neq 0} \|x\|
\]

- **Successive minima (\(i = 1, \ldots, n\))**

\[
\lambda_i = \min\{r : \dim \text{span}(B(r) \cap \mathcal{L}) \geq i\}
\]
Minimum Distance and Successive Minima

- **Minimum distance**

\[
\lambda_1 = \min_{x, y \in \mathcal{L}, x \neq y} \|x - y\| \\
= \min_{x \in \mathcal{L}, x \neq 0} \|x\|
\]

- **Successive minima** \((i = 1, \ldots, n)\)

\[
\lambda_i = \min \{r : \dim \text{span}(B(r) \cap \mathcal{L}) \geq i\}
\]
Minimum Distance and Successive Minima

- **Minimum distance**

\[
\lambda_1 = \min_{x, y \in \mathcal{L}, x \neq y} \|x - y\| = \min_{x \in \mathcal{L}, x \neq 0} \|x\|
\]

- **Successive minima \((i = 1, \ldots, n)\)**

\[
\lambda_i = \min\{r : \dim \text{span}(B(r) \cap \mathcal{L}) \geq i\}
\]
Minimum Distance and Successive Minima

- **Minimum distance**

 \[\lambda_1 = \min_{x, y \in \mathcal{L}, x \neq y} \|x - y\| \]

 \[= \min_{x \in \mathcal{L}, x \neq 0} \|x\| \]

- **Successive minima** \((i = 1, \ldots, n)\)

 \[\lambda_i = \min\{r : \dim \text{span}(B(r) \cap \mathcal{L}) \geq i\} \]

- **Examples**
 - \(\mathbb{Z}^n\): \(\lambda_1 = \lambda_2 = \ldots = \lambda_n = 1\)
 - **Always**: \(\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n\)
Distance Function and Covering Radius

- **Distance function**

\[\mu(t, \mathcal{L}) = \min_{x \in \mathcal{L}} \| t - x \| \]
Distance Function and Covering Radius

- **Distance function**
 \[\mu(t, \mathcal{L}) = \min_{x \in \mathcal{L}} \| t - x \| \]

- **Covering radius**
 \[\mu(\mathcal{L}) = \max_{t \in \text{span}(\mathcal{L})} \mu(t, \mathcal{L}) \]
Distance Function and Covering Radius

- **Distance function**
 \[\mu(t, \mathcal{L}) = \min_{x \in \mathcal{L}} \|t - x\| \]

- **Covering radius**
 \[\mu(\mathcal{L}) = \max_{t \in \text{span}(\mathcal{L})} \mu(t, \mathcal{L}) \]

- Spheres of radius \(\mu(\mathcal{L}) \) centered around all lattice points cover the whole space.
Distance Function and Covering Radius

- **Distance function**
 \[\mu(t, \mathcal{L}) = \min_{x \in \mathcal{L}} \| t - x \| \]

- **Covering radius**
 \[\mu(\mathcal{L}) = \max_{t \in \text{span}(\mathcal{L})} \mu(t, \mathcal{L}) \]

- Spheres of radius \(\mu(\mathcal{L}) \) centered around all lattice points cover the whole space.
Distance Function and Covering Radius

- Distance function
 \[\mu(t, \mathcal{L}) = \min_{x \in \mathcal{L}} \|t - x\| \]

- Covering radius
 \[\mu(\mathcal{L}) = \max_{t \in \text{span}(\mathcal{L})} \mu(t, \mathcal{L}) \]

- Spheres of radius \(\mu(\mathcal{L}) \) centered around all lattice points cover the whole space
Smoothing a lattice

Consider an arbitrary lattice, and ...
Smoothing a lattice

Consider an arbitrary lattice, and ... add noise to each lattice point
Smoothing a lattice

Consider an arbitrary lattice, and ... add noise to each lattice point ... more noise, and more and more, until

\[\| r \| \leq (\log n) \cdot \sqrt{n} \lambda_n \]

\(\eta \epsilon \leq (\log n) \lambda_n \).

\(\eta \epsilon \): the "smoothing parameter" of a lattice [MR04].
Smoothing a lattice

Consider an arbitrary lattice, and ... add noise to each lattice point ... more noise, and more and more, until

\[\|r\| \leq (\log n) \cdot \sqrt{n} \lambda n \]

\(\eta \epsilon \leq (\log n) \lambda n \).

\(\eta \epsilon \): the "smoothing parameter" of a lattice [MR04].
Smoothing a lattice

Consider an arbitrary lattice, and . . . add noise to each lattice point . . . more noise, and more and more, until

\[\| r \| \leq (\log n) \cdot \sqrt{n} \lambda_n \]

\(\eta \epsilon \leq (\log n) \lambda_n \).

\(\eta \epsilon \): the "smoothing parameter" of a lattice [MR04].
Smoothing a lattice

Consider an arbitrary lattice, and ... add noise to each lattice point ... more noise, and more and more, until ... we reach an almost uniform distribution
Smoothing a lattice

Consider an arbitrary lattice, and . . . add noise to each lattice point . . . more noise, and more and more, until . . . we reach an almost uniform distribution.
Smoothing a lattice

Consider an arbitrary lattice, and . . . add noise to each lattice point . . . more noise, and more and more, until . . . we reach an almost uniform distribution.
Smoothing a lattice

Consider an arbitrary lattice, and . . . add noise to each lattice point . . . more noise, and more and more, until . . . we reach an almost uniform distribution.
Smoothing a lattice

Consider an arbitrary lattice, and add noise to each lattice point, more noise, and more and more, until we reach an almost uniform distribution.

How much noise is needed?

At most $\|r\| \leq (\log n) \cdot \sqrt{n} \lambda_n$
Smoothing a lattice

Consider an arbitrary lattice, and . . . add noise to each lattice point . . . more noise, and more and more, until . . . we reach an almost uniform distribution

How much noise is needed?
At most $\|\mathbf{r}\| \leq (\log n) \cdot \sqrt{n}\lambda_n$

Best done using **Gaussian** noise \mathbf{r} of width

$$|r_i| \approx \eta_\epsilon \leq (\log n)\lambda_n.$$

η_ϵ: the “smoothing parameter” of a lattice [MR04].
Minkowski’s convex body theorem

Theorem (Convex Body)

Let $C \subset \mathbb{R}^n$ be a symmetric convex body. If $\text{vol}(C) > 2^n$, then C contains a nonzero integer vector.
Minkowski’s convex body theorem

Theorem (Convex Body)

Let \(C \subset \mathbb{R}^n \) be a symmetric convex body. If \(\text{vol}(C) > 2^n \), then \(C \) contains a nonzero integer vector.

Let \(\mathcal{L} = B\mathbb{Z}^n \) and \(r = \det(\mathcal{L})^{1/n} \). Then,

\[
\text{vol}(C) = \det(B)^{-1/n} (2r)^n = 2^n
\]
Theorem (Convex Body)

Let $C \subset \mathbb{R}^n$ be a symmetric convex body. If $\text{vol}(C) > 2^n$, then C contains a nonzero integer vector $x \in \mathbb{Z}^n \setminus \{0\}$.

Let $\mathcal{L} = B\mathbb{Z}^n$ and $r = \det(\mathcal{L})^{1/n}$. Then,

- $C = B^{-1}[-r, r]^n$ has volume $\det(B)^{-1}(2r)^n = 2^n$
Minkowski’s convex body theorem

Theorem (Convex Body)

Let $C \subset \mathbb{R}^n$ be a symmetric convex body. If $\text{vol}(C) > 2^n$, then C contains a nonzero integer vector.

Let $\mathcal{L} = B\mathbb{Z}^n$ and $r = \text{det}(\mathcal{L})^{1/n}$. Then,

- $C = B^{-1}[-r, r]^n$ has volume $\text{det}(B)^{-1}(2r)^n = 2^n$
- C contains $x \in \mathbb{Z}^n \setminus \{0\}$
Minkowski’s convex body theorem

Theorem (Convex Body)

Let $C \subset \mathbb{R}^n$ be a symmetric convex body. If $\text{vol}(C) > 2^n$, then C contains a nonzero integer vector.

Let $\mathcal{L} = B\mathbb{Z}^n$ and $r = \det(\mathcal{L})^{1/n}$. Then,
- $C = B^{-1}[-r, r]^n$ has volume $\det(B)^{-1}(2r)^n = 2^n$
- C contains $x \in \mathbb{Z}^n \setminus \{0\}$
- $BC = [-r, r]^n$ contains Bx
Minkowski’s convex body theorem

Theorem (Convex Body)

Let $C \subset \mathbb{R}^n$ be a symmetric convex body. If $\text{vol}(C) > 2^n$, then C contains a nonzero integer vector.

Let $\mathcal{L} = B \mathbb{Z}^n$ and $r = \det(\mathcal{L})^{1/n}$. Then,

- $C = B^{-1}[-r, r]^n$ has volume $\det(B)^{-1}(2r)^n = 2^n$
- C contains $x \in \mathbb{Z}^n \setminus \{0\}$
- $BC = [-r, r]^n$ contains Bx
- $\lambda_1(\mathcal{L}) \leq \sqrt{n}r = \sqrt{n} \det(\mathcal{L})^{1/n}$
Minkowski’s second theorem

Theorem (Minkowski)

\[\lambda_1(\mathcal{L}) \leq \left(\prod_i \lambda_i(\mathcal{L}) \right)^{1/n} \leq \sqrt{n} \det(\mathcal{L})^{1/n} \]

- For \(\mathbb{Z}^n \), \(\lambda_1 = (\prod_i \lambda_i)^{1/n} = 1 \) is smaller than Minkowski’s bound by \(\sqrt{n} \)
- \(\lambda_1(\mathcal{L}) \) can be arbitrarily smaller than Minkowski’s bound
- \((\prod_i \lambda_i(\mathcal{L}))^{1/n} \) is never smaller than Minkowski’s bound by more than \(\sqrt{n} \)
- Can you find lattices with \((\prod_i \lambda_i(\mathcal{L}))^{1/n} \geq \Omega(\sqrt{n}) \det(\mathcal{L})^{1/n} \) within a constant from Minkowski’s bound?
1. Point Lattices and Lattice Parameters

2. Computational Problems
 - Coding Theory

3. The Dual Lattice

4. Q-ary Lattices and Cryptography
Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(B)$, find a (nonzero) lattice vector Bx (with $x \in \mathbb{Z}^k$) of length (at most) $\|Bx\| \leq \lambda_1$
Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(B)$, find a (nonzero) lattice vector Bx (with $x \in \mathbb{Z}^k$) of length (at most) $\|Bx\| \leq \lambda_1$
Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice $\mathcal{L}(B)$, find a (nonzero) lattice vector Bx (with $x \in \mathbb{Z}^k$) of length (at most) $\|Bx\| \leq \lambda_1$
Computational Problems

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP$_\gamma$)

Given a lattice $\mathcal{L}(B)$, find a (nonzero) lattice vector Bx (with $x \in \mathbb{Z}^k$) of length (at most) $\|Bx\| \leq \gamma \lambda_1$
Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(B)$ and a target point t, find a lattice vector Bx within distance $\|Bx - t\| \leq \mu$ from the target.
Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(B)$ and a target point t, find a lattice vector Bx within distance $\|Bx - t\| \leq \mu$ from the target.
Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice $\mathcal{L}(B)$ and a target point t, find a lattice vector Bx within distance $\|Bx - t\| \leq \mu$ from the target.
Closest Vector Problem

Definition (Closest Vector Problem, CVP\(\gamma\))

Given a lattice \(\mathcal{L}(B)\) and a target point \(t\), find a lattice vector \(Bx\) within distance \(\|Bx - t\| \leq \gamma \mu\) from the target.
Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}x_1, \ldots, \mathbf{B}x_n$ of length (at most) $\max_i \|\mathbf{B}x_i\| \leq \lambda_n$
Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{B}x_1, \ldots, \mathbf{B}x_n$ of length (at most) $\max_i \|\mathbf{B}x_i\| \leq \lambda_n$
Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice $\mathcal{L}(B)$, find n linearly independent lattice vectors Bx_1, \ldots, Bx_n of length (at most) $\max_i \|Bx_i\| \leq \lambda_n$
Definition (Shortest Independent Vectors Problem, SIVP_γ)

Given a lattice \(\mathcal{L}(B) \), find \(n \) linearly independent lattice vectors \(Bx_1, \ldots, Bx_n \) of length (at most) \(\max_i \|Bx_i\| \leq \gamma \lambda_n \)
Coding theory

Problem

Reliable transmission of information over noisy channels

Sender wants to transmit a message m
Problem

Reliable transmission of information over noisy channels

The sender encodes m as a lattice point Bx and transmits it over a noisy channel (e.g., multiantenna system)
Coding theory

Problem

Reliable transmission of information over noisy channels

Recipient receives a perturbed lattice point $\mathbf{t} = \mathbf{Bx} + \mathbf{e}$, where \mathbf{e} is a small error vector.
Coding theory

Problem

Reliable transmission of information over noisy channels

Received message m by finding the lattice point Bx closest to the target t.
Coding theory

Problem

Reliable transmission of information over noisy channels

\[m = \text{CVP}(B, t) \]

- **CVP**: Decoding algorithm
- **SVP**: Evaluating error correction radius \(\lambda_1/2 \)
- **SIVP**: Related to distortion in vector quantization
Special Versions of CVP

Definition (Closest Vector Problem (CVP))

Given \((\mathcal{L}, \mathbf{t}, d)\), with \(\mu(\mathbf{t}, \mathcal{L}) \leq d\), find a lattice point within distance \(d\) from \(\mathbf{t}\).

- If \(d\) is arbitrary, then one can find the closest lattice vector by binary search on \(d\).
- **Bounded Distance Decoding (BDD):** If \(d < \lambda_1(\mathcal{L})/2\), then there is at most one solution. Solution is the closest lattice vector.
- **Absolute Distance Decoding (ADD):** If \(d \geq \mu(\mathcal{L})\), then there is always at least one solution. Solution may not be closest lattice vector.
Relations among lattice problems

- \(\text{SIVP} \approx \text{ADD} \) [MG’01]
- \(\text{SVP} \leq \text{CVP} \) [GMSS’99]
- \(\text{SIVP} \leq \text{CVP} \) [M’08]
- \(\text{BDD} \lesssim \text{SIVP} \)
- \(\text{CVP} \lesssim \text{SVP} \) [L’87]
- \(\text{GapSVP} \approx \text{GapSIVP} \) [LLS’91, B’93]
- \(\text{GapSVP} \lesssim \text{BDD} \) [LM’09]
Relations among lattice problems

- $\text{SIVP} \approx \text{ADD}$ [MG’01]
- $\text{SVP} \leq \text{CVP}$ [GMSS’99]
- $\text{SIVP} \leq \text{CVP}$ [M’08]
- $\text{BDD} \preceq \text{SIVP}$
- $\text{CVP} \preceq \text{SVP}$ [L’87]
- $\text{GapSVP} \approx \text{GapSIVP}$ [LLS’91, B’93]
- $\text{GapSVP} \preceq \text{BDD}$ [LM’09]
ADD reduces to SIVP

ADD input: \mathcal{L} and arbitrary t

- Compute short vectors $V = SIVP(\mathcal{L})$
- Use V to find a lattice vector within distance $\sum_i \frac{1}{2} \|v_i\| \leq (n/2)\lambda_n \leq n\mu$ from t
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if $\Lambda = \mathbb{Z}^n$, then $\text{CVP}(\Lambda, \mathbf{t}) = \lfloor \mathbf{t} \rfloor$
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if $\Lambda = \mathbb{Z}^n$, then $\text{CVP}(\Lambda, t) = \lceil t \rceil$
- Rounding solves CVP whenever Λ has an orthogonal basis
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if $\Lambda = \mathbb{Z}^n$, then $\text{CVP}(\Lambda, t) = \lfloor t \rfloor$
- Rounding solves CVP whenever Λ has an orthogonal basis

- Not all lattices have an orthogonal basis

![Diagram of a lattice with basis vectors b_1 and b_2.]
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if \(\Lambda = \mathbb{Z}^n \), then \(\text{CVP}(\Lambda, t) = \lceil t \rceil \)
- Rounding solves CVP whenever \(\Lambda \) has an orthogonal basis

- Not all lattices have an orthogonal basis
- E.g. “exagonal” lattice
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if \(\Lambda = \mathbb{Z}^n \), then \(\text{CVP}(\Lambda, t) = \lceil t \rceil \)
- Rounding solves CVP whenever \(\Lambda \) has an orthogonal basis

Not all lattices have an orthogonal basis
- E.g. “exagonal” lattice
- \(\mathbf{b}_1 \perp (2\mathbf{b}_2 - \mathbf{b}_1) \)
Geometry of Lattices

- Geometry is a powerful tool to attack combinatorial problems
 - LP/SDP relaxation + randomized rounding
 - Lattices: reduce Subset-Sum to CVP
- CVP can be easy: e.g., if $\Lambda = \mathbb{Z}^n$, then $\text{CVP}(\Lambda, t) = \lceil t \rceil$
- Rounding solves CVP whenever Λ has an orthogonal basis

- Not all lattices have an orthogonal basis
 - E.g. “exagonal” lattice
 - $b_1 \perp (2b_2 - b_1)$
 - But they only generate a sublattice
Size Reduction

- b_1: (short) lattice vector
- t: arbitrary point

Can make t shorter by adding $\pm b_1$

Repeat until t is shortest

Remarks

$t - t' \in \Lambda$

Key step in [LLL'82] basis reduction algorithm

Technique is used in most other lattice algorithms
Size Reduction

- \(\mathbf{b}_1 \): (short) lattice vector
- \(\mathbf{t} \): arbitrary point
- Can make \(\mathbf{t} \) shorter by adding \(\pm \mathbf{b}_1 \)
- Repeat until \(\mathbf{t} \) is shortest

Remarks

\(\mathbf{t} - \mathbf{t}' \in \Lambda \)

Key step in \[LLL'82\] basis reduction algorithm

Technique is used in most other lattice algorithms
Size Reduction

- b_1: (short) lattice vector
- t: arbitrary point
- Can make t shorter by adding $\pm b_1$
- Repeat until t is shortest

Remarks

- $t - t' \in \Lambda$
- Key step in [LLL’82] basis reduction algorithm
- Technique is used in most other lattice algorithms
Definition (Gram-Schmidt)

Basis $\mathcal{B} = [b_1, \ldots, b_n]$

- $b_i^* \in b_i + [b_1, \ldots, b_{i-1}]\mathbb{R}^{i-1}$
- $b_i^* \perp b_1, \ldots, b_{i-1}$

\mathcal{B}^* is an orthogonal basis for the vector space \mathcal{B}.

\mathcal{B}^* is not a lattice basis for \mathcal{B}.

Still, \mathcal{B}^* is useful to evaluate the quality of lattice basis.

$\det(\Lambda) = \prod_i ||b^*_i|| \leq \prod_i ||b_i||$ (Hadamard)
Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

\[
\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}]\mathbb{R}^{i-1}
\]

\[
\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1}
\]
Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

\[
\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}]\mathbb{R}^{i-1}
\]

\[
\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1}
\]

\mathbf{B}^* is an orthogonal basis for the vector space \mathbf{B}.

\mathbf{B}^* is not a lattice basis for \mathbb{Z}^n.

Still, \mathbf{B}^* is useful to evaluate the quality of lattice basis Λ:

\[
\det(\Lambda) = \prod \| \mathbf{b}_i^* \| \leq \prod \| \mathbf{b}_i \| \quad \text{(Hadamard)}
\]
Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

$\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}]\mathbb{R}^{i-1}$

$\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1}$

\mathbf{B}^* is an orthogonal basis for the vector space \mathbb{R}^n

\mathbf{B}^* is not a lattice basis for \mathbb{Z}^n

Still, \mathbf{B}^* is useful to evaluate the quality of lattice basis

$\det(\Lambda) = \prod_i \|\mathbf{b}_i\| \leq \prod_i \|\mathbf{b}_i^*\| \leq \prod_i \|\mathbf{b}_i\|$ (Hadamard)
Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

- $\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}] \mathbb{R}^{i-1}$
- $\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1}$

\mathbf{B}^* is an orthogonal basis for the vector space $\mathbf{B} \mathbb{R}^n$
Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

- $\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}]\mathbb{R}^{i-1}$
- $\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1}$

- \mathbf{B}^* is an orthogonal basis for the vector space $\mathbf{B}\mathbb{R}^n$
- \mathbf{B}^* is **not** a lattice basis for $\mathbf{B}\mathbb{Z}^n$
Gram-Schmidt Orthogonalized Basis

Definition (Gram-Schmidt)

Basis $\mathbf{B} = [\mathbf{b}_1, \ldots, \mathbf{b}_n]$

\[\mathbf{b}_i^* \in \mathbf{b}_i + [\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}] \mathbb{R}^{i-1} \]

\[\mathbf{b}_i^* \perp \mathbf{b}_1, \ldots, \mathbf{b}_{i-1} \]

- \mathbf{B}^* is an orthogonal basis for the vector space $\mathbf{B} \mathbb{R}^n$
- \mathbf{B}^* is **not** a lattice basis for $\mathbf{B} \mathbb{Z}^n$
- Still, \mathbf{B}^* is useful to evaluate the quality of lattice basis \mathbf{B}

\[\det(\Lambda) = \prod_i \| \mathbf{b}_i^* \| \leq \prod_i \| \mathbf{b}_i \| \quad (\text{Hadamard}) \]
Lattice rounding

\[\mathbf{b}^* \cdot [0, 1] \] is also a fundamental region for \(\Lambda \).

Any \(t \) can be efficiently rounded to \(v \in \Lambda \) with \(\| t - v \| \leq \frac{1}{2} \sqrt{\sum_i \| \mathbf{b}^*_i \|^2} \).

\(v \) solves CVP when \(\| t - v \| \leq \min_i \| \mathbf{b}^*_i \| / 2 \).

Lemma (Nearest Plane Algorithm [Babai 1986])

Rounding w.r.t \(\mathbf{B}^* \) approximates CVP within \(\sqrt{n} \cdot \max_i \| \mathbf{b}^*_i \| / \min_i \| \mathbf{b}^*_i \| \).
Lattice rounding

- $\mathbf{B}^* [0, 1]^n$ is also a fundamental region for Λ
Lattice rounding

- $B^* [0, 1]^n$ is also a fundamental region for Λ

Diagram: A lattice grid with vectors b_1^* and b_2^*, and a shaded fundamental parallelogram.
Lattice rounding

- $\mathbf{B}^*[0, 1]^n$ is also a fundamental region for Λ

![Diagram showing lattice points and fundamental region]
Lattice rounding

- $B^* [0, 1]^n$ is also a fundamental region for Λ
- Any t can be efficiently rounded to $v \in \Lambda$

\[\|t - v\| \leq \frac{1}{2} \sqrt{\sum_i \|b^* i\|^2} \]

Lemma (Nearest Plane Algorithm [Babai 1986])

Rounding w.r.t B^* approximates CVP within $\sqrt{n} \cdot \max_i \|b^* i\| / \min_i \|b^* i\|$
Lattice rounding

- $B^*[0,1]^n$ is also a fundamental region for Λ
- Any t can be efficiently rounded to $v \in \Lambda$
- $\|t - v\| \leq \frac{1}{2} \sqrt{\sum_i \|b_i^*\|^2}$
Lattice rounding

- $B^*[0, 1]^n$ is also a fundamental region for Λ
- Any t can be efficiently rounded to $v \in \Lambda$
- $\|t - v\| \leq \frac{1}{2} \sqrt{\sum_i \|b_i^*\|^2}$
- v solves CVP when $\|t - v\| \leq \min \|b_i^*\|/2$
Lattice rounding

- $B^*[0, 1]^n$ is also a fundamental region for Λ
- Any t can be efficiently rounded to $v \in \Lambda$
- $\|t - v\| \leq \frac{1}{2} \sqrt{\sum_{i} \|b_i^*\|^2}$
- v solves CVP when $\|t - v\| \leq \min_i \|b_i^*\|/2$

Lemma (Nearest Plane Algorithm [Babai 1986])

Rounding w.r.t B^ approximates CVP within* $\sqrt{n} \cdot \frac{\max_i \|b_i^*\|}{\min_i \|b_i^*\|}$
1. Point Lattices and Lattice Parameters

2. Computational Problems
 - Coding Theory

3. The Dual Lattice

4. Q-ary Lattices and Cryptography
The Dual Lattice

- A vector space over \mathbb{R} is a set of vectors V with
 - a vector addition operation $x + y \in V$
 - a scalar multiplication $a \cdot x \in V$
- The dual of a vector space V is the set $V^\vee = \text{Hom}(V, \mathbb{R})$ of linear functions $\phi : V \to \mathbb{R}$, typically represented as vectors $x \in V$, where $\phi_x(y) = \langle x, y \rangle$
- The dual of a lattice Λ is defined similarly as the set of linear functions $\phi_x : \Lambda \to \mathbb{Z}$ represented as vectors $x \in \text{span}(\Lambda)$.

Definition (Dual lattice)

The dual of a lattice Λ is the set of all vectors $x \in \text{span}(\Lambda)$ such that $\langle x, v \rangle \in \mathbb{Z}$ for all $v \in \Lambda$.
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)\n\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((R\Lambda)^\vee\)
Dual lattice: Examples

- Integer lattice $(\mathbb{Z}^n) \lor = \mathbb{Z}^n$
- Rotating $(\mathbb{R} \Lambda) \lor = \mathbb{R}(\Lambda \lor)$
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((\mathbb{R}\Lambda)^\vee = \mathbb{R}(\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee\)
Dual lattice: Examples

- Integer lattice: \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating: \((R\Lambda)^\vee = R(\Lambda^\vee)\)
- Scaling: \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)
- Properties of dual:
 - \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
 - \((\Lambda^\vee)^\vee = \Lambda\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((\mathbb{R} \Lambda)^\vee = \mathbb{R} (\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)
- Properties of dual:
 - \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
 - \((\Lambda^\vee)^\vee = \Lambda\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((R\Lambda)^\vee = R(\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)
- Properties of dual:
 - \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
 - \((\Lambda^\vee)^\vee = \Lambda\)
- Operations on \(x \in \Lambda\) and \(y \in \Lambda^\vee\):
 - \(\langle x, y \rangle \in \mathbb{Z}\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((R\Lambda)^\vee = R(\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)

Properties of dual:
- \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
- \((\Lambda^\vee)^\vee = \Lambda\)

Operations on \(x \in \Lambda\) and \(y \in \Lambda^\vee\):
- \(\langle x, y \rangle \in \mathbb{Z}\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((R\Lambda)^\vee = R(\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)
- Properties of dual:
 - \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
 - \((\Lambda^\vee)^\vee = \Lambda\)
- Operations on \(x \in \Lambda\) and \(y \in \Lambda^\vee\):
 - \(\langle x, y \rangle \in \mathbb{Z}\)
Dual lattice: Examples

- Integer lattice \((\mathbb{Z}^n)^\vee = \mathbb{Z}^n\)
- Rotating \((R\Lambda)^\vee = R(\Lambda^\vee)\)
- Scaling \((q \cdot \Lambda)^\vee = \frac{1}{q} \cdot \Lambda^\vee\)
- Properties of dual:
 - \(\Lambda_1 \subseteq \Lambda_2 \iff \Lambda_1^\vee \supseteq \Lambda_2^\vee\)
 - \((\Lambda^\vee)^\vee = \Lambda\)
- Operations on \(x \in \Lambda\) and \(y \in \Lambda^\vee\):
 - \(\langle x, y \rangle \in \mathbb{Z}\)
 - but \(x + y\) has no geometric meaning
Lattice Layers

Each dual vector $\mathbf{v} \in \mathcal{L}^\vee$, partitions the lattice \mathcal{L} into layers orthogonal to \mathbf{v}

$$L_i = \{ \mathbf{x} \in \mathcal{L} \mid \mathbf{x} \cdot \mathbf{v} = i \}$$
Each dual vector $\mathbf{v} \in \mathcal{L}^\vee$, partitions the lattice \mathcal{L} into layers orthogonal to \mathbf{v}

$$L_i = \{ \mathbf{x} \in \mathcal{L} \mid \mathbf{x} \cdot \mathbf{v} = i \}$$

Layers are at distance $1/\|\mathbf{v}\|$
Each dual vector \(\mathbf{v} \in \mathcal{L}^\vee \), partitions the lattice \(\mathcal{L} \) into layers orthogonal to \(\mathbf{v} \):

\[
L_i = \{ \mathbf{x} \in \mathcal{L} \mid \mathbf{x} \cdot \mathbf{v} = i \}
\]

Layers are at distance \(1/\|\mathbf{v}\| \):

\[
\mu(\mathcal{L}) \geq \frac{1}{2\|\mathbf{v}\|}
\]
Lattice Layers

- Each dual vector $\mathbf{v} \in \mathcal{L}^\vee$, partitions the lattice \mathcal{L} into layers orthogonal to \mathbf{v}

$$L_i = \{ \mathbf{x} \in \mathcal{L} \mid \mathbf{x} \cdot \mathbf{v} = i \}$$

- Layers are at distance $1/\|\mathbf{v}\|$.

- $\mu(\mathcal{L}) \geq \frac{1}{2\|\mathbf{v}\|}$

- If $\lambda_1(\mathcal{L}^\vee)$ is small, then $\mu(\mathcal{L})$ is large.
Transference Theorems

Theorem (Banaszczyk)
For any lattice \mathcal{L}
\[
1 \leq 2\lambda_1(\mathcal{L}) \cdot \mu(\mathcal{L}^\lor) \leq n.
\]

Theorem (Banaszczyk)
For every i,
\[
1 \leq \lambda_i(\mathcal{L}) \cdot \lambda_{n-i+1}(\mathcal{L}^\lor) \leq n.
\]

- Approximating $\lambda_1(\mathcal{L})$ within a factor n is in $NP \cap coNP$
- Same is true for $\lambda_i, \ldots, \lambda_n$ and μ.

BDD reduces to SIVP

BDD input: t close to L

BDD reduces to SIVP

Compute $V = SIVP(L \vee L)$

For each $v_i \in L \vee L$, find the layer $L_i = \{ x | x \cdot v_i = c_i \}$ closest to t

Output $L_1 \cap L_2 \cap \cdots \cap L_n$

Output is correct as long as

$$\mu(t, L) \leq \frac{1}{2} \|v_i\|_0$$
BDD reduces to SIVP

BDD input: \(t \) close to \(\mathcal{L} \)

- Compute \(\mathbf{V} = \text{SIVP}(\mathcal{L}^\vee) \)
BDD reduces to SIVP

BDD input: \(\mathbf{t} \) close to \(\mathcal{L} \)

- Compute \(\mathbf{V} = \text{SIVP}(\mathcal{L}^\vee) \)
- For each \(\mathbf{v}_i \in \mathcal{L}^\vee \), find the layer \(L_i = \{ \mathbf{x} | \mathbf{x} \cdot \mathbf{v}_i = c_i \} \) closest to \(\mathbf{t} \)
BDD reduces to SIVP

BDD input: \(\mathbf{t} \) close to \(\mathcal{L} \)
- Compute \(\mathbf{V} = \text{SIVP}(\mathcal{L}^\vee) \)
- For each \(\mathbf{v}_i \in \mathcal{L}^\vee \), find the layer \(L_i = \{ \mathbf{x} \mid \mathbf{x} \cdot \mathbf{v}_i = c_i \} \) closest to \(\mathbf{t} \)
- Output \(L_1 \cap L_2 \cap \cdots \cap L_n \)
BDD reduces to SIVP

BDD input: \mathbf{t} close to \mathcal{L}
- Compute $\mathbf{V} = \text{SIVP}(\mathcal{L}^\vee)$
- For each $\mathbf{v}_i \in \mathcal{L}^\vee$, find the layer $L_i = \{ \mathbf{x} \mid \mathbf{x} \cdot \mathbf{v}_i = c_i \}$ closest to \mathbf{t}
- Output $L_1 \cap L_2 \cap \cdots \cap L_n$
- Output is correct as long as

$$\mu(\mathbf{t}, \mathcal{L}) \leq \frac{\lambda_1}{2n} \leq \frac{1}{2\lambda_n^\vee} \leq \frac{1}{2\|\mathbf{v}_i\|}$$
Working modulo a lattice

Definition (Fundamental Region of a lattice)

\(P \subset \mathbb{R}^n: \{ P + x \mid x \in \mathcal{L} \} \) is a partition of \(\mathbb{R}^n \).
Working modulo a lattice

Definition (Fundamental Region of a lattice)

\[P \subset \mathbb{R}^n: \{ P + x \mid x \in \mathcal{L} \} \text{ is a partition of } \mathbb{R}^n. \]

- \((\mathcal{L}, +)\) is a subgroup of \((\mathbb{R}^n, +)\)
Working modulo a lattice

Definition (Fundamental Region of a lattice)

\(\mathcal{P} \subset \mathbb{R}^n: \{ \mathcal{P} + \mathbf{x} \mid \mathbf{x} \in \mathcal{L} \} \) is a partition of \(\mathbb{R}^n \).

- \((\mathcal{L}, +)\) is a subgroup of \((\mathbb{R}^n, +)\)
- One can form the quotient group \(\mathbb{R}^n/\mathcal{L} \)
Definition (Fundamental Region of a lattice)

\[P \subset \mathbb{R}^n: \{ P + x \mid x \in \mathcal{L} \} \text{ is a partition of } \mathbb{R}^n. \]

- \((\mathcal{L}, +)\) is a subgroup of \((\mathbb{R}^n, +)\)
- One can form the quotient group \(\mathbb{R}^n / \mathcal{L}\)
- Elements of \(\mathbb{R}^n / \mathcal{L}\) are cosets \(t + \mathcal{L}\)
Definition (Fundamental Region of a lattice)

$P \subset \mathbb{R}^n$: $\{P + x \mid x \in \mathcal{L}\}$ is a partition of \mathbb{R}^n.

- $(\mathcal{L}, +)$ is a subgroup of $(\mathbb{R}^n, +)$
- One can form the quotient group \mathbb{R}^n/\mathcal{L}
- Elements of \mathbb{R}^n/\mathcal{L} are cosets $t + \mathcal{L}$
- Any fundamental region P gives a set of standard representatives
Definition (Fundamental Region of a lattice)

\[P \subset \mathbb{R}^n: \{ P + x \mid x \in \mathcal{L} \} \text{ is a partition of } \mathbb{R}^n. \]

- \((\mathcal{L}, +)\) is a subgroup of \((\mathbb{R}^n, +)\)
- One can form the quotient group \(\mathbb{R}^n/\mathcal{L}\)
- Elements of \(\mathbb{R}^n/\mathcal{L}\) are cosets \(t + \mathcal{L}\)
- Any fundamental region \(P\) gives a set of standard representatives
- \(P = \sum_i b_i \cdot [0, 1) \equiv \mathbb{R}^n/\mathcal{L}\)
Definition (Fundamental Region of a lattice)

\[P \subset \mathbb{R}^n: \{ P + x \mid x \in \mathcal{L} \} \text{ is a partition of } \mathbb{R}^n. \]

- \((\mathcal{L}, +)\) is a subgroup of \((\mathbb{R}^n, +)\)
- One can form the quotient group \(\mathbb{R}^n/\mathcal{L}\)
- Elements of \(\mathbb{R}^n/\mathcal{L}\) are cosets \(t + \mathcal{L}\)
- Any fundamental region \(P\) gives a set of standard representatives
- \(P = \sum_i b_i \cdot [0, 1) \equiv \mathbb{R}^n/\mathcal{L}\)
- \(t + \mathcal{L}\) is uniquely identified by \((B^\top)t \pmod{1}\)
CVP and lattice cosets

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.
CVP and lattice cosets

- Lattice Λ, target t
- CVP: Find v such that $e = t - v$ is shortest possible

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.
CVP and lattice cosets

- Lattice Λ, target t
- CVP: Find v such that $e = t - v$ is shortest possible

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.

Daniele Micciancio (UCSD)
CVP and lattice cosets

- Lattice Λ, target t
- CVP: Find v such that $e = t - v$ is shortest possible
- $t' = t + Bx$

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.
CVP and lattice cosets

- Lattice Λ, target t
- CVP: Find v such that $e = t - v$ is shortest possible
- $t' = t + Bx$
- $v = v' - Bx$

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.
CVP and lattice cosets

- Lattice Λ, target t
- CVP: Find v such that $e = t - v$ is shortest possible
- $t' = t + Bx$
- $v = v' - Bx$

Definition

CVP (coset formulation) Given a lattice coset $t + \mathcal{L}$, find the (approximately) shortest element of $t + \mathcal{L}$.
1. Point Lattices and Lattice Parameters

2. Computational Problems
 - Coding Theory

3. The Dual Lattice

4. Q-ary Lattices and Cryptography
Random lattices in Cryptography

- Cryptography typically uses (random) lattices Λ such that
 - $\Lambda \subseteq \mathbb{Z}^d$ is an integer lattice
 - $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q.
- Cryptographic functions based on q-ary lattices involve only arithmetic modulo q.

Definition (q-ary lattice)

Λ is a q-ary lattice if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$
Examples of q-ary lattices

Examples (for any $A \in \mathbb{Z}_q^{n \times d}$)

- $\Lambda_q(A) = \{x \mid x \mod q \in A^T \mathbb{Z}_q^n\} \subseteq \mathbb{Z}^d$
- $\Lambda_q^\perp(A) = \{x \mid Ax = 0 \mod q\} \subseteq \mathbb{Z}^d$
Examples of q-ary lattices

Examples (for any $A \in \mathbb{Z}_q^{n \times d}$)

- $\Lambda_q(A) = \{ x \mid x \mod q \in A^T \mathbb{Z}_q^n \} \subseteq \mathbb{Z}^d$
- $\Lambda_q^\perp(A) = \{ x \mid Ax = 0 \mod q \} \subseteq \mathbb{Z}^d$

Theorem

For any lattice Λ the following conditions are equivalent:

- $q\mathbb{Z}^d \subseteq \Lambda \subseteq \mathbb{Z}^d$
- $\Lambda = \Lambda_q(A)$ for some A
- $\Lambda = \Lambda_q^\perp(A)$ for some A

For any fixed A, the lattices $\Lambda_q(A)$ and $\Lambda_q^\perp(A)$ are different
Duality of q-ary lattices

- For any fixed A, the lattices $\Lambda_q(A)$ and $\Lambda_q^\perp(A)$ are different.
- For any $A \in \mathbb{Z}^{n \times d}_q$ there is a $A' \in \mathbb{Z}^{k \times d}_q$ such that $\Lambda_q(A) = \Lambda_q^\perp(A')$.
- For any $A' \in \mathbb{Z}^{k \times d}_q$ there is a $A \in \mathbb{Z}^{n \times d}_q$ such that $\Lambda_q(A) = \Lambda_q^\perp(A')$.
- The q-ary lattices associated to A are dual (up to scaling)

\[
\Lambda_q(A)^\vee = \frac{1}{q} \Lambda_q^\perp(A)
\]
\[
\Lambda_q^\perp(A)^\vee = \frac{1}{q} \Lambda_q(A)
\]
Ajtai’s one-way function (SIS)

- Parameters: \(m, n, q \in \mathbb{Z} \)
- Key: \(A \in \mathbb{Z}^{n \times m}_q \)
- Input: \(x \in \{0, 1\}^m \)

\[
\text{Output: } f_A(x) = Ax \mod q
\]

Theorem (A'96)

For \(m > n \log q \), if lattice problems (SIVP) are hard to approximate in the worst-case, then \(f_A(x) = Ax \mod q \) is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], IDs schemes [L’08], Signatures [LM’08, GPV’08, …, DDLL’13] …
Ajtai’s one-way function (SIS)

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $A \in \mathbb{Z}_q^{n \times m}$
- Input: $x \in \{0, 1\}^m$
- Output: $f_A(x) = Ax \mod q$

Theorem (A'96)

For $m > n \log q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_A(x) = Ax \mod q$ is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], IDs schemes [L'08], Signatures [LM'08, GPV'08, ... , DDLL'13]...
Ajtai’s one-way function (SIS)

- **Parameters:** $m, n, q \in \mathbb{Z}$
- **Key:** $A \in \mathbb{Z}_q^{n \times m}$
- **Input:** $x \in \{0, 1\}^m$
- **Output:** $f_A(x) = Ax \mod q$

Theorem (A’96)

For $m > n \log q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_A(x) = Ax \mod q$ is a one-way function.

Applications: OWF [A’96], Hashing [GGH’97], Commit [KTX’08], ID schemes [L’08], Signatures [LM’08, GPV’08, . . ., DDLL’13] . . .
Ajtai’s function and q-ary lattices

- $f_A(x) = Ax \mod q$, where x is short
Ajtai’s function and q-ary lattices

- $f_A(x) = Ax \mod q$, where x is short
- The q-ary lattice $\Lambda_q^\perp(A)$ is the kernel of f_A
Ajtai’s function and q-ary lattices

- $f_A(x) = Ax \mod q$, where x is short
- The q-ary lattice $\Lambda_q^\perp(A)$ is the kernel of f_A
- Finding collisions $f_A(x) = f_A(y)$ is equivalent to finding short vectors $x - y \in \Lambda_q^\perp(A)$
Ajtai’s function and q-ary lattices

- $f_A(x) = Ax \mod q$, where x is short
- The q-ary lattice $\Lambda_q^\perp(A)$ is the kernel of f_A
- Finding collisions $f_A(x) = f_A(y)$ is equivalent to finding short vectors $x - y \in \Lambda_q^\perp(A)$
- The output of $f_A(x)$ is the syndrome of x
Ajtai’s function and \(q \)-ary lattices

- \(f_A(x) = Ax \mod q \), where \(x \) is short
- The \(q \)-ary lattice \(\Lambda_q(A) \) is the kernel of \(f_A \)
- Finding collisions \(f_A(x) = f_A(y) \) is equivalent to finding short vectors \(x - y \in \Lambda_q(A) \)
- The output of \(f_A(x) \) is the syndrome of \(x \)
- Inverting \(f_A(x) \) is the same as CVP in its syndrome decoding formulation with lattice \(\Lambda_q(A) \) and target \(t \in x + \Lambda_q(A) \)
Ajtai’s function and q-ary lattices

- $f_A(x) = Ax \mod q$, where x is short
- The q-ary lattice $\Lambda_q^\perp(A)$ is the kernel of f_A
- Finding collisions $f_A(x) = f_A(y)$ is equivalent to finding short vectors $x - y \in \Lambda_q^\perp(A)$
- The output of $f_A(x)$ is the syndrome of x
- Inverting $f_A(x)$ is the same as CVP in its syndrome decoding formulation with lattice $\Lambda_q^\perp(A)$ and target $t \in x + \Lambda_q^\perp(A)$
- For f_A to be a compression function, x is longer than $\frac{1}{2} \lambda_1(\Lambda_q^\perp(A))$

Remark

SIS \equiv Approximate ADD (Absolute Distance Decoding)
Regev’s Learning With Errors (LWE)

- \(A \in \mathbb{Z}_q^{m \times k}, \ s \in \mathbb{Z}_q^k, \ e \in \mathcal{E}^m. \)
- \(g_A(s, e) = As \mod q \)
Regev’s Learning With Errors (LWE)

- \(A \in \mathbb{Z}_q^{m \times k}, \ s \in \mathbb{Z}_q^k, \ e \in \mathcal{E}^m. \)
- \(g_A(s; e) = As + e \mod q \)
- Learning with Errors: Given \(A \) and \(g_A(s, e) \), recover \(s \).
Regev’s Learning With Errors (LWE)

- \(A \in \mathbb{Z}_q^{m \times k}, \ s \in \mathbb{Z}_q^k, \ e \in \mathcal{E}^m. \)
- \(g_A(s; e) = As + e \text{ mod } q \)
- Learning with Errors: Given \(A \) and \(g_A(s, e) \), recover \(s \).

Theorem (R’05)

The function \(g_A(s, e) \) is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case.

Applications: CPA PKE [R’05], CCA PKE [PW’08], (H)IBE [GPV’08,CHKP’10,ABB’10], FHE [. . . ,B’12,AP’13,GSW’13], . . .
LWE and q-ary lattices

- **Learning with errors:**
 - **Input:** $A \in \mathbb{Z}_q^{m \times n}$ and $As + e$, where e is small and s is arbitrary
 - **Output:** s, e

If $e = 0$, then $As + e = As \in \Lambda(A_t)$

Same as CVP in random q-ary lattice $\Lambda(A_t)$ with random target $t = As + e$

Usually e is shorter than $\frac{1}{2}\lambda_1(\Lambda(A_t))$, and e is uniquely determined

Remark

$LWE \equiv$ Approximate BDD (Bounded Distance Decoding)
LWE and q-ary lattices

- Learning with errors:
 - Input: $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ and $\mathbf{A}s + \mathbf{e}$, where \mathbf{e} is small and s is arbitrary
 - Output: s, \mathbf{e}

- If $\mathbf{e} = \mathbf{0}$, then $\mathbf{A}s + \mathbf{e} = \mathbf{A}s \in \Lambda(\mathbf{A}^t)$
LWE and q-ary lattices

- Learning with errors:
 - Input: $A \in \mathbb{Z}_q^{m \times n}$ and $As + e$, where e is small and s is arbitrary
 - Output: s, e

- If $e = 0$, then $As + e = As \in \Lambda(A^t)$

- Same as CVP in random q-ary lattice $\Lambda(A^t)$ with random target $t = As + e$
LWE and q-ary lattices

- Learning with errors:
 - Input: $A \in \mathbb{Z}_q^{m \times n}$ and $As + e$, where e is small and s is arbitrary
 - Output: s, e

- If $e = 0$, then $As + e = As \in \Lambda(A^t)$

- Same as CVP in random q-ary lattice $\Lambda(A^t)$ with random target $t = As + e$

- Usually e is shorter than $\frac{1}{2} \lambda_1(\Lambda(A^T))$, and e is uniquely determined
LWE and q-ary lattices

- **Learning with errors:**
 - Input: $A \in \mathbb{Z}_q^{m \times n}$ and $As+e$, where e is small and s is arbitrary
 - Output: s, e
- If $e = 0$, then $As+e = As \in \Lambda(A^t)$
- Same as CVP in random q-ary lattice $\Lambda(A^t)$ with random target $t = As+e$
- Usually e is shorter than $\frac{1}{2} \lambda_1(\Lambda(A^T))$, and e is uniquely determined

Remark

$LWE \equiv$ Approximate BDD (Bounded Distance Decoding)
Much more ...

Not covered in this introduction:

- Gaussian measures and harmonic analysis
- Lattices from Algebraic Number Theory
- Other norms
- Sphere packings
- Average-case to Worst-case connection