Correlations, area laws and stability of open and thermal quantum many-body systems

Jens Eisert, FU Berlin

Complexity meets Condensed Matter, Simons Institute for the Theory of Computing, March 2014 Joint work with Michael Kastoryano, Martin Kliesch, Christian Gogolin, Arnau Riera

Hamiltonian complexity

- Can ground states of "natural" quantum systems be described succinctly?
- Does the exponential comprexity of general quantum systems persist at high temperature?
- Is the scientific method sufficiently powerful to understand general quantum systems?
- Local Hamiltonian problem is QMA-complete
- Steps towards a quantum PCP theorem (Matt's and Dorit's talks)

Hamiltonian complexity

- Can ground states of "natural" quantum systems be described succinctly?
- Does the exponential complexi of general quantum systems persist at high temperature?
- Is the scientific method sufficiently powerful to understand generaqquantum systems?

Ground states of local gapped models

- Energy gap $\Delta(H)=E_{1}-E_{0}>0$
- Ground states of gapped models have exponentially decaying correlations
- Proof based on Lieb-Robinson bounds

Hastings, Koma, Commun Math Phys 265, 781 (2006) Nachtergaele, Sims, Commun Math Phys 265, 119 (2006)

- Combinatorical proof (detectability lemma)

Area laws

- Area laws for the entanglement entropy $S\left(\rho_{A}\right)=O(|\partial A|)$
- Proven for gapped quasi-free bosonic and fermionic systems in any dimension, 1D gapped local models and ones with exponentially decaying correlations

Matrix-product states and efficient descriptions

- Polynomial-time algorithm for ground states of 1D gapped local Hamiltonians
- This talk: Correlations in thermal and open quantum many-body systems

Open quantum many-body systems

Dissipation

Many-body physics

Liouvillian dynamics

Cold atoms

Optical lattices

Open quantum many-body systems

- Dissipative quantum phase transitions, noise-driven criticality, topological order
- Dissipative quantum computing
- Dissipative passive quantum memories?

Questions of the rest of talk

- "Liouvillian complexity", resembling Hamiltonian complexity
- How is closing of Liouvillian gaps related to clustering of correlations?
- Area laws in dissipative systems? Stability? Topological dissipative memories?

Questions of the rest of talk

- Thermal states at high temperatures
- Is temperature intensive/local?
- Correlations in thermal many-body states?
- Computational complexity of computing expectation values?

Correlations in open many-body systems

Local Liouvillian setting

- Liouvillian setting, reflecting Markovian dynamics

$$
\frac{d}{d t} \rho=\mathcal{L}(\rho)=i[H, \rho]+\sum_{k}\left(L_{k} \rho L_{k}^{\dagger}-\frac{1}{2}\left\{L_{k}^{\dagger} L_{k}, \rho\right\}\right)
$$

- Effective system dynamics
- Lindblad operators are geometrically local on some graph Λ
- Bounded interactions, i.e., $\left\|L_{k}\right\|<K$ for all k

Stationary states and mixing properties

- Role of ground state taken over by stationary state σ, satisfying

$$
\mathcal{L}(\sigma)=0
$$

here often taken to be full rank (primitive), with detailed balance

- Mixing properties: For any primitive local Liouvillian,

$$
\left\|e^{t \mathcal{L}}\left(\rho_{0}\right)-\sigma\right\|_{1}^{2} \leq\left\|\sigma^{-1}\right\| e^{-2 \lambda t}
$$

for any initial state ρ_{0}

- λ is the Liouvillian gap, resembling the Hamiltonian gap in closed systems

Correlation measures

- Covariance: For arbitrary regions $A, B \subset \Lambda$

$$
C_{\rho}(A, B)=\sup _{\|f\|=\|g\|=1}\left|\operatorname{tr}\left((f \otimes g)\left(\rho_{A, B}-\rho_{A} \otimes \rho_{B}\right)\right)\right|
$$

"largest connected correlation function"

- Related to other standard correlation measures
- trace distance $T_{\rho}(A, B):=\left\|\rho_{A, B}-\rho_{A} \otimes \rho_{B}\right\|_{1}$
- mutual information $I_{\rho}(A, B):=S\left(\rho_{A, B} \| \rho_{A} \otimes \rho_{B}\right)$

Clustering of correlations and gaps?

- Gapped Hamiltonians, away from phase transitions, show clustering of correlations

$$
C_{\rho}(A, B) \leq C e^{-d(A, B) / \xi}
$$

- How about gapped Liouvillians?

Clustering of correlations and gaps

- Clustering of correlations: $A, B \subset \Lambda$ non-overlapping subsets, consider local, bounded Liouvillian with stationary state σ, gap λ, and Lieb-Robinson velocity v. Then there ex constant $c>0$, such that

$$
C_{\sigma}(A, B) \leq c d(A, B)^{\mathcal{D}-1} e^{-\frac{\lambda d(A, B)}{v+2 \lambda}}
$$

Flavour of (simple) proof

Hölder's inequality and mixing time tools:
Variational characterisation of gap, ... $\leq\|f\|\|g\| e^{-2 t \lambda}$

$$
\begin{aligned}
& \text { Set } f_{t}=e^{t \mathcal{L}^{*}}(f) \text {, then } \\
& \left|\operatorname{Cov}_{\sigma}(f, g)\right| \leq\left|\operatorname{Cov}_{\sigma}\left(f_{t}, g_{t}\right)\right|+\left|\operatorname{Cov}_{\sigma}\left(f_{t}, g_{t}\right)-\operatorname{Cov}_{\sigma}(f, g)\right|
\end{aligned}
$$

$$
\text { Choose suitable } t
$$

- Dissipative Lieb-Robinson bound: For observables f, g supported on $A, B \subset \Lambda$, respectively,

$$
\left\|(f g)_{t}-f_{t} g_{t}\right\| \leq C d(A, B)^{\mathcal{D}-1}\|f\|\|g\| e^{v t-d(A, B) / 2}
$$

for all $t \geq 0$, where v is the Lieb-Robinson velocity and $C>0$ constant

Slightly stronger mixing tools

- Stronger concept of mixing, based on Log-Sobolev constant
- Log-Sobolev-constant α bounded from above by Liouvillian gap λ
- Variational characterisation of α, related to hypercontractivity
- Mixing properties: For any primitive local Liouvillian,

$$
\left\|e^{t \mathcal{L}}\left(\rho_{0}\right)-\sigma\right\|_{1}^{2} \leq 2 \log \left(\left\|\sigma^{-1}\right\|\right) e^{-2 \alpha t}
$$

for any initial state ρ_{0}

Stability results

- Local perturbations perturb locally: Let \mathcal{L} be a local Liouvillian with Log-Sobolev-constant α and stationary state ρ, let \mathcal{Q}_{B} be a perturbation on B only, with stationary state σ of $\mathcal{L}+\mathcal{Q}_{B},(\ldots)$, then

$$
\left\|\rho_{A}-\sigma_{A}\right\|_{1} \leq C e^{-\alpha d(A, B) /(v+\alpha)}
$$

Area laws

- Area law for mutual information: (...)

$$
I_{\rho}\left(A, A^{c}\right) \leq\left(\gamma_{1}+\gamma_{2} \log \log \left\|\rho^{-1}\right\|\right)|\partial A|+\epsilon
$$

Mixing times and clustering of correlations

- Lesson: Rapidly mixing systems exhibit exponentially clustering correlations
- "Mixing in time related to mixing in space"
- Liouvillian gap (log-Sobolev constant) reminds of Hamiltonian gap
- Two different regimes, with quite different implications
- Quantum feature, difference absent classically

Quantum memories, topological order and mixing times

- Optimal dissipative encoders for toric codes

- Interesting challenge: Time to prepare topologically ordered states $O(L)$ for $L \times L$ lattice can be achieved, ...
- ... stability relies on log-Sobolev-type clustering not allowing for topological order
- How to reconcile that? Dissipative stable passive quantum memories?

Clustering of correlations in thermal states

Locality of temperature?

- At what length scales is temperature well-defined?

Pothier, Gueron, Birge, Esteve, Devoret, Phys Rev Lett 79, 3490 (1997)
Peng, Su, Liu, Yu, Cheng, Bao, Nanoscale 5, 9532 (2013)
Hartmann, Mahler, Hess, Phys Rev Lett 93, 080402 (2004)
Ferraro, Garcia-Saez, Acin, Europhys Lett 98, 10009 (2012)

Locality of temperature?

- At what length scales is temperature well-defined?

Pothier, Gueron, Birge, Esteve, Devoret, Phys Rev Lett 79, 3490 (1997)
Peng, Su, Liu, Yu, Cheng, Bao, Nanoscale 5, 9532 (2013)
Hartmann, Mahler, Hess, Phys Rev Lett 93, 080402 (2004)
Ferraro, Garcia-Saez, Acin, Europhys Lett 98, 10009 (2012)

Locality of temperature?

- At what length scales is temperature well-defined?

- Gibbs states $g[H]=\frac{e^{-\beta H}}{\operatorname{tr}\left(e^{-\beta H}\right)}$

Locality of temperature?

- At what length scales is temperature well-defined?

Thermal states of quantum many-body systems

- Again, GS of gapped Hamiltonians have clustering correlations
- Is there a thermal analogue?

Thermal states of quantum many-body systems

- Critical temperature, dependent only on crude properties of graph (+ coupling strength), above which correlations cluster?
- Long-standing open question, results known for classical and continuum models, some (few) insights into quantum lattice models

```
Araki, Commun Math Phys 38,1 (1974)

\section*{Thermal states of quantum many-body systems}

- Yes :)

\section*{General clustering of correlations at high temperatures}
\[
\xi(\beta)=\left|1 / \ln \left(\alpha e^{2|\beta| J}\left(e^{2|\beta| J}-1\right)\right)\right|[]
\]
- Clustering of correlations in thermal states: Consider local Hamiltonian on arbitrary regular lattice, \(J:=\max \left\|h_{k}\right\|\) coupling strength, then exists critical inverse temperature
\[
\beta^{*}:=\log ((1+\sqrt{1+4 / \alpha} / 2) /(2 J)
\]
such that for all \(\beta<\beta^{*}\) and \(d(A, B) \geq L_{0}\)
\[
\begin{aligned}
C_{g[H]}(A, B) & \leq \frac{4 \min \{|\partial A|,|\partial B|\}}{\log (3)} \frac{\|f\|\|g\|}{1-e^{-1 / \xi(\beta)}} e^{-d(A, B) \xi(\beta)} \\
\xi(\beta) & :=\left|1 / \ln \left(\alpha e^{2|\beta| J}\left(e^{2|\beta| J}-1\right)\right)\right|
\end{aligned}
\]
- \(\alpha\) lattice animal constant
- General statement for arbitrary lattices and covariances

\section*{Lattice animal constants}

- Connected set of edges: Lattice animal
- Number \(a_{m}\) of lattice animals \(F\) of size \(m=|F|\)
- Lattice animal constant: Smallest \(\alpha\) such that \(a_{m} \leq \alpha^{m}\)

\section*{Flavour of (involved) proof}

Define generalized covariance \(\operatorname{Cov}_{\rho}^{\tau}(f, g)=\operatorname{tr}\left(\rho^{\tau} f \rho^{1-\tau} g\right)-\operatorname{tr}(\rho f) \operatorname{tr}(\rho g), \tau \in[0,1]\)

\section*{Multiple "swap-trick"}

Write \(\operatorname{Cov}_{\rho}^{\tau}(f, g)=\frac{1}{2} \operatorname{tr}\left(\mathcal{S}^{(1,3)} \mathcal{S}^{(2,4)}\left(f^{(-)} \otimes g^{(-)}\right)\left(\rho^{\tau} \otimes \rho^{\tau} \otimes \rho^{1-\tau} \otimes \rho^{1-\tau}\right)\right)\) on four copies, where \(f^{(-)}=f \otimes 1-1 \otimes f\)


\section*{Flavour of (involved) proof}

Define generalized covariance \(\operatorname{Cov}_{\rho}^{\tau}(f, g)=\operatorname{tr}\left(\rho^{\tau} f \rho^{1-\tau} g\right)-\operatorname{tr}(\rho f) \operatorname{tr}(\rho g), \tau \in[0,1]\)

> Multiple "swap-trick"
> Write \(\operatorname{Cov}_{\rho}^{\tau}(f, g)=\frac{1}{2} \operatorname{tr}\left(\mathcal{S}^{(1,3)} \mathcal{S}^{(2,4)}\left(f^{(-)} \otimes g^{(-)}\right)\left(\rho^{\tau} \otimes \rho^{\tau} \otimes \rho^{1-\tau} \otimes \rho^{1-\tau}\right)\right)\) on four copies, where \(f^{(-)}=f \otimes 1-1 \otimes f\)

\section*{Cluster expansion of new Hamiltonian \(\tilde{H}\)}
\[
\frac{e^{-\beta \tilde{H}}}{\operatorname{tr}\left(e^{-\beta \tilde{H}}\right)}=\rho^{\tau} \otimes \rho^{\tau} \otimes \rho^{1-\tau} \otimes \rho^{1-\tau}
\]

\section*{Flavour of (involved) proof}


\section*{Combinatorics}

Symmetry: Only clusters connecting \(A\) and \(B\) contribute
\[
\begin{aligned}
& \text { Cluster expansion of new Hamiltonian } \tilde{H} \\
& \frac{e^{-\beta \tilde{H}}}{\operatorname{tr}\left(e^{-\beta \tilde{H}}\right)}=\rho^{\tau} \otimes \rho^{\tau} \otimes \rho^{1-\tau} \otimes \rho^{1-\tau}
\end{aligned}
\]

\section*{Truncated cluster expansion}
\[
\left\|\sum_{w \in C \geq L} \frac{(-\beta)^{|w|}}{|w!|} h(w)\right\|_{1} \leq Z(\beta)\left(e^{|F| \frac{b(\beta)^{L}}{1-b(\beta)}}-1\right)
\]

\section*{Physical implications: Bounds to Curie temperatures}
1. "Critical temperature" is universal upper bound to phase transition points

- E.g., ferromagnetic 2d isotropic Ising model without external field, \(1 /\left(J \beta^{*}\right)=24.58\), while phase transition known to happen at 2.27

\section*{Locality of temperature}

\section*{2. Length scale of temperature}

\[
\operatorname{tr}(A g[H(0)])-\operatorname{tr}(A g[H])=\beta \int_{0}^{1} d \tau \int_{0}^{1} d \operatorname{Cov}_{g[H(s)]}^{\tau}\left(A, H_{I}\right)
\]
\[
H(s)=H-(1-s) H_{I}
\]

\section*{Locality of temperature}

\section*{2. Length scale of temperature}

\[
\left\|g_{A}[H]-g_{A}[H(0)]\right\|_{1} \leq \frac{v|\beta| J}{1-e^{-1 / \xi(\beta)}} e^{-d(A, \partial A) / \xi(\beta)}
\]
- Tool in rigorous approaches in quantum thermodynamics and canonical typicality

\section*{Stability of high temperature thermal states}
3. Stability of thermal states


\section*{Efficient computation of expectation values}
4. Computing of local expectation values is in \(\mathbf{P}\)

- Guideline for quantum Monte Carlo etc

\section*{Matrix-product operators}
5. Matrix-product operator approximation


Kliesch, Gogolin, Kastoryano, Riera, Eisert, arXiv:1309.0816

\section*{Interacting fermions}
6. All also true for interacting fermions

- Generalizing earlier results on fermionic covariance matrices

\section*{Thermal many-body systems}
- Lessons:
- Length scale at which one can speak of temperature!
- High temperature thermal states have clustering correlations
- Can efficiently compute local expectation values

\section*{Summary: Liouvillians and thermal states}

"Liouvillian complexity": Interesting arena to study many-body problems


Clustering of correlations, area laws, topological order


Intensivity of temperature and correlations in thermal many-body systems
- Does the exponential complexity of general quantum systems persist at high temperature?

No

\section*{Thanks for your attention!}```

