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The difficulty of understanding many-body physics

Each particle a d dimensional space– Cd

n particles = tensor the individual spaces together

= space of dimension dn H = (Cd)⊗n.

System described by a state: a unit vector |v〉 ∈ H.

The same property that leads to the power of quantum computation is the major barrier
for understanding many-body physics:

Exponential Dimensional Space

So even describing a state requires exponential amount of information.
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A Basic Question

All states

Physically relevant 
states

Can we develop a better understanding of a class of relevant states?

Do they have a special structure?

Does that structure allow for meaningful short descriptions?

Does that structure allow us to compute various properties of them?
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Physically Relevant States: Ground States of Local Hamiltonians

Local term:

Hi linear operator. (self-adjoint).

acts "locally": non-trivial on only a few particles.

Local Hamiltonian
H =

P
iHi an operator formed from the sum of local terms.

Ground State
The ground state |Γ〉 is the smallest eigenvector of H.

Gap = distance between the lowest two eigenvalues.

Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
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The Fundamental Quest: understanding ground states

Do they have a special structure?

Does that structure allow for meaningful short descriptions?

Does that structure allow us to compute various properties of them?

Spoiler:

For (gapped) 1D systems: yes

For higher dimensions: ?
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Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

Total amount of information in a black hole resides on the boundary. . .

"Complexity of system should depend only on the size of the boundary"

L

L

Became known as an Area Law.

[’01, Vidal, Latorre, Rico, Kitaev] Area Law formalized in terms of entanglement
entropy.
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Area Law in 1D systems

1D Area law proved [Hastings ’07].

Established that 1D ground states (constant gap) satisfy an area law.

Ground states have a poly(n)-bond dimension Matrix Product State description.

Finding ground states are therefore in NP.

Natural Questions:

Does the result generalize to 2D?

Does it suggest an algorithm for finding the ground state?
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The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve:
find it." - George Polya

A special case: frustration-free commuting case.

Can assume Hi are projections.

P =
Q
i(1−Hi) projects onto the ground space.

Apply to a tensor product state to immediately get an MPS representation.

...

How to generalize this idea?
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AGSP

Approximate Ground State Projection (AGSP)

Ground State

Perpendicular
Space

Properties:

It "approximately" projects onto one vector you want (ground state).

It isn’t too complex.
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Consequences of AGSPs

Two new results:

[’11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters
of the 1D area law which→ a sub-exponential time algorithm for finding solutions.

[’13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to
constant gapped 1D systems.

Area
Law

Exist

1D Simulation 

Area Law

1D Solutions

AGSP’s

Hard
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An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

Ground State

|v>

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the
ground state.

Both steps use AGSPs– the first is much more delicate.
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Measure of Complexity: Entanglement rank

A state on H1 ⊗H2 of the form
PC

1 ai ⊗ bi will be said to have entanglement rank C.

C

An operator on H1 ⊗H2 of the form
PC

1 Ai ⊗Bi will be said to have entanglement
rank C.

C

Entanglement rank behavior

Multiplicative for operators applied to states or product of operators.

Additive for sums of states or operators.
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AGSP: almost projection with small entanglement rank
We are looking for an operator K with 2 properties:

It approximately projects onto the ground state:

∆

1

Ground state

of AGSP
Eigenvalues 

Eigenvalues of H

It has small entanglement rank:

D

. . . 

. . . . . . 

. . . 

K

Critical threshold D∆ < 1.
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Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which
D∆ < 1/2 proves that the ground state has entropy O(logD).

Proof:
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Proof:

Ground State

BA |A>|B>

. . . 

. . . 

. . . 

. . . 

K|A>|B>

K
D

Cut into D pieces
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Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which
D∆ < 1/2 proves that the ground state has entropy O(logD).

Proof:

Ground State

A B

. . . 

. . . 

. . . 

. . . 
K

D

|A’>|B’>
B’A’

l
lK |A’>|B’>

l

l=O(log n)
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AGSP construction

AGSP will be a well chosen polynomial in the local terms Hi.

Three key ingredients:

truncation away from the cut,

Chebyshev polynomials,

Analysis of the entanglement rank will involve polynomial interpolation.
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Building Intuition

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: P (H) = (1−H/||H||)`

1

ε ||H||

∆ ∆ = (1− ε

||H|| )
`.

What is the entanglement rank of P (H)? For now, intuitive proxy: degree of polynomial.

How can we make ∆ smaller without increasing ` ?
Smaller ||H|| would be better but we don’t want to lose the 1D structure of H→
truncate the ends to get H ′ = (HL +H1 +H2 + · · ·+Hs +HR).

1

HL

s+1
...
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Building intuition: using Chebyshev polynomials

How can we make ∆ smaller without increasing ` ?
Truncate away from the cut.

Choose a better polynomial.

Chebyshev polynomials: small in an interval:
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Building intuition: using Chebyshev polynomials

Candidate 2: C`(H ′)= dilation and translation of Chebyshev applied to H ′:

l

∆

1

ε ||H’||

K=C (H’)

with

∆ = e
− `

√
ε√

||H′|| .

This will be our AGSP. How complex is it?
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AGSP complexity: Entanglement rank analysis

(H ′)` =
X

( product of Hj).

For a single term:

Across some cut, an average number of terms are involved→ d2`/s.
Roundtrip cost of going and coming back from center cut: → ds.

Total: d2`/s+s

. . .
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AGSP complexity: Entanglement rank analysis

Problem: Too many (s`) terms in naive expansion of (H ′)`.

Need to group terms in a nice way (polynomial interpolation) but it all works out with
total entanglement increase of the same order as the single term.
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Putting things together: Area Law for H ′

Chebyshev C`(H ′) has ∆ ≈ e−O(`/
√
s):

f(x)

∆

1

ε ||H||

Entanglement analysis yields D ≈ O(d`/s+s).

. . .

2l/sCost d

Cost d s

Chosing ` = s2 yields D∆ ≈ e−s
3/2+s log d < 1 for appropriate choice of s ≈ log2 d.

Area Law of entanglement entropy log(D) = Õ(
log3(d)

ε
)
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The Landscape

Simulation

Quantum Many−Body
Systems

AGSP

Structure

What about 2d? Any improvement in the entropy bound Õ( log3 d
ε

) would produce a
sub-volume law for 2D systems.

Towards more local algorithms in 1D. . .

Of independent interest: entanglement rank has a "random walk" type behavior
(added entanglement of H` is dO(

√
`)).

Of independent interest: robustness theorem of truncation.
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ε

) would produce a
sub-volume law for 2D systems.

Towards more local algorithms in 1D. . .

Of independent interest: entanglement rank has a "random walk" type behavior
(added entanglement of H` is dO(

√
`)).

Of independent interest: robustness theorem of truncation.

Itai Arad, Alexei Kitaev, Zeph Landau, Umesh Vazirani () AGSPs and an Area Law for Gapped 1D Systems 22 / 22


