AGSPs and an Area Law for Gapped 1D Systems

Itai Arad, Alexei Kitaev, Zeph Landau, Umesh Vazirani
The difficulty of understanding many-body physics

Each particle in a d-dimensional space—C^d_n particles—becomes a tensor the individual spaces together creating $H = (C^d)^\otimes n$. System described by a state: a unit vector $|v\rangle \in H$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics: Exponential Dimensional Space. So even describing a state requires exponential amount of information.
The difficulty of understanding many-body physics

- Each particle a d dimensional space– \mathbb{C}^d

\[H = (\mathbb{C}^d)^\otimes n. \]
The difficulty of understanding many-body physics

- Each particle a d dimensional space— \mathbb{C}^d
- n particles = tensor the individual spaces together
The difficulty of understanding many-body physics

- Each particle a d dimensional space— \mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n \[\mathcal{H} = (\mathbb{C}^d)^\otimes n. \]
The difficulty of understanding many-body physics

Each particle a d dimensional space—\mathbb{C}^d

n particles = tensor the individual spaces together

= space of dimension d^n

$\mathcal{H} = (\mathbb{C}^d)^\otimes n$.

System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space
The difficulty of understanding many-body physics

- Each particle a d dimensional space— \mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n $\mathcal{H} = (\mathbb{C}^d)^\otimes n$.
- System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space

So even describing a state requires exponential amount of information.
A Basic Question

Can we develop a better understanding of a class of relevant states?
A Basic Question

Can we develop a better understanding of a class of relevant states?

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?
Physically Relevant States: Ground States of Local Hamiltonians

- **Local term**: H_i is a linear operator (self-adjoint) that acts "locally": non-trivial on only a few particles.

- **Local Hamiltonian**: $H = \sum_i H_i$, an operator formed from the sum of local terms.

- **Ground State**: The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.

- **Gap**: Distance between the lowest two eigenvalues. Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- \(H_i \) linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- \(H = \sum_i H_i \) an operator formed from the sum of local terms.

Ground State
- The ground state \(|\Gamma\rangle \) is the smallest eigenvector of \(H \).
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- \(H_i \) linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- \(H = \sum_i H_i \) an operator formed from the sum of local terms.

Ground State
- The ground state \(|\Gamma\rangle \) is the smallest eigenvector of \(H \).
- **Gap** = distance between the lowest two eigenvalues.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.

Ground State
- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.
- Gap = distance between the lowest two eigenvalues.
- Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

For (gapped) 1D systems: yes
For higher dimensions: ?

Itai Arad, Alexei Kitaev, Zeph Landau, Umesh Vazirani ()
AGSPs and an Area Law for Gapped 1D Systems
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

Spoiler:

- For (gapped) $1D$ systems: yes
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

Spoiler:
- For (gapped) 1D systems: yes
- For higher dimensions: ?
Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary. . .
Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary.

"Complexity of system should depend only on the size of the boundary"

Became known as an Area Law.
Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary.

"Complexity of system should depend only on the size of the boundary"

Became known as an **Area Law**.

[ʼ01, Vidal, Latorre, Rico, Kitaev] Area Law formalized in terms of entanglement entropy.
Area Law in 1D systems

1D Area law proved [Hastings ’07].
- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a $poly(n)$-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.
Area Law in 1D systems

1D Area law proved [Hastings ’07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a $poly(n)$-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:
Area Law in 1D systems

1D Area law proved [Hastings ’07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a $\text{poly}(n)$-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:

- Does the result generalize to 2D?
Area Law in 1D systems

1D Area law proved [Hastings ’07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a \(poly(n) \)-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:

- Does the result generalize to 2D?
- Does it suggest an algorithm for finding the ground state?
"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya
"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.

- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- Apply to a tensor product state to immediately get an MPS representation.
"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.
- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- Apply to a tensor product state to immediately get an MPS representation.

How to generalize this idea?
Approximate Ground State Projection (AGSP)

Properties:
Approximate Ground State Projection (AGSP)

Properties:
- It "approximately" projects onto one vector you want (ground state).
Approximate Ground State Projection (AGSP)

Properties:

- It "approximately" projects onto one vector you want (ground state).
- It isn’t too complex.
Consequences of AGSPs

Two new results:

- ['11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.

- [’13, Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.
Consequences of AGSPs

Two new results:

- ['11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- ['13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.
Consequences of AGSPs

Two new results:

- ['11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- ['13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

\[|v> \]

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

Ground State

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

Both steps use AGSPs– the first is much more delicate.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

Entanglement rank behavior

Multiplicative for operators applied to states or product of operators.

Additive for sums of states or operators.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.
Measure of Complexity: Entanglement rank

A state on $H_1 \otimes H_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $H_1 \otimes H_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

- Multiplicative for operators applied to states or product of operators.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

- Multiplicative for operators applied to states or product of operators.
- Additive for sums of states or operators.
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

$$\Delta < \frac{1}{2}$$

- It has small entanglement rank:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

 - Δ

 - Eigenvalues of AGSP

 - Eigenvalues of H

- It has small entanglement rank:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

```
Ground state

1

Eigenvalues of AGSP

Δ

Ground state

Eigenvalues of H
```

- It has small entanglement rank:

```
\cdot \cdot \cdot
\cdots
D
\cdots
\cdot \cdot \cdot
}
K
```

Critical threshold $D\Delta < 1$.
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D \Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:
Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D \Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

\[|A\rangle |B\rangle \]

Ground State
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:
Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

![Diagram showing A and B regions cut into D pieces and ground state |A>|B> with AGSP K|A>|B> and Ground State direction]
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

|A>|B> → |A'>|B'>

Ground State
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D \Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

\[
\begin{aligned}
\text{Ground State} &\quad \begin{array}{c}
|A'| \\
\cdots \\
|B'
\end{array} \\
&\quad K^1 \\
&\quad D^1 \\
&\quad l=O(\log n)
\end{aligned}
\]
AGSP construction

AGSP will be a well chosen polynomial in the local terms H_i.

Three key ingredients:
AGSP construction

AGSP will be a well chosen polynomial in the local terms H_i.

Three key ingredients:
- truncation away from the cut,
AGSP construction

AGSP will be a well chosen polynomial in the local terms H_i.

Three key ingredients:

- truncation away from the cut,
- Chebyshev polynomials,
AGSP construction

AGSP will be a well chosen polynomial in the local terms H_i.

Three key ingredients:

- **truncation** away from the cut,
- **Chebyshev polynomials**,
- Analysis of the entanglement rank will involve **polynomial interpolation**.
Building Intuition

\(H \) has eigenvalues in \([0, n]\). So \(H/\|H\| \) has eigenvalues in \([0, 1]\).

\[\Delta \epsilon \|H\| \]
Building Intuition

H has eigenvalues in $[0, n]$. So $H/\|H\|$ has eigenvalues in $[0, 1]$.

Candidate 1: \[P(H) = (1 - H/\|H\|)^\ell \]
Building Intuition

H has eigenvalues in $[0, n]$. So $H/\|H\|$ has eigenvalues in $[0, 1]$.

Candidate 1: $P(H) = (1 - H/\|H\|)^\ell$

\[\Delta = (1 - \frac{\epsilon}{\|H\|})^\ell . \]
Building Intuition

H has eigenvalues in $[0, n]$. So $H/||H||$ has eigenvalues in $[0, 1]$.

Candidate 1: $P(H) = (1 - H/||H||)^\ell$

$$\Delta = (1 - \frac{\epsilon}{||H||})^\ell.$$

What is the entanglement rank of $P(H)$? For now, intuitive proxy: degree of polynomial.
Building Intuition

H has eigenvalues in $[0, n]$. So $H/\|H\|$ has eigenvalues in $[0, 1]$.

Candidate 1: $P(H) = (1 - H/\|H\|)^\ell$

$$\Delta = (1 - \frac{\epsilon}{\|H\|})^\ell.$$

What is the entanglement rank of $P(H)$? For now, intuitive proxy: degree of polynomial.

How can we make Δ smaller without increasing ℓ?
Building Intuition

H has eigenvalues in $[0, n]$. So $H/\|H\|$ has eigenvalues in $[0, 1]$.

Candidate 1: $P(H) = (1 - H/\|H\|)^\ell$

\[
\Delta = (1 - \frac{\epsilon}{\|H\|})^\ell.
\]

What is the entanglement rank of $P(H)$? For now, intuitive proxy: degree of polynomial.

How can we make Δ smaller without increasing ℓ?

- Smaller $\|H\|$ would be better but we don’t want to lose the 1D structure of $H \rightarrow$ **truncate** the ends to get $H' = (H_L + H_1 + H_2 + \cdots + H_s + H_R)$.

\[
\begin{array}{c}
\text{1} \\
\vdots \\
\text{s+1}
\end{array}
\]
Building intuition: using Chebyshev polynomials

How can we make Δ smaller without increasing ℓ?

- Truncate away from the cut.
Building intuition: using Chebyshev polynomials

How can we make Δ smaller without increasing ℓ?
- Truncate away from the cut.
- Choose a better polynomial.
Building intuition: using Chebyshev polynomials

How can we make Δ smaller without increasing ℓ?

- Truncate away from the cut.
- Choose a better polynomial.

Chebyshev polynomials: small in an interval:
Building intuition: using Chebyshev polynomials

Candidate 2: $C_\ell(H')$ = dilation and translation of Chebyshev applied to H':

$$K = C_\ell(H')$$

with

$$\Delta = e^{\frac{-\ell \sqrt{\epsilon}}{\sqrt{||H'||}}}. $$
Candidate 2: $C_\ell(H') = \text{dilation and translation of Chebyshev applied to } H'$:

\[K = C_\ell(H') \]

with

\[\Delta = e^{-\frac{\ell\sqrt{\epsilon}}{\sqrt{||H'||}}} \]

This will be our AGSP. How complex is it?
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum \text{(product of } H_j)\].

For a single term:
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum \text{(product of } H_j)\].

For a single term:
- Across some cut, an average number of terms are involved → \(d^{2\ell/s}\).
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:
- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s} \).
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:
- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s}.\)
- Roundtrip cost of going and coming back from center cut: \(\rightarrow d^s.\)
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:

- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s}.\)
- Roundtrip cost of going and coming back from center cut: \(\rightarrow d^s.\)

Total: \(d^{2\ell/s} + s\)
Problem: Too many \((s^\ell) \) terms in naive expansion of \((H')^\ell \).
Problem: Too many \((s^\ell)\) terms in naive expansion of \((H')^\ell\).

Need to group terms in a nice way (polynomial interpolation) but it all works out with total entanglement increase of the same order as the single term.
Putting things together: Area Law for H'

Chebyshev $C_\ell(H')$ has $\Delta \approx e^{-O(\ell/\sqrt{s})}$:

\[f(x) \Delta \epsilon ||H|| \]

Entanglement analysis yields $D \approx O(d^{\ell/s+s})$.

Choosing $\ell = s^2$ yields $D \Delta \approx e^{-s^{3/2}+s \log d} < 1$ for appropriate choice of $s \approx \log^2 d$.
Putting things together: Area Law for H'

Chebyshev $C_\ell(H')$ has $\Delta \approx e^{-O(\ell/\sqrt{s})}$:

\[
\begin{align*}
\Delta & \quad \quad f(x) \\
\varepsilon & \quad ||H||
\end{align*}
\]

Entanglement analysis yields $D \approx O(d^{\ell/s+s})$.

Chosing $\ell = s^2$ yields $D\Delta \approx e^{-s^3/2+s \log d} < 1$ for appropriate choice of $s \approx \log^2 d$.

Area Law of entanglement entropy $\log(D) = \tilde{O}\left(\frac{\log^3(d)}{\epsilon}\right)$
What about 2d? Any improvement in the entropy bound $\tilde{O}(\log^3 d \epsilon)$ would produce a sub-volume law for 2D systems.

Towards more local algorithms in 1D . . .

Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H_ℓ is $dO(\sqrt{\ell})$).

Of independent interest: robustness theorem of truncation.
What about 2d? Any improvement in the entropy bound \(\tilde{O}(\frac{\log^3 d}{\epsilon}) \) would produce a sub-volume law for 2D systems.
What about 2d? Any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$ would produce a sub-volume law for 2D systems.

Towards more local algorithms in 1D...
What about 2d? Any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$ would produce a sub-volume law for 2D systems.

Towards more local algorithms in 1D.

Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^ℓ is $d^{O(\sqrt{\ell})}$).
The Landscape

- What about 2d? Any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$ would produce a sub-volume law for 2D systems.
- Towards more local algorithms in 1D.
- Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^ℓ is $d^{O(\sqrt{\ell})}$).
- Of independent interest: robustness theorem of truncation.