AGSPs and an Area Law for Gapped 1D Systems

Itai Arad, Alexei Kitaev, Zeph Landau, Umesh Vazirani

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

E

イロト イヨト イヨト イヨト

• Each particle a d dimensional space– \mathbb{C}^d

→

э

- Each particle a d dimensional space– \mathbb{C}^d
- n particles = tensor the individual spaces together

< 67 ▶

- Each particle a d dimensional space– \mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n $\mathcal{H} = (\mathbb{C}^d)^{\otimes n}$.

3

ヘロト 人間 とくほと くほと

- Each particle a d dimensional space– \mathbb{C}^d
- *n* particles = tensor the individual spaces together
- = space of dimension d^n $\mathcal{H} = (\mathbb{C}^d)^{\otimes n}$.
- System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space

- Each particle a d dimensional space– \mathbb{C}^d
- *n* particles = tensor the individual spaces together
- = space of dimension d^n $\mathcal{H} = (\mathbb{C}^d)^{\otimes n}$.
- System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space

So even describing a state requires exponential amount of information.

・ロン ・回 と ・ ヨン ・ ヨ

A Basic Question

Can we develop a better understanding of a class of relevant states?

Itai Arad, Alexei Kitaev, Zeph Landau, Umesh Vazirani AGSPs and an Area Law for Gapped 1D Systems

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Basic Question

Can we develop a better understanding of a class of relevant states?

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

E

イロト イヨト イヨト イヨト

Local term:

- *H_i* linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local term:

- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian

• $H = \sum_{i} H_i$ an operator formed from the sum of local terms.

イロト イポト イヨト イヨト

Local term:

- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian

• $H = \sum_{i} H_{i}$ an operator formed from the sum of local terms.

Ground State

• The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.

A (B) > A (B) > A (B) >

Local term:

- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian

• $H = \sum_{i} H_{i}$ an operator formed from the sum of local terms.

Ground State

- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.
- Gap = distance between the lowest two eigenvalues.

A (B) > A (B) > A (B) >

Local term:

- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian

• $H = \sum_{i} H_{i}$ an operator formed from the sum of local terms.

Ground State

- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.
- Gap = distance between the lowest two eigenvalues.
- Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.

(日本) (日本) (日本)

The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?
- Spoiler:
 - For (gapped) 1D systems: yes

The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

Spoiler:

- For (gapped) 1D systems: yes
- For higher dimensions: ?

Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

• Total amount of information in a black hole resides on the boundary. . .

・ロット (雪) (き) (き)

Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

• Total amount of information in a black hole resides on the boundary. . .

"Complexity of system should depend only on the size of the boundary"

Became known as an Area Law.

Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

• Total amount of information in a black hole resides on the boundary. . .

"Complexity of system should depend only on the size of the boundary"

Became known as an Area Law.

['01, Vidal, Latorre, Rico, Kitaev] Area Law formalized in terms of entanglement entropy.

A (10) A (10)

1D Area law proved [Hastings '07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a poly(n)-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

1D Area law proved [Hastings '07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a poly(n)-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:

1D Area law proved [Hastings '07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a poly(n)-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:

Does the result generalize to 2D?

・ロン ・回 と ・ ヨン ・ ヨ

1D Area law proved [Hastings '07].

- Established that 1D ground states (constant gap) satisfy an area law.
- Ground states have a poly(n)-bond dimension Matrix Product State description.
- Finding ground states are therefore in NP.

Natural Questions:

- Does the result generalize to 2D?
- Does it suggest an algorithm for finding the ground state?

・ロン ・回 と ・ ヨン ・ ヨ

The birth of Approximate Ground State Projections

"If there is a problem you can't solve, then there is an easier problem you can't solve: find it." - George Polya

・ロト ・回ト ・ヨト ・ヨト

The birth of Approximate Ground State Projections

"If there is a problem you can't solve, then there is an easier problem you can't solve: find it." - George Polya

A special case: frustration-free commuting case.

- Can assume H_i are projections.
- $P = \prod_i (1 H_i)$ projects onto the ground space.
- Apply to a tensor product state to immediately get an MPS representation.

The birth of Approximate Ground State Projections

"If there is a problem you can't solve, then there is an easier problem you can't solve: find it." - George Polya

A special case: frustration-free commuting case.

- Can assume H_i are projections.
- $P = \prod_i (1 H_i)$ projects onto the ground space.
- Apply to a tensor product state to immediately get an MPS representation.

$$\bullet \bullet \bullet \bullet \cdots \bullet \bullet \bullet$$

How to generalize this idea?

・ロン ・四 と ・ 回 と ・ 回 と

AGSP

Approximate Ground State Projection (AGSP)

Properties:

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

AGSP

Approximate Ground State Projection (AGSP)

Properties:

• It "approximately" projects onto one vector you want (ground state).

< 47 ▶

AGSP

Approximate Ground State Projection (AGSP)

Properties:

- It "approximately" projects onto one vector you want (ground state).
- It isn't too complex.

Consequences of AGSPs

Two new results:

['11,'12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters
of the 1D area law which → a sub-exponential time algorithm for finding solutions.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Consequences of AGSPs

Two new results:

- ['11,'12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- ['13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.

Consequences of AGSPs

Two new results:

- ['11,'12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- ['13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

E

イロト イヨト イヨト イヨト

An area law in 2 steps

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

< 同 > < 三 > < 三 >
Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

(4月) トイヨト イヨト

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Area law proof:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

Both steps use AGSPs- the first is much more delicate.

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank C.

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank *C*.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} A_i \otimes B_i$ will be said to have entanglement rank C.

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

• Multiplicative for operators applied to states or product of operators.

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} A_i \otimes B_i$ will be said to have entanglement rank *C*.

Entanglement rank behavior

- Multiplicative for operators applied to states or product of operators.
- Additive for sums of states or operators.

We are looking for an operator K with 2 properties:

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

We are looking for an operator K with 2 properties:

• It approximately projects onto the ground state:

We are looking for an operator K with 2 properties:

• It approximately projects onto the ground state:

It has small entanglement rank:

We are looking for an operator K with 2 properties:

• It approximately projects onto the ground state:

• It has small entanglement rank:

Critical threshold $D\Delta < 1$.

3 D A 3 D

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

・ロン ・回 ・ ・ ヨン・

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

Cround	State
Giouna	State

・ロン ・回 ・ ・ ヨン・

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

(日)

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

(日)

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP *K* for which $D\Delta < 1/2$ proves that the ground state has entropy $O(\log D)$.

Proof:

イロト イポト イヨト イヨト

Three key ingredients:

E

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Three key ingredients:

• truncation away from the cut,

э

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

Three key ingredients:

- truncation away from the cut,
- Chebyshev polynomials,

Three key ingredients:

- truncation away from the cut,
- Chebyshev polynomials,
- Analysis of the entanglement rank will involve polynomial interpolation.

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

э

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: $P(H) = (1 - H/||H||)^{\ell}$

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: $P(H) = (1 - H/||H||)^{\ell}$

$$\Delta = (1 - \frac{\epsilon}{||H||})^{\ell}.$$

イロト イヨト イヨト イヨト

э

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: $P(H) = (1 - H/||H||)^{\ell}$

What is the entanglement rank of P(H)? For now, intuitive proxy: degree of polynomial.

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: $P(H) = (1 - H/||H||)^{\ell}$

What is the entanglement rank of P(H)? For now, intuitive proxy: degree of polynomial.

How can we make Δ smaller without increasing ℓ ?

H has eigenvalues in [0, n]. So H/||H|| has eigenvalues in [0, 1].

Candidate 1: $P(H) = (1 - H/||H||)^{\ell}$

What is the entanglement rank of P(H)? For now, intuitive proxy: degree of polynomial.

How can we make Δ smaller without increasing ℓ ?

• Smaller ||H|| would be better but we don't want to lose the 1D structure of H \rightarrow truncate the ends to get $H' = (H_L + H_1 + H_2 + \cdots + H_s + H_R)$.

How can we make Δ smaller without increasing ℓ ?

• Truncate away from the cut.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How can we make Δ smaller without increasing ℓ ?

- Truncate away from the cut.
- Choose a better polynomial.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

How can we make Δ smaller without increasing ℓ ?

- Truncate away from the cut.
- Choose a better polynomial.

Chebyshev polynomials: small in an interval:

イロト イポト イヨト イヨト

Candidate 2: $C_{\ell}(H')$ = dilation and translation of Chebyshev applied to H':

with

æ

イロン イヨン イヨン -

Candidate 2: $C_{\ell}(H')$ = dilation and translation of Chebyshev applied to H':

with

This will be our AGSP. How complex is it?

イロン イヨン イヨン イヨン
$$(H')^{\ell} = \sum ($$
 product of $H_j).$

For a single term:

(4月) トイヨト イヨト

$$(H')^{\ell} = \sum (\text{ product of } H_j).$$

For a single term:

• Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.

A (1) A (2) A (2) A

$$(H')^{\ell} = \sum (\text{ product of } H_j).$$

For a single term:

• Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.

(4月) トイヨト イヨト

$$(H')^{\ell} = \sum (\text{ product of } H_j).$$

For a single term:

- Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.
- Roundtrip cost of going and coming back from center cut: $\rightarrow d^s$.

$$(H')^{\ell} = \sum (\text{ product of } H_j).$$

For a single term:

- Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.
- Roundtrip cost of going and coming back from center cut: $\rightarrow d^s$.

Problem: Too many (s^{ℓ}) terms in naive expansion of $(H')^{\ell}$.

E

・ロ・・ (日・・ 日・・ 日・・

Problem: Too many (s^{ℓ}) terms in naive expansion of $(H')^{\ell}$.

Need to group terms in a nice way (polynomial interpolation) but it all works out with total entanglement increase of the same order as the single term.

・ロン ・四 と ・ 回 と ・ 回 と

Putting things together: Area Law for H'

Chebyshev $C_{\ell}(H')$ has $\Delta \approx e^{-O(\ell/\sqrt{s})}$:

Entanglement analysis yields $D \approx O(d^{\ell/s+s})$.

Chosing $\ell = s^2$ yields $D\Delta \approx e^{-s^{3/2} + s \log d} < 1$ for appropriate choice of $s \approx \log^2 d$.

Putting things together: Area Law for H'

Chebyshev $C_{\ell}(H')$ has $\Delta \approx e^{-O(\ell/\sqrt{s})}$:

Entanglement analysis yields $D \approx O(d^{\ell/s+s})$.

Chosing $\ell = s^2$ yields $D\Delta \approx e^{-s^{3/2} + s \log d} < 1$ for appropriate choice of $s \approx \log^2 d$.

Area Law of entanglement entropy $\log(D) = \tilde{O}(\frac{\log^3(d)}{\epsilon})$

æ

・ロト ・回ト ・ヨト ・ヨト

• What about 2d? Any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.

- What about 2d? Any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.
- Towards more local algorithms in 1D. . .

- What about 2d? Any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.
- Towards more local algorithms in 1D. . .
- Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^l is d^{O(\sqrt{l})}).

• □ ▶ • □ ▶ • □ ▶ • □ ▶

- What about 2d? Any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.
- Towards more local algorithms in 1D. . .
- Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^ℓ is d^{O(√ℓ)}).
- Of independent interest: robustness theorem of truncation.

ロト ・ 同ト ・ ヨト ・ ヨト