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Complex adaptation
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» Need combination of K > 2 mutations for benefit

» "Fitness valley/plateau” / “lIrreducible complexity’



Why do we care?

Fitness

Number of Mutations

Specific cases: signal-receptor, cancer, ...

Generally:
» When does evolution get stuck?
» Evolution by fittest mutations or fittest combinations?

» Space of genotypes grows exponentially with K



Problems

Population has to:
1. Produce the combination

2. Fix it (incorporate it into everyone's genome)



Start with the second problem:

When can a rare combination spread
in a population?



Selection vs recombination

Frequency x < 1 of combination changes because of selection s,
, etc

x = (s — r)x + rf(mutant allele frequencies) + stochasticity + . ..

if r>s: need f(allele fregs.) 2 x to get (x) >0
if r<s: (x)> 0 regardless of allele fregs.

(Simplest (K = 2) case: f = product of mutant allele frequencies)



Selection vs recombination: numbers

Rare combination giving s = 1% more offspring/generation can
spread faster than broken up by recombination if genes are within:

» Drosophila/human: 1Mb (~ 100 genes in Drosophila, ~ 10
genes in humans)

v

Yeast: whole genome??

v

HIV within host: whole genome?

v

E. coli: whole genome, all of the genes?

v

Cancer: whole genome



Selection vs stochasticity
Trajectories of mutant lineages n(t):

s=0.01

Number of descendants

Time in generations

Near-critical branching process
» ~ deterministic increase once n > 1/s
» If alive at t < 1/s, usually n ~ t descendants
» P(alive at time t) ~ 1/t for t <1/s
= prix(s) ~ s: If s =1%, need to produce combo ~ 100x



Now address first problem:

How can a population find an
adaptation that needs K > 2
mutations to function?



Moderate K: hard but possible?

» Have to do exhaustive search = impossible for large K
> But what about moderate K?

» Practically important: heterodimers, cancer, drug resistance. ..

» Number of potential genotypes also growing exponentially

» Population sizes, mutation rates, recombination rates vary
over many orders of magnitude — need to know which
parameter combinations are important



Simplest toy model
Focus on K = 2 mutants needed for beneficial combination,

asexual
Population size N
Find the mean time 7 for population to acquire combination*

*not the relevant statistic for cancer
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Asexual dynamical regimes already complicated
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First guess

Let x»(t) = frequency of double-mutants at time t
» x(0) =0, xa(t) = pt + sxo
= 1/7 ~s/log(s/p)
» Cheated: what if Nxp(t) < 1? How can we select on nothing?
= Need Nu? > s
» Generally: NuK > KisK-1



Deterministic for very large population sizes
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Second guess: need to treat double-mutants stochastically

> 7 ~ time to produce first successful double-mutant

» Single-mutant frequency xi(t) ~ ut, so 7 satisfies:
Np?m® ~1/s

= 1/7 ~ pvNs
» Ignored stochasticity in the single-mutants — is this ok?
» Need (x1(7)) > fluctuations

» Third guess: treat all mutants stochastically



Single-mutant lineage

1/6-

Number of descendants

1/6

Time in generations

Total # of individuals (area) = # of mutational opportunities

Prob(success) ~ (# double-mutants produced) x psix(s)

~ area X [ X prx(s)



Distribution of total progeny

1/6

Number of descendants

Time in generations

Prob(success | area) ~ area X p X pix(5s)
Critical branching process:
> If alive at t < N, usually n ~ t descendants
» P(alive at time t) ~ 1/t for t < N
= P(area > a) ~ P(alive at time v/a) ~1/+/a
» Long-tailed distribution of progeny — large fluctuations
= Prob(success) ~ 1/,/1is
Most likely path to success: rare lineage that persists for

t ~ 1/,/ps; occurs with prob~ /s
= 1/7 ~ Npu./ps



Most likely path to success: one big lineage
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Prob(success | area) ~ area x us; Prob(area > a)~ 1/1/a
So wait for one big lineage that persists for t ~ 1/, /s;
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Range of behaviors over different population sizes

Population size, N
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When is complex
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“Numbers”

To be able to “see” combo of two individually neutral point
mutations with s = 0.01, need N > 10/,/

> “neutral”: 0 < ,/11/10
» E. coli: 1 ~ 10710 = N > 106 (~ 10 in you)
» RNA virus: pp~ 1074 = N > 103



What about sex?



Sex helps for r,§ < s/2
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Putting it all together
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Conclusion

» Summary:

» Adaptation can spread without intermediate genotypes if
advantage s > recombination rate r
» Moderately complex adaptation is easy if:
» Population is large (N > 1/,/us, N > 1/p, etc)
> Intermediate genotypes not too deleterious (6 < /is, etc)
» Moderate recombination r < s
» No reason why it shouldn’t be happening in natural
populations

» Questions:

> Effect of sex for K > 27
» Interaction with simple adaptation?
» Real populations/fitness landscapes?

Thanks for listening!
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