The dynamics of complex adaptation

Daniel Weissman

Mar. 20, 2014

People

- Michael Desai, Marc Feldman, Daniel Fisher
- Joanna Masel, Meredith Trotter; Yoav Ram
- Other relevant work: Nick Barton, Shahin Rouhani; Lin Chao, Dan Weinreich; Freddy Christiansen, Sally Otto, Aviv Bergman; Rick Durrett, Deena Schmidt, Jason Schweinsberg; Lilach Hadany; Rutger Hermsen, Terry Hwa; Yoh Iwasa, Natalia Komarova, Franziska Michor, Martin Nowak; Michael Lynch; Yannis Michalakis, Monty Slatkin; Richard Neher, Boris Shraiman; Erik van Nimwegen, James Crutchfield; Maria Serra, Patsy Haccou; Arjan de Visser, Su-Chan Park, Kavita Jain, Joachim Krug;...

Complex adaptation

- ▶ Need combination of $K \ge 2$ mutations for benefit
- "Fitness valley/plateau" / "Irreducible complexity"

Why do we care?

Specific cases: signal-receptor, cancer, \dots Generally:

- When does evolution get stuck?
- Evolution by fittest mutations or fittest combinations?
 - ► Space of genotypes grows exponentially with *K*

Problems

Population has to:

- 1. Produce the combination
- 2. Fix it (incorporate it into everyone's genome)

Start with the second problem:

When can a rare combination spread in a population?

Selection vs recombination

Frequency $x \ll 1$ of combination changes because of selection s, recombination r, etc

$$\dot{x} = (s - r)x + rf(\text{mutant allele frequencies}) + \text{stochasticity} + \dots$$

$$\Rightarrow \begin{cases} \text{if } r \gg s: & \text{need } f(\text{allele freqs.}) \gtrsim x \text{ to get } \langle \dot{x} \rangle > 0 \\ \text{if } r < s: & \langle \dot{x} \rangle > 0 \text{ regardless of allele freqs.} \end{cases}$$

(Simplest (K = 2) case: $f \equiv \text{product of mutant allele frequencies}$)

Selection vs recombination: numbers

Rare combination giving s=1% more offspring/generation can spread faster than broken up by recombination if genes are within:

- ightharpoonup Drosophila/human: 1Mb (\sim 100 genes in Drosophila, \sim 10 genes in humans)
- Yeast: whole genome??
- ▶ HIV within host: whole genome?
- E. coli: whole genome, all of the genes?
- Cancer: whole genome

Selection vs stochasticity

Trajectories of mutant lineages n(t):

Near-critical branching process

- ightharpoonup \sim deterministic increase once $n \gtrsim 1/s$
- ▶ If alive at t < 1/s, usually $n \sim t$ descendants
- ▶ P(alive at time t) $\sim 1/t$ for t < 1/s
- $\Rightarrow p_{\text{fix}}(s) \sim s$: If s = 1%, need to produce combo $\sim 100 \times$

Now address first problem:

How can a population find an adaptation that needs K>2 mutations to function?

Moderate *K*: hard but possible?

- ▶ Have to do exhaustive search \Rightarrow impossible for large K
- ▶ But what about moderate *K*?
 - ▶ Practically important: heterodimers, cancer, drug resistance. . .
 - Number of potential genotypes also growing exponentially
- Population sizes, mutation rates, recombination rates vary over many orders of magnitude – need to know which parameter combinations are important

Simplest toy model

Focus on $\mathcal{K}=2$ mutants needed for beneficial combination, as exual

Population size N

Find the mean time au for population to acquire combination*

^{*} not the relevant statistic for cancer

Asexual dynamical regimes already complicated

Focus on "plateau" case: small δ

First guess

Let $x_2(t)$ = frequency of double-mutants at time t

- $x_2(0) = 0, \dot{x}_2(t) = \mu^2 t + s x_2$
- $\Rightarrow 1/\tau \sim s/\log(s/\mu)$
 - ▶ Cheated: what if $Nx_2(t) < 1$? How can we select on nothing?
- \Rightarrow Need $N\mu^2 \gg s$
 - Generally: $N\mu^K \gg K! s^{K-1}$

Deterministic for very large population sizes

Second guess: need to treat double-mutants stochastically

- ightharpoonup $au\sim$ time to produce first successful double-mutant
- ▶ Single-mutant frequency $x_1(t) \sim \mu t$, so τ satisfies:

$$N\mu^2\tau^2\sim 1/s$$

- $\Rightarrow 1/\tau \sim \mu \sqrt{\textit{Ns}}$
 - Ignored stochasticity in the single-mutants is this ok?
 - Need $\langle x_1(\tau) \rangle \gg$ fluctuations
 - ▶ Third guess: treat all mutants stochastically

Single-mutant lineage

Total # of individuals (area) = # of mutational opportunities

$$\begin{array}{l} \mathsf{Prob}(\mathsf{success}) \sim (\# \ \mathsf{double\text{-}mutants} \ \mathsf{produced}) \times p_{\mathsf{fix}}(s) \\ \sim \mathsf{area} \times \mu \times p_{\mathsf{fix}}(s) \end{array}$$

Distribution of total progeny

Prob(success | area) \sim area $\times \mu \times p_{fix}(s)$

- Critical branching process:
 - ▶ If alive at $t \ll N$, usually $n \sim t$ descendants
 - ▶ P(alive at time t) $\sim 1/t$ for $t \ll N$
 - \Rightarrow P(area > a) \sim P(alive at time \sqrt{a}) $\sim 1/\sqrt{a}$
 - Long-tailed distribution of progeny large fluctuations
 - \Rightarrow Prob(success) $\sim 1/\sqrt{\mu s}$

Most likely path to success: rare lineage that persists for $t \sim 1/\sqrt{\mu s}$; occurs with prob $\sim \sqrt{\mu s}$

$$\Rightarrow 1/\tau \sim N\mu\sqrt{\mu s}$$

Most likely path to success: one big lineage

Prob(success | area) \sim area \times μs ; Prob(area > a) \sim $1/\sqrt{a}$ So wait for one big lineage that persists for $t\sim 1/\sqrt{\mu s}$; occurs with prob $\sim \sqrt{\mu s}$

$$\Rightarrow 1/\tau \sim N\mu\sqrt{\mu s}$$

$$K > 2: 1/\tau \sim (N\mu^2)(s/\mu)^{1/2^{K-1}}$$

Range of behaviors over different population sizes

When is complex adaptation likely?

- ► At least medium-sized population: $N > 1/\sqrt{\mu s}$
- ▶ Neutral single mutants: $\delta < \sqrt{\mu s}$
 - \triangleright condition on δ relaxed for larger N

"Numbers"

To be able to "see" combo of two individually neutral point mutations with s=0.01, need $N>10/\sqrt{\mu}$

- "neutral": $\delta < \sqrt{\mu}/10$
- E. coli: $\mu \sim 10^{-10} \Rightarrow N \gtrsim 10^6 \ (\sim 10^{11} \ \text{in you})$
- RNA virus: $\mu \sim 10^{-4} \Rightarrow N \gtrsim 10^3$

What about sex?

Sex helps for $r, \delta < s/2$

Effect of recombination: Faster Slower

Putting it all together

Complicated, but understandable

Conclusion

Summary:

- Adaptation can spread without intermediate genotypes if advantage s > recombination rate r
- Moderately complex adaptation is easy if:
 - ▶ Population is large $(N > 1/\sqrt{\mu s}, N > 1/\mu, \text{ etc})$
 - Intermediate genotypes not too deleterious ($\delta < \sqrt{\mu s}$, etc)
 - ▶ Moderate recombination $r \lesssim s$
- No reason why it shouldn't be happening in natural populations
- Questions:
 - Effect of sex for K > 2?
 - Interaction with simple adaptation?
 - Real populations/fitness landscapes?

Thanks for listening!