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Motivation

Would like to design robust estimators:
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Motivation

Would like to design robust estimators:

@ Process error
@ Measurement error

@ Oultliers
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NN
The Difficulty

Simple example: mean estimation.

@ Estimate mean of distribution in R? with € fraction of outliers.
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The Difficulty

Simple example: mean estimation.

@ Estimate mean of distribution in R? with € fraction of outliers.

One dimension: 2+ dimensions: Issue: high dimensions
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The Difficulty

Suppose clean data is Gaussian:

€Ty~ N(,U,I)
——

Gaussian mean
variance 1 each coord.
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The Difficulty

Suppose clean data is Gaussian:

€Ty~ N(,U,I)
——

Gaussian mean
variance 1 each coord.

i = pll2 = V124 +12 = Vd
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Context and Overview

Recent work designs outlier-robust estimators in many settings:
@ mean estimation [DKKLMS16/17, LRV16, CSV17, SCV18, ...]
@ regression [KK18, PSBR18, DKKLSS18]
@ classification [KLS09, ABL14, DKS17], etc.

Will generalize and extend the insights:
@ general treatment of population limit in presence of outliers
@ new finite-sample analysis based on generalized KS distance
@ robustness to Wasserstein corruptions based on “friendly perturbations”

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 4/19



IS
Setting

population distribution

p

|

samples

Xty Xn

|

estimated parameters cost

6(Xi,...,X,) — L(p*,0)
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Setting

true distribution corrupted distribution
D(p*,p)<e
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Setting

true distribution corrupted distribution
D(p*,p)<e
p

|

samples

Xty X,

|

estimated parameters cost
6(Xi,...,X,) — L(p*,0)
Example D = W,: cost c(x, y) to move x to y, average cost < €.

*

@ c(x,y) =I[x # y]: TV distance (outliers)
@ c(x,y) = ||x — y||2: earthmover distance (measurement error)

@ c(x,y) = ||x — yllo: corrupted entries
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true distribution corrupted distribution
D(p*,p)<e
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*

G J
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distributional assumptions samples
X1, X
estimated parameters cost

6(Xi,...,X,) — L(p*,6)
Example D = W,: cost c(x, y) to move x to y, average cost < €.
@ c(x,y) =I[x # y]: TV distance (outliers)
@ c(x,y) = ||x — y||2: earthmover distance (measurement error)

@ c(x,y) = ||x — yllo: corrupted entries
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|
Setting

true distribution corrupted distribution
D(p*,p)<e .
p

s«

Three goals:

m
G @ large G
distributional assumptions . .
samples @ population limit
Xi,..., Xp -
J @ statistical rate
estimated parameters cost

6(Xi,...,X,) — L(p*,0)
Example D = W,: cost c(x, y) to move x to y, average cost < €.
e c¢(x,y) =I[x # y]: TV distance (outliers)
@ c(x,y) = ||x — y||2: earthmover distance (measurement error)

@ c(x,y) = ||x — yllo: corrupted entries
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Warm-up: TV, mean estimation

Warm-up problem: D= TV, L(p,0) = ||u(p) — 0|, where u(p) = Exp[X].

@ Mean estimation with outliers.
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Warm-up: TV, mean estimation

Warm-up problem: D= TV, L(p,0) = ||u(p) — 6
@ Mean estimation with outliers.

 where i(p) = Ex-p[x].

Key lemma: projection estimator. First observed by Donoho and Liu (1988).

Lemma

Suppose p* € G, and define é(p) = u(q), where q = argmin g TV(p, q).
Then L(p*, é([))) is upper-bounded by modu(G,2¢), where

modu(G,e):=  sup  [lu(p)—u(P)l.
p,P'€G,TV(p,p')<e
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Warm-up: TV, mean estimation

Warm-up problem: D= TV, L(p,0) = ||u(p) — 6
@ Mean estimation with outliers.

 where i(p) = Ex-p[x].

Key lemma: projection estimator. First observed by Donoho and Liu (1988).

Lemma

Suppose p* € G, and define é(p) = u(q), where q = argmin g TV(p, q).
Then L(p*, é([))) is upper-bounded by modu(G,2¢), where

modu(G,e):=  sup [lu(p)— (o)l
p,P'€G,TV(p,p')<e

Proof: TV(p*,q) < 2¢, and p*, q both lie in G.
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Modulus: Examples

modu(G,e):=  sup  [lu(p) —p(P)l-
p.P'€G, TV(p,p')<e
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Modulus: Examples

modu(G,e):=  sup  ||u(p)— (o).
p.P'€G, TV(p,p')<e

Example: Gaussians. G = {N(u,/) | u € R9}.
o TV(N(u, ) N(u', 1)) ~ |l — p'.
@ Hence modu(G,¢) ~ €.
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modu(G,e) = sup  u(p)—p(d)l-
p.P'€G, TV(p,p')<e
Example: Gaussians. G = {N(u,/) | u € R9}.
o TV(N(u, ) N(u', 1)) ~ |l — p'.
@ Hence modu(G,¢) ~ €.

Generalization: G = sub-Gaussians (parameter ).

@ Can show that modu(G, €) = O(ce+/log(1/¢)).

@ Key lemma: thin tails = &-perturbation can’t change mean much.
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modu(G,e) = sup  u(p)—p(d)l-
p.P'€G, TV(p,p')<e
Example: Gaussians. G = {N(u,/) | u € R9}.
o TV(N(u, ) N(u', 1)) ~ |l — p'.
@ Hence modu(G,¢) ~ €.

Generalization: G = sub-Gaussians (parameter ).

@ Can show that modu(G, €) = O(ce+/log(1/¢)).

@ Key lemma: thin tails = &-perturbation can’t change mean much.

General property: resilience.
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Resilience

Definition (Resilience)
A distribution pis (p, €)-resilient if || i(p) — p(r)|| < p whenever r < +2.

(The condition r < ;5 means that r is an &-deletion of p.)
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Resilience

Definition (Resilience)
A distribution pis (p, €)-resilient if || i(p) — p(r)|| < p whenever r < +2.

(The condition r < & means that r is an &-deletion of p.)

Lemma (Resilience = bounded modulus)
LetG(p,e) ={p|pis(p,¢€)-resilient}. Then modu(G(p,¢€),€) < 2p.

:
Hp

Proof: Let p,p’ € G(p,€).
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Resilience

Definition (Resilience)
A distribution pis (p, €)-resilient if || i(p) — p(r)|| < p whenever r < +2.

(The condition r < & means that r is an &-deletion of p.)

Lemma (Resilience = bounded modulus)
LetG(p,e) ={p|pis(p,¢€)-resilient}. Then modu(G(p,¢€),€) < 2p.

:
Hp

/

Proof: Let p,p’ € G(p, ). Define midpoint r = %. Then r < £, 2.
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Resilience

Definition (Resilience)

A distribution pis (p, €)-resilient if || i(p) — p(r)|| < p whenever r < +2.

(The condition r < ;5 means that r is an &-deletion of p.)

Lemma (Resilience = bounded modulus)
LetG(p,e) ={p|pis(p,¢€)-resilient}. Then modu(G(p,¢€),€) < 2p.

Proof: Let p,p’ € G(p, €). Define midpoint r = _min(pd)  Then < L P
)

1—TV(p,0) = q1—g>1-¢"
Thus [[u(p) —u(P)ll < lu(p) —u(r)ll+llu(e) —u()| <2p. O
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Resilience

Definition (Resilience)

A distribution pis (p, €)-resilient if || i(p) — p(r)|| < p whenever r < +2.

(The condition r < ;5 means that r is an &-deletion of p.)

Lemma (Resilience = bounded modulus)
LetG(p,e) ={p|pis(p,¢€)-resilient}. Then modu(G(p,¢€),€) < 2p.

Modulus lemma yields optimal bound in most
known cases!

@ Sub-Gaussian: p = O(e+/log(1/€))

- @ Bounded kth moments: p = O(g'~1/¥)
Proof: Let p,p’ € G(p, ). Define midpoint r = %. Then r < £, 1‘18.
Thus [[u(p) — u(P)|| < [[u(p) — u(r)l| + ln(P) —pu(r) <2p. O
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|
Finite-sample estimation

Resilience characterizes error when n = oo, what about finite samples?

Projection algorithm: take argmingcg TV(P, ).
@ Problem: if p is discrete and q is continuous, TV(p,q) = 1!
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Finite-sample estimation
Resilience characterizes error when n = oo, what about finite samples?

Projection algorithm: take argmingcg TV(P, ).

@ Problem: if p is discrete and q is continuous, TV(p,q) = 1!

Solution: relax the distance!

TVa(p,q) = sup lp(h(X) = 1) = q(h(X) = 1)]
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|
Finite-sample estimation
Resilience characterizes error when n = oo, what about finite samples?

Projection algorithm: take argmingcg TV(P, ).

@ Problem: if p is discrete and q is continuous, TV(p,q) = 1!

Solution: relax the distance!

TVa(p,q) = sup lp(h(X) = 1) = q(h(X) = 1)]

Lemmas:

@ Modulus is still bounded if we replace TV with ?\//H, where
H={x (v,x)| veR}.

° TVH p,pn) = O(+/ve(H)/n) [Devroye and Lugosi]

Upshot: projection still works, but use TVH instead of TV.
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General TV case

Focused so far on mean estimation. Now generalize to arbitrary loss.
@ Stick with D =TV, but replace ||u(p) — 6| with arbitrary L(p, 6).
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General TV case

Focused so far on mean estimation. Now generalize to arbitrary loss.
@ Stick with D =TV, but replace ||u(p) — 6| with arbitrary L(p, 6).

Modulus still gives bound:

Lemma

Suppose p* € G, and define é(p) = 0%(q), where q = argmingg TV(p,q).
Then L(p*, é(f))) is upper-bounded by modu(G, 2¢€), where

modu(g, €) := sup L(p,0"(p))-
p.P'€G,TV(p,p')<e

Can we generalize resilience to this setting?
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Resilience: Arbitrary loss
Recall before: p s resilient if || (p) — u(r)| small whenever r < 2.
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Resilience: Arbitrary loss
Recall before: p s resilient if || (p) — (r) || small whenever r < +2.

Now two conditions: G|, G;.

Gi(p1.€) ={p | L(r,6"(p)) < p1 whenever r < £},
G1(p1,p2,€) = {p| L(p,6) < p> whenever L(r,0) < pyand r < :2.}.
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Resilience: Arbitrary loss
Recall before: pis resilient if ||i(p) — i (r)|| small whenever r < -2

Now two conditions: G|, G;.
Gy(p1,€) = {p| L(r,6%(p)) < py whenever r < 2=},
Gr(p1,p2.€) ={p| L(p,0) < p> whenever L(r,0) < p; and r < 2-}.

Lemma (Resilience — small modulus)
LetG =G (p1,€)NG1(p1,p2,€). Thenmodu(G,€) < p,.

p)<

p,

b D(

r< \ /g
. _min(pp)

1=TV(p,p')

p e Gy
P eG = B(r,0°(p')) < pr = L(p,0%(p')) < p2
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Example: Linear regression

Linear regression: L(p,6) = E(y )pl(y — 07 x)?] = E(x y)~pl(y — (6%) " x)?].

Proposition (Sufficient conditions for linear regression)

LetZ =Y —(0*)" X be the regression error under the true parameters 6*.
Suppose that

E[Z2K] <1 and E[(v' X)?] < 2 E[(v" X)?]* Vv € RC.

Then p* is resilient with p, = O(t2€2~2/K).
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Example: Linear regression

Linear regression: L(p,6) = E(y )pl(y — 07 x)?] = E(x y)~pl(y — (6%) " x)?].

Proposition (Sufficient conditions for linear regression)

LetZ =Y —(8*)" X be the regression error under the true parameters 6*.
Suppose that

E[Z?] < 1 and E[(v X)?¥] < E[(v" X)?]* Vv e RC.
Then p* is resilient with p, = O(72€2~2/K).

Comparisons:

@ Delete points to minimize regression error (Klivans-Kothari-Mekha 2018):
suboptimal error £~ 1/k

@ Diakonikolas-Kong-Stewart (2019) delete points to enforce moment
condition: requires isotropy + 4th moments similar to Gaussian
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Example: Covariance estimation

Given distribution with mean i, and covariance .
Goal: output i, 2 such that

11—, 255, 2 lp and ||, (1o — 1) 12

are both small.
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Example: Covariance estimation

Given distribution with mean i, and covariance .
Goal: output i, 2 such that

11=%5"255, " 2 and |52 (p — 1) 2
are both small.
Proposition (Sufficient condition for covariance estimation)

Suppose thatIE[(vTZ,;VZ(X—up))Q"] < 02K||v||2k Vv € RY. Then we can
output ¥, U such that

11— 5,255, "%, < O(ce' /%) and (1)
—1/2 —
1= 2 (1 — 1) o < O(cE"~1/2%). )
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Extension to other perturbations (W;)

Recap: modulus determines robustness, resilience is sufficient condition for
robustness in TV case.
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Extension to other perturbations (W;)

Recap: modulus determines robustness, resilience is sufficient condition for
robustness in TV case.

Next extend results from TV to other W, (transportation) distances.
@ Recall W,(p,q) is cost to “move” p to q if moving x — y costs c(x, y).
e Formally: We(p,q) = minz{Ez[c(x,y)] | m(x) = p(x),7(y) = q(y)}-
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Extension to other perturbations (W)

Recap: modulus determines robustness, resilience is sufficient condition for
robustness in TV case.

Next extend results from TV to other W, (transportation) distances.
@ Recall W,(p,q) is cost to “move” p to q if moving x — y costs c(x, y).
o Formally: W,(p,q) = ming{Ex[c(x.y)] | 7(x) = p(x).(y) = q(y)}.

Key midpoint property of resilience: if TV(p,q) < €, there exists midpoint r
such that r < £ and r < L.

@ How to generalize to W,?
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Friendly perturbations
Consider one-dimensional case:

=] F E DAy
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Friendly perturbations

Consider one-dimensional case:

Hp Hr
Delete e-mass: Up — U;.

=] F E DAy
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Friendly perturbations

Consider one-dimensional case:

Hp Hr

Delete e-mass: Up — U;.

@ Alternative: move £-mass towards L,.

=] F = E E DA
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IS
Friendly perturbations

Consider one-dimensional case:

Hp Hr
Delete e-mass: Up — U;.
@ Alternative: move £-mass towards L,.
Doesn’t reference deletion, defined for any W,!
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Friendly perturbation: formal definition

Definition (Friendly perturbation)

For a distribution p over X, fix a function f: X — R. A distribution r is an
€-friendly perturbation of p if there is a coupling 7 between p and r such that:
@ The cost Ex[c(x,y)] is at most &.

@ All points move towards the mean of r: f(y) is between f(x) and E,[f(x)]
almost surely.

o

Hp Hr

Zhu, Jiao, Steinhardt (UC Berkeley)
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Friendly perturbation: formal definition

Definition (Friendly perturbation)

For a distribution p over X, fix a function f: X — R. A distribution r is an
€-friendly perturbation of p if there is a coupling 7 between p and r such that:
@ The cost Ex[c(x,y)] is at most &.

@ All points move towards the mean of r: f(y) is between f(x) and E,[f(x)]
almost surely.

o

Midpoint lemma:
Proof by picture

L S|
Hp Hr Hp
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Friendly perturbation: formal definition

Definition (Friendly perturbation)

For a distribution p over X, fix a function f: X — R. A distribution r is an
€-friendly perturbation of p if there is a coupling 7 between p and r such that:
@ The cost Ex[c(x,y)] is at most &.

@ All points move towards the mean of r: f(y) is between f(x) and E,[f(x)]
almost surely.

o

Midpoint lemma:
Proof by picture

‘ |
Hp Hr Hp

Lemma: if X has “nice topology”, any p and p’ with W,(p,p’) < € have an
e-friendly midpoint.
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Resilience for W,

Definition (Resilience for fixed f)

For any distribution p, we say that p is (p, €, f)-resilient if every e-friendly
perturbation r of p has |E,[f] —E,[f]| < p.
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Resilience for W,

Definition (Resilience for fixed f)

For any distribution p, we say that p is (p, €, f)-resilient if every e-friendly
perturbation r of p has |E,[f] —E,[f]| < p.

How to extend from one-dimensional f to arbitrary loss L(p, 6)?
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Resilience for W,

Definition (Resilience for fixed f)

For any distribution p, we say that p is (p, €, f)-resilient if every e-friendly
perturbation r of p has |E,[f] —E,[f]| < p.

How to extend from one-dimensional f to arbitrary loss L(p, 6)?

Answer: if L(p, 0) is convex in p, use Fenchel-Moreau theorem:

L(p,0) = sup Ep[f] — L*(f,0)
feFy

Then apply to each f in Fenchel-Moreau representation.
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Example: Linear regression

1—1/k

Under roughly similar assumptions to TV case, get €
bounded 2(k + 1) moments.

error assuming

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 18/19



Example: Linear regression

Under roughly similar assumptions to TV case, get &'~/

bounded 2(k + 1) moments.

error assuming

e Error £'~"/k likely suboptimal (should be £272/¥),
@ k-1 vs k in moment condition is typical behavior for W; vs TV
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Example: Linear regression

Under roughly similar assumptions to TV case, get e'=1/k error assuming
bounded 2(k + 1) moments.

@ Error '/k likely suboptimal (should be £22/K).

@ k41 vs k in moment condition is typical behavior for W; vs TV

Finite-sample analysis:
@ Can construct Wy, analogous to TVy.
@ However, construction more complex and doesn’t always work.

e Can at least show Wy (p,pn) = O((d/n)/2+(1/n)'/3) when p has
bounded 3rd moments.
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Summary

@ Resilience criterion bounds population limit for TV perturbations.
° ﬁ/g gives finite-sample analysis for projection algorithm.

@ Friendly perturbations allow us to generalize resilience to
W,-perturbations.

@ Many open questions for W, case!
o Better finite-sample analysis.
o Efficient algorithms.
e Beyond W,?
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