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Motivation

Would like to design robust estimators:

Process error

Measurement error

Outliers

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 2 / 19



Motivation

Would like to design robust estimators:

Process error

Measurement error

Outliers

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 2 / 19



Motivation

Would like to design robust estimators:

Process error

Measurement error

Outliers

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 2 / 19



Motivation

Would like to design robust estimators:

Process error

Measurement error

Outliers

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 2 / 19



The Difficulty

Simple example: mean estimation.

Estimate mean of distribution in Rd with ε fraction of outliers.
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Context and Overview

Recent work designs outlier-robust estimators in many settings:

mean estimation [DKKLMS16/17, LRV16, CSV17, SCV18, ...]

regression [KK18, PSBR18, DKKLSS18]

classification [KLS09, ABL14, DKS17], etc.

Will generalize and extend the insights:

general treatment of population limit in presence of outliers

new finite-sample analysis based on generalized KS distance

robustness to Wasserstein corruptions based on “friendly perturbations”
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Setting

p

p̃p∗
true distribution

D(p∗,p)≤ ε

∈

G
distributional assumptions

corrupted distribution

population distribution

X1, . . . ,Xn

samples

θ̂(X1, . . . ,Xn)

estimated parameters

L(p∗, θ̂)

cost

Three goals:

large G
population limit

statistical rate

Example D = Wc : cost c(x ,y) to move x to y , average cost ≤ ε .

c(x ,y) = I[x 6= y ]: TV distance (outliers)

c(x ,y) = ‖x− y‖2: earthmover distance (measurement error)

c(x ,y) = ‖x− y‖0: corrupted entries
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Warm-up: TV, mean estimation

Warm-up problem: D = TV , L(p,θ) = ‖µ(p)−θ‖, where µ(p) = Ex∼p[x].

Mean estimation with outliers.

Key lemma: projection estimator. First observed by Donoho and Liu (1988).

Lemma

Suppose p∗ ∈ G, and define θ̂(p) = µ(q), where q = argminq∈G TV (p,q).

Then L(p∗, θ̂(p̃)) is upper-bounded by modu(G,2ε), where

modu(G,ε) := sup
p,p′∈G,TV(p,p′)≤ε

‖µ(p)−µ(p′)‖.

Proof: TV (p∗,q)≤ 2ε , and p∗,q both lie in G.
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Modulus: Examples

modu(G,ε) := sup
p,p′∈G,TV(p,p′)≤ε

‖µ(p)−µ(p′)‖.

Example: Gaussians. G = {N (µ, I) | µ ∈ Rd}.
TV(N (µ, I),N (µ ′, I))≈ ‖µ−µ ′‖2.

Hence modu(G,ε)≈ ε .

Generalization: G = sub-Gaussians (parameter σ ).

Can show that modu(G,ε) =O(σε
√

log(1/ε)).

Key lemma: thin tails =⇒ ε-perturbation can’t change mean much.

General property: resilience.
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Resilience

Definition (Resilience)

A distribution p is (ρ,ε)-resilient if ‖µ(p)−µ(r)‖ ≤ ρ whenever r ≤ p
1−ε

.

(The condition r ≤ p
1−ε

means that r is an ε-deletion of p.)

Lemma (Resilience =⇒ bounded modulus)

Let G(ρ,ε) = {p | p is (ρ,ε)-resilient}. Then modu(G(ρ,ε),ε)≤ 2ρ .

µp µp′µr

Modulus lemma yields optimal bound in most
known cases!

Sub-Gaussian: ρ =O(ε
√

log(1/ε))

Bounded k th moments: ρ =O(ε1−1/k )

Proof: Let p,p′ ∈ G(ρ,ε). Define midpoint r = min(p,p′)
1−TV(p,p′) . Then r ≤ p

1−ε
, p′

1−ε
.

Thus ‖µ(p)−µ(p′)‖ ≤ ‖µ(p)−µ(r)‖+‖µ(p′)−µ(r)‖ ≤ 2ρ .
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Finite-sample estimation

Resilience characterizes error when n = ∞, what about finite samples?

Projection algorithm: take argminq∈G TV(p̃,q).

Problem: if p̃ is discrete and q is continuous, TV(p̃,q) = 1!

Solution: relax the distance!

T̃VH(p,q) = sup
t∈R,h∈H

|p(h(X)≥ t)−q(h(X)≥ t)|.

Lemmas:

Modulus is still bounded if we replace TV with T̃VH, where
H= {x 7→ 〈v ,x〉 | v ∈ Rd}.
T̃VH(p, p̂n) =O(

√
vc(H)/n) [Devroye and Lugosi]

Upshot: projection still works, but use T̃VH instead of TV.
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General TV case

Focused so far on mean estimation. Now generalize to arbitrary loss.

Stick with D = TV, but replace ‖µ(p)−θ‖ with arbitrary L(p,θ).

Modulus still gives bound:

Lemma

Suppose p∗ ∈ G, and define θ̂(p) = θ ∗(q), where q = argminq∈G TV (p,q).

Then L(p∗, θ̂(p̃)) is upper-bounded by modu(G,2ε), where

modu(G,ε) := sup
p,p′∈G,TV(p,p′)≤ε

L(p,θ ∗(p′)).

Can we generalize resilience to this setting?
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Resilience: Arbitrary loss
Recall before: p is resilient if ‖µ(p)−µ(r)‖ small whenever r ≤ p

1−ε
.

Now two conditions: G↓, G↑.

G↓(ρ1,ε) = {p | L(r ,θ ∗(p))≤ ρ1 whenever r ≤ p
1−ε
},

G↑(ρ1,ρ2,ε) = {p | L(p,θ)≤ ρ2 whenever L(r ,θ)≤ ρ1 and r ≤ p
1−ε
}.

Lemma (Resilience =⇒ small modulus)

Let G = G↓(ρ1,ε)∩G↑(ρ1,ρ2,ε). Then modu(G,ε)≤ ρ2.

Proof: p p′
D(p,p′)≤ ε

r = min(p,p′)
1−TV(p,p′)

r ≤ p
1−ε r ≤ p′

1−ε

p′ ∈ G↓ B(r ,θ ∗(p′))≤ ρ1 L(p,θ ∗(p′))≤ ρ2
p ∈ G↑
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Example: Linear regression

Linear regression: L(p,θ) = E(x ,y)∼p[(y−θ>x)2]−E(x ,y)∼p[(y− (θ ∗)>x)2].

Proposition (Sufficient conditions for linear regression)

Let Z = Y − (θ ∗)>X be the regression error under the true parameters θ ∗.
Suppose that

E[Z 2k ]≤ 1 and E[(v>X)2k ]≤ τ
2kE[(v>X)2]k ∀v ∈ Rd .

Then p∗ is resilient with ρ2 =O(τ2ε2−2/k ).

Comparisons:

Delete points to minimize regression error (Klivans-Kothari-Mekha 2018):
suboptimal error ε1−1/k

Diakonikolas-Kong-Stewart (2019) delete points to enforce moment
condition: requires isotropy + 4th moments similar to Gaussian
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Comparisons:

Delete points to minimize regression error (Klivans-Kothari-Mekha 2018):
suboptimal error ε1−1/k

Diakonikolas-Kong-Stewart (2019) delete points to enforce moment
condition: requires isotropy + 4th moments similar to Gaussian

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 12 / 19



Example: Covariance estimation

Given distribution with mean µp and covariance Σp.
Goal: output µ , Σ such that

‖I−Σ
−1/2
p ΣΣ

−1/2
p ‖2 and ‖Σ−1/2

p (µp−µ)‖2

are both small.

Proposition (Sufficient condition for covariance estimation)

Suppose that E[(v>Σ
−1/2
p (X −µp))2k ]≤ σ2k‖v‖2k

2 ∀v ∈ Rd . Then we can
output Σ, µ such that

‖I−Σ
−1/2
p ΣΣ

−1/2
p ‖2 ≤O(σε

1−1/k ) and (1)

‖Σ−1/2
p (µp−µ)‖2 ≤O(σε

1−1/2k ). (2)

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 13 / 19



Example: Covariance estimation

Given distribution with mean µp and covariance Σp.
Goal: output µ , Σ such that

‖I−Σ
−1/2
p ΣΣ

−1/2
p ‖2 and ‖Σ−1/2

p (µp−µ)‖2

are both small.

Proposition (Sufficient condition for covariance estimation)

Suppose that E[(v>Σ
−1/2
p (X −µp))2k ]≤ σ2k‖v‖2k

2 ∀v ∈ Rd . Then we can
output Σ, µ such that

‖I−Σ
−1/2
p ΣΣ

−1/2
p ‖2 ≤O(σε

1−1/k ) and (1)

‖Σ−1/2
p (µp−µ)‖2 ≤O(σε

1−1/2k ). (2)

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 13 / 19



Extension to other perturbations (Wc)

Recap: modulus determines robustness, resilience is sufficient condition for
robustness in TV case.

Next extend results from TV to other Wc (transportation) distances.

Recall Wc(p,q) is cost to “move” p to q if moving x → y costs c(x ,y).

Formally: Wc(p,q) = minπ{Eπ [c(x ,y)] | π(x) = p(x),π(y) = q(y)}.

Key midpoint property of resilience: if TV(p,q)≤ ε , there exists midpoint r
such that r ≤ p

1−ε
and r ≤ q

1−ε
.

How to generalize to Wc?
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Friendly perturbations

Consider one-dimensional case:

µpµp µr

Delete ε-mass: µp→ µr .

Alternative: move ε-mass towards µr .

Doesn’t reference deletion, defined for any Wc !
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Friendly perturbation: formal definition

Definition (Friendly perturbation)
For a distribution p over X , fix a function f : X → R. A distribution r is an
ε-friendly perturbation of p if there is a coupling π between p and r such that:

The cost Eπ [c(x ,y)] is at most ε .

All points move towards the mean of r : f (y) is between f (x) and Er [f (x)]
almost surely.

µp µrµr µp′

Midpoint lemma:
Proof by picture

Lemma: if X has “nice topology”, any p and p′ with Wc(p,p′)≤ ε have an
ε-friendly midpoint.

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 16 / 19



Friendly perturbation: formal definition

Definition (Friendly perturbation)
For a distribution p over X , fix a function f : X → R. A distribution r is an
ε-friendly perturbation of p if there is a coupling π between p and r such that:

The cost Eπ [c(x ,y)] is at most ε .

All points move towards the mean of r : f (y) is between f (x) and Er [f (x)]
almost surely.

µp µrµr µp′

Midpoint lemma:
Proof by picture

Lemma: if X has “nice topology”, any p and p′ with Wc(p,p′)≤ ε have an
ε-friendly midpoint.

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 16 / 19



Friendly perturbation: formal definition

Definition (Friendly perturbation)
For a distribution p over X , fix a function f : X → R. A distribution r is an
ε-friendly perturbation of p if there is a coupling π between p and r such that:

The cost Eπ [c(x ,y)] is at most ε .

All points move towards the mean of r : f (y) is between f (x) and Er [f (x)]
almost surely.

µp µrµr µp′

Midpoint lemma:
Proof by picture

Lemma: if X has “nice topology”, any p and p′ with Wc(p,p′)≤ ε have an
ε-friendly midpoint.

Zhu, Jiao, Steinhardt (UC Berkeley) Generalized Resilience and Robust Statistics August 8, 2019 16 / 19



Resilience for Wc

Definition (Resilience for fixed f )

For any distribution p, we say that p is (ρ,ε, f )-resilient if every ε-friendly
perturbation r of p has |Er [f ]−Ep[f ]| ≤ ρ .

How to extend from one-dimensional f to arbitrary loss L(p,θ)?

Answer: if L(p,θ) is convex in p, use Fenchel-Moreau theorem:

L(p,θ) = sup
f∈Fθ

Ep[f ]−L∗(f ,θ)

Then apply to each f in Fenchel-Moreau representation.
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Example: Linear regression

Under roughly similar assumptions to TV case, get ε1−1/k error assuming
bounded 2(k + 1) moments.

Error ε1−1/k likely suboptimal (should be ε2−2/k ).

k + 1 vs k in moment condition is typical behavior for W1 vs TV

Finite-sample analysis:

Can construct W̃H analogous to T̃VH.

However, construction more complex and doesn’t always work.

Can at least show W̃H(p, p̂n) =O((d/n)1/2 + (1/n)1/3) when p has
bounded 3rd moments.
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Summary

Resilience criterion bounds population limit for TV perturbations.

T̃VH gives finite-sample analysis for projection algorithm.

Friendly perturbations allow us to generalize resilience to
Wc-perturbations.

Many open questions for Wc case!
Better finite-sample analysis.
Efficient algorithms.
Beyond Wc?
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