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Reinforcement learning achieves phenomenal 
empirical successes



What if the data/trial is limited and costly



How many samples are needed to learn an 90%-optimal policy?  

How much regret to pay when learning to control on-the-fly?



Markov decision process

• A finite set of states 𝑆
• A finite set of actions 𝐴
• Reward is given at each state-action 

pair (𝑠,𝑎):
𝑟(𝑠,𝑎)∈[0,1]

• State transits to 𝑠′ with prob. 
      𝑃(𝑠′|𝑠,𝑎)

• Find a best policy 𝜋:𝑆→𝐴 such that

• 𝛾∈(0,1) is a discount factor

max
π

vπ = 𝔼π [
∞

∑
t=0

γtr(st, at)]

We call if “tabular MDP” if there is no structural knowledge at all



What does a sample mean?

Samples are state-transition triplets (s,a,s’)



Use empirical risk minimization for RL?

Data: Sample state-transition triplets 


Step 1: Estimate the transition model and compute empirical transition 
density


Step 2: Solve the empirical MDP problem by dynamic programming 


• Hard to analyze: tons of dependencies and nonlinearity [AMK13, AKY19]


• Hard to implement: it is a model-based approach (large memory 
overhead + computation bottleneck)


• Which are model-free: Q-learning, actor-critic, policy gradients

̂π = argmaxπ𝔼π
̂P [

∞

∑
t=0

γtr(st)]

̂P(s′� ∣ s, s) =
# times (s, a, s′�) appeared

# times (s, a) appeared

{(s, a, s′�)}



Prior efforts: algorithms and sample 
complexity results

1/(1-γ)=1+γ+γ2+… is the effective horizon 
Lots of efforts about 1/(1-γ)



Prior efforts: algorithms and sample 
complexity results

1/(1-γ)=1+γ+γ2+… is the effective horizon 
Lots of efforts about 1/(1-γ)

(slide stolen from L Yang)



Complexity and Regret for Tabular MDP

• Information-theoretical limit (Azar et al. 2013): Any method finding 
an ε-optimal policy with probability 2/3 needs at least sample size


• The optimal sampling-based algorithm (with Sidford, Yang, Ye, 
2018, Agarwal et al, 2019):  With a generative model, finding ε-
optimal policy with probability 1-δ using sample size 


Statistical complexity of RL (in this basic setting) is finally well 
understood 

Ω ( |SA |
(1 − γ)3ϵ2 )

O ( |SA |
(1 − γ)3ϵ2

log
1
δ )



S is way too big

Suppose states are vectors of dimension d


Vanilla discretization of state space gives |S| = 2d


Size of policy space = |A||S|


Log of policy space size = |S| log(|A|) > 2d



Rethinking Bellman equation

Bellman equation is the optimality principal for MDP (in the average-reward 
case, where γ=1)


• The max operation applies to every state-action pair -> nonlinearity + high 
dim


Bellman equation is equivalent to a bilinear saddle point problem (Wang 
2017)


• Strong duality between value function and invariant measure


• SA x S linear program

v̄* + v*(s) = maxa { ∑
s′ �∈𝒮

Pa(s, s′�)v*(s′�) + ra(s)}, ∀s ∈ 𝒮

min
v

max
μ∈Δ {L(v, μ) = ∑

a
(μT

a ((I − Pa)v + ra))}
value function stationary state-action distribution



State Feature Map

• Suppose we are given a state feature map


• Can we do better?


• Tetris can be solved well using 22 features 
and linear models


• Feature 1: Height of wall


• Feature 2: Number of holes

state ↦ [ϕ1(state), …, ϕN(state)] ∈ ℝN



Representing value function using linear 
combination of features

• The value function of a policy is the expected cumulative reward as the 
initial state varies:


• Suppose that the high-dimensional value vector admits a linear model:


• Value of                    =      w1 x Height of Wall + w2 x # Holes + …


• Linear model for value function approximation has lots of limitations (later)

Vπ : 𝒮 → ℝ, Vπ(s) = 𝔼π [
H

∑
t=0

r(st, at) ∣ s0 = s]

Vπ(s) ≈ w1ϕ1(s) + … + wNϕN(s)



Reducing Bellman equation using features

v( ⋅ ) ≈
rS

∑
i=1

wiϕi( ⋅ )

μ(s, a) ≈
rS

∑
i=1

rA

∑
j=1

uijϕi(s)ψj(a)
{min

v∈Span(Φ)
max

μ∈Span(ΦΨT)
L(v, μ)

min
v

max
μ∈Δ {L(v, μ) = ∑

a
(μT

a ((I − Pa)v + ra))} High-dim{
Bellman saddle point: 

v̄* + v*(s) = maxa { ∑
s′ �∈𝒮

Pa(s, s′�)v*(s′�) + ra(s)}, ∀s
Bellman eq:  
   High-dim

   Nonlinear{

min
w∈ℜrS

max
u∈ℜrA ∑

a
(Ψa*uT

a ΦT(I − Pa)Φṽ + ra) { Low-dim

Convex-concave

Strong duality

Parametric



Sample complexity of RL with features

Suppose that good state and action features are known 

• For average-reward RL, a primal-dual policy learning method finds the 
optimal policy using sample size (with YC, LL, 2018)


where C is polynomial in mixing and ergodicity parameters


• Sample-Optimal Parametric Q-Learning for discounted RL（with LY, 2019)


• Matching the information-theoretic minimax lower bound.


• Reduced S to NS NA (# state-action features)

Θ (C ⋅
|NSNA |

ϵ2 )

Θ ( |NSNA |
ϵ2(1 − γ)3 )



Learning to Control On-The-Fly

• Prior sample complexity analysis assumes a generative model: 


One can draw transitions from any pre-specified state-action pair (enough 
exploration guaranteed)


Sample-optimal algorithms draw the same number of samples per state or per 
representative state (w. Sidford,Yang,Ye18, w. Yang Jia 19, Agarwal metal 19)


• In practice, we have to learn on-the-fly:


H-horizon stochastic control problem, starting at a fixed state s0


A learning algorithm learns to control by repeatedly acting in the real world


It would act in realtime, observe state transitions, and adapt its control policy 
every episode


Impossible to visit all states frequently



Episodic Reinforcement Learning

• Regret of a learning algorithm 

where T= NH, and the sample state-action path                     is generated on-the-fly 
by the learning algorithm 


• Challenges: 

Long-term effect of a single wrong decision 


Data dependency: Almost all the transition samples are dependent 


Exploration-exploitation tradeoff


More complicated than multi-arm bandit (naive reduction yields A^S arms) 

Regret𝒦(T ) = 𝔼𝒦[
N

∑
n=1

(V*(s0) −
H

∑
h=1

r(sn,h, an,h))],

𝒦

𝒦

{sn,h, an,h}



Hilbert space embedding of transition kernel

• Suppose we are given state-action feature maps 

• Assume that the unknown transition kernel can be fully embedded in the 
feature space, i.e., there exists a transition core M* such that


• The decomposition structure is equivalent to using linear model for value 
function approximation with 0 Bellman error (w LY 2019)


• Low-dim assumption on V is closely related to low-dim assumption on P

P(s′� | s, a) = ϕ(s, a)⊤M*ψ(s′�) .

state, action ↦ [ϕ1(state, action), …, ϕd(state, action)] ∈ ℝN

state ↦ [ψ1(state), …, ψd′�(state)] ∈ ℝd′�



The MatrixRL Algorithm

• At the beginning of the (n+1)th episode, suppose the samples collected so far are


• We will use their corresponding feature vectors.


• Estimate the transition core via matrix ridge regression


• However, using empirical estimate greedily would lead to poor exploration


• Borrow ideas from linear bandit (Dani et al 08, Chu et al 11, …) 

Mn = arg min
M ∑

n′�<n,h≤H

ψ⊤
n′�,hK−1

ψ − ϕ⊤
n′�,hM

2

2

+ ∥M∥2
F.

{(sn,h, an,h), sn,h+1} → {ϕn,h, ψn,h} := {ϕ(sn,h, an,h), ψ(sn,h+1)}

KψWhere           is a precomputed matrix



The MatrixRL Algorithm

• Construct a matrix confidence ball around the estimated transition core 


• Find optimistic Q-function estimate


where the value estimate is given by


• In the new episode, choose actions greedily by 


• The optimistic Q encourage exploration: (s,a) with higher uncertainty gets 
tried more often

Qn,h(s, a) = r(s, a) + max
M∈Bn

ϕ(s, a)⊤MΨ⊤Vn,h+1, Qn,H = 0

Vn,h(s) = Π[0,H][ max
a

Qn,h(s, a)]
max

a
Qn,h(s, a)

Bn = {M ∈ ℝd×d′� : ∥(An)1/2(M − Mn)∥F ≤ βn}

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)



Regret Analysis

• Theorem Under the embedding assumption and regularity 
assumptions, the T-time-step regret of MatrixRL satisfies with high 
probability thats


• First polynomial regret bound for RL in feature space. 


• Independent of S


• Minimax optimal? 


• It is optimal in d and T, close to optimal in H

Regret(T ) ≤ C ⋅ dH2 ⋅ T,

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)



Τhe special case where Ψ= I

• A nonparametric model where P cannot be encoded using a small # of 
parameters


• It only needs features to describe left principal space of P 


• In this case, MatrixRL has closed-form updates: 

• Theorem Under the embedding assumption and if ψ= I, the T-time-step 
regret of MatrixBandit is


•

P(s′� | s, a) = ϕ(s, a)⊤M*ψ(s′�), where  ψ = I .

Qn,h(s, a) = r(s, a) + ϕ(s, a)⊤MnVn,h+1 + C βn ϕT
n,hA−1

n ϕn,h, Qn,H = 0

Regret(T ) ≤ C ⋅ d3/2H2 ⋅ T,



Suppose that we are given a kernel function over the state-action space  
instead of explicit feature maps


• RL in kernel space? (Ormoneit & San 02, Ormoneit & Glynn 02, …)


• Kernel presents a very flexible framework for extrapolating information 
from seen states to unseen states 


• We consider the generic assumption that the transition kernel belongs 
to the product Hilbert spaces spanned by these features: 


K((s, a), (s′�, a′�))

P ∈ ℋϕ × ℋψ

From feature to kernel



MatrixRL has a equivalent kernelization

Regret(T ) ≤ O(∥P∥ℋϕ×ℋψ
⋅ log(T ) ⋅ d̃ ⋅ H2 ⋅ T)Theorem

RL regret in kernel space depends on Hilbert space norm of the transition kernel and 
effective dimension of the kernel space

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, w. Lin Yang, 2019)



Pros and cons for using features for RL

• Deep connection to regression. Theoretical guarantee


• Easy to implement. Not many parameters to tune.


• Rely on good known features


• Pathological policy oscillation and chattering


• Not as rich as nonlinear models


• Not very surprising that good features can reduce the dimensionality of RL … Can we 
do well without known features?  

• Many works in this domain, eg state representation learning (Lesort et al 08), latent state 
encoding (Du et al 19)

(Bertsekas 07)



What could be good state features?

• Given a stationary Markov chain with transition operator P and one-
step reward function r, the average-reward difference-of-value 
function is given by 


• Suppose that P admits the decomposition


• Both the value v and the invariant measure ξ lie in low-dim spaces:


Good value features φ shall span the column space of P

v = lim
T→∞

(r + Pr + P2r + ⋯ + PTr − (Tr̄) ⋅ 1) .

P = ΦP̃ΨT

v ∈ Span(Φ) ξ ∈ Span(Ψ)



• Consider a state-transition trajectory


• Spectral decomposition of the transition operator 


Markov features 

•          ’s          ’s are natural features for RL


• Reward-independent 


Estimate                    from data to “preserve dynamics” (approximate leading singular functions of 
P) 

• Statistical error bounds and information-theoretic limits proved (w AZ 2018, w YD, KZ, 2018, w YS, 
YD, GH, 2019)  

Learning features automatically from time 
series data

ℙ(Xt+1 ∣ Xt) ≈
r

∑
i

ui(Xt)vi(Xt+1)

ui( ⋅ ) vi( ⋅ )

X1, X2, ⋯, Xt, ⋯

max
Ψ:X↦ℝr,Ψj∈H

Tr (∫ Ψ(x)p(x, y)Ψ(y)Tdxdy)
x → Ψ(x)



Kernelized state embedding from random features

Data: A high-dimensional time series and a kernel space with K


Solution: 

1. Open up the kernel space and approximate with random features


 


2. Estimate a projection matrix of the transition kernel onto the K space


3. Find the best rank-r approximation


Output: Low-dim state embedding (a kernelized diffusion map)


• Minimax-optimal error bounds for recovering P proved in (w Sun, Duan, Gong 2019)

X1, X2, ⋯, Xt, ⋯, where Xt ∈ ℝd

Q̂ =
1
T

T

∑
t=1

ϕ(Xt)ϕ(Xt+1)⊤

Q̂ = ÛΛ ̂VT, Q̂r = ÛrΛr
̂VT
r

X ↦ P( ⋅ |X) ↦ Ψ̂(X) := ϕ(X)⊤Ûr ∈ ℝr

K(x, y) ≈ ϕ(x)⊤ϕ(y) ϕ( ⋅ ) = [ϕ1( ⋅ ), …, ϕN( ⋅ )]⊤



Some theory

• The diffusion distance between two states is 
� 


• Kernelized state embedding preserves the diffusion 
distance up to error

� 


where r is rank, k is MC’s condition number, n is the length 
of trajectory.

dist(x, y) = ∥p( ⋅ |x) − p( ⋅ |y)∥

|dist(x, y) − ∥Ψ̂(x) − Ψ̂(x)∥| ≤ O ( rκtmix

n ), ∀x, y



Ψ̂

Finding Metastable State Clusters

• We want to find a partition of the state space such that that states within the 
same set shares similar future paths  

• If the MC is reversible, the problem finds the optimal metastable partition [E 
2008]


• Solution: 1. Estimate state embedding; 2. Solve


(A*1 , ⋯, A*m) = argmaxA1,⋯,Am

m

∑
k=1

p(Ak |Ak)

min
Ω1,⋯,Ωm

min
q1,⋯,qm

m

∑
i=1

∫Ωi

π(x)∥p( ⋅ |x) − qi( ⋅ )∥2
L2dx,

min
(Ω1,⋯,Ωm)

min
s1,⋯,sk∈ℝr

m

∑
i=1

∑
i∈[N]

∥Ψ̂(xi) − si∥2dx



Example: stochastic diffusion process

Potential Function True Invariant Measure



Metastable clusters learned from Pt

t=0.1 t=0.3 t=1 t=3

Learning metastable sets from state trajectories



Example: State Trajectories of Demon 
Attack

Visualization of game states before and after embedding in t-SNE plots. 




Game states that are close after embedding

About to score; both 
moving to the left New demons appearing

Waiting for new targets; 
moving to center from 

opposite ends

State embedding identifies states as similar in low-dim 
space if they share similar future paths
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