Reinforcement Learning In Feature Space
From Small Data

Mengdi Wang

Ml PRINCETON
& UNIVERSITY

Fe
‘%
o
,_,,\)u
£

m\ wahec W %

X 4 =
g v 52

F
> v o e =
23 31’ 0\)(- 6/04
3 & 2 i
Ly, i g
| Co

At last — a computer program that
can beat a champion Go player PAGE484

ALL SYSTEMS GO

Reinforcement learning achieves phenomenal
empirical successes

KP, Foxp3-GFP

3’&'
Lenti- LucOS
>
“’:.

Lung-resident
and :.
mediastinal
(draining) LN g DISCOVERY & CLINICAL TRIAL -
* L PRE-CLINICAL APPROVAL
= PHASE | PHASE 2 PHASE 3
il | e
! 7.
e el [8 ¢

* b
Mn ister involuntary IM

ions and/or utilize
restraints (Class Il)

--""‘:.'::“:"..;';“ﬁ-

Y

Consider outpatient -

referral vs social
work vs psychiatry
consultation in the ED -

Abbreviations: ASQ, Ask Suicide-S ing Questi C-SSR
Columbia-Suicide Severity Rating Scale; ECG, electrocardiog
ED, ey dep: t; IM, i lar; PO, oral.)) a
Source: cbinsights.com E&: CBINSIGHTS

What if the data/trial is limited and costly

How many samples are needed to learn an 90%-optimal policy?

How much regret to pay when learning to control on-the-fly?

Markov decision process

A finite set of states .S
A finite set of actions A
Reward is given at each state-action
pair (s,a):
r(s,a)e[0,1]
State transits to s “with prob.
P(s’Is,a)

Find a best policy z:5— A such that

T

- _
max v" = E” Z y'r(s, a,)
=0]

ye(0,1) is a discount factor

We call if “tabular MDP” if there is no structural knowledge at all

What does a sample mean?

Possible &
actions /
Chosen
action

Use empirical risk minimization for RL?

Data: Sample state-transition triplets (s, a, ")}

Step 1: Estimate the transition model and compute empirical transition
density

R # times (s,a,s’) appeared
B(s' | 5.5) = () app

times (s,a) appeared

Step 2: Solve the empirical MDP problem by dynamic programming

= argmaxﬂ[Ej;3 Z y'r(s,)
L =0 _
e Hard to analyze: tons of dependencies and nonlinearity [AMK13, AKY19]

 Hard to implement: it is a model-based approach (large memory
overhead + computation bottleneck)

e Which are model-free: Q-learning, actor-critic, policy gradients

Prior efforts: algorithms and sample
complexity results

Algorithm Sample Complexity References
Phased Q-Learning O(C%) [KS99]
Empirical QVI O((1|fuﬁ|€2) 2 [AMK13]
Empirical QVI O(2hjeee) if €= 0=~ =) [AMK13]
Randomized Primal-Dual = IS||A| xr
Method o(C (1—~)%e) [Wan17]
Sublinear Randomized ~ SllA B
O ((1'_'7',)462) [SWWY18]

Value Iteration

Sublinear Randomized

QVI

This Paper

1/(1-y)=1+y+y2+... is the effective horizon

Lots of efforts about 1/(1-y)

Prior efforts: algorithms and sample

- TECHNIQUE OVERVIEW

s
Ph ¢
- Monotonicity
Ir
) EREREE Bernstein
I Reduction
Rand¢ 1
- Approximate
Subl 1 i
Y3
Subl 1 vi(s) « max [r(s,a) +yP(|s,a)Tv' 2]
a

- ~ i 1 ;_ I} /
P(ls,a)v"":==%v""1(sj), sj~P(lsa)

(slide stolen from L Yang)

Approx-VI (value)
(1-y7°

Variance Reduced
Approx-VI (value)

1-y)*

Monotonicity (policy)
1-yn~*

Bernstein + Law of total
variance (policy)

/Analyze error accumulation:
R 00
i pl Uvi < 2i DI
Y'Pi gt R) y*'P..op/m
i=0 i=0

Complexity and Regret for Tabular MDP

* Information-theoretical limit (Azar et al. 2013): Any method finding
an g-optimal policy with probability 2/3 needs at least sample size

Q

* The optimal sampling-based algorithm (with Sidford, Yang, Ye,
2018, Agarwal et al, 2019): With a generative model, finding ¢-
optimal policy with probability 1-6 using sample size

| SA | 1
0, log —
(1—-yPe> ~ 6

Statistical complexity of RL (in this basic setting) is finally well
understood

Is way too big

Suppose states are vectors of dimension d
Vanilla discretization of state space gives |S| = 24
Size of policy space = |A|S

Log of policy space size = [S| log(|A]) > 2¢

Rethinking Bellman equation

Bellman equation is the optimality principal for MDP (in the average-reward
case, where y=1)

P* 4 v¥(s) = max, { D Pls, sWH(s) + ra(s)}’ VSsES

sS'es

* The max operation applies to every state-action pair -> nonlinearity + high
dim

Bellman equation is equivalent to a bilinear saddle point problem (\WWang

2017)
min max {L(v,,u) = Z (,uaT((I — P v+ ra)) }
v uUEA p
value function/ \stationary state-action distribution

e Strong duality between value function and invariant measure

e SA X S linear program

State Feature Map

e Suppose we are given a state feature map

state — [(state), ..., py(state)] € RN

e Can we do better?

e Tetris can be solved well using 22 features -
and linear models 1

 Feature 1: Height of wall

e Feature 2: Number of holes

Representing value function using linear
combination of features

The value function of a policy is the expected cumulative reward as the
initial state varies:

H
Vi.: 8 - R, Vis) =" Z r(s,a,) | sy==s
| =0 i
Suppose that the high-dimensional value vector admits a linear model:

VI(s) = wih(s) + ... + wydn(s)

Value of = wi X Height of Wall + w2 x # Holes + ...

Linear model for value function approximation has lots of limitations (later)

Reducing Bellman equation using features

Bellman eq:
V¥ + v¥(s) = max, { Z P (s, s)v¥(s") + r,(s) } , Vs High.—dim
e Nonlinear

Bellman saddle point:

min max {L(v,,u) = Z (,uaT((I— P)v+ ra)) } { High-dim

v uUEA -

W) Y ()
i=1

min max L(v, 1)

veSpan@) .cSpan@y’) re 1y
u(s.a) m Y ugh(s)wya)

i=1 j=1

Low-dim
. TaT 1 ~
RS e Z (P ity @' (I = PV + 1) Convex-concave
¢ Strong duality

Parametric

Sample complexity of RL with features

Suppose that good state and action features are known

* For average-reward RL, a primal-dual policy learning method finds the
optimal policy using sample size (with YC, LL, 2018)

NgN
(~)<C- s Al)
€2

where C is polynomial in mixing and ergodicity parameters

e Sample-Optimal Parametric Q-Learning for discounted RL (with LY, 2019)

| NsNy |
? <€2(1 -7)’ >

e Matching the information-theoretic minimax lower bound.

® Reduced S to Ns Na (# state-action features)

Learning to Control On-The-Fly

* Prior sample complexity analysis assumes a generative model:

> One can draw transitions from any pre-specified state-action pair (enough
exploration guaranteed)

Sample-optimal algorithms draw the same number of samples per state or per
representative state (w. Sidford,Yang,Ye18, w. Yang Jia 19, Agarwal metal 19)

* In practice, we have to learn on-the-fly:
> H-horizon stochastic control problem, starting at a fixed state so

> A'learning algorithm learns to control by repeatedly acting in the real world

It would act in realtime, observe state transitions, and adapt its control policy
every episode

> Impossible to visit all states frequently

Episodic Reinforcement Learning

* Regret of a learning algorithm %"

H

N
Regret, (T') = [E%[Z <V*(SO) — Z r(sn’h, an,h>>] :

where T= NH, and the sample state-action path {Sn,ha an,h} Is generated on-the-fly
by the learning algorithm %

e Challenges:
> Long-term effect of a single wrong decision
> Data dependency: Almost all the transition samples are dependent
- Exploration-exploitation tradeoff

> More complicated than multi-arm bandit (naive reduction yields AAS arms)

Hilbert space embedding of transition kernel

Suppose we are given state-action feature maps

state, action — [¢,(state, action), ..., ¢ (state,action)] € RN

state — |y (state), ...,y (state)] € R4

Assume that the unknown transition kernel can be fully embedded in the
feature space, i.e., there exists a transition core M* such that

P(s" | s,a) = (s, a) M¥y(s').

The decomposition structure is equivalent to using linear model for value
function approximation with 0 Bellman error (w LY 2019)

Low-dim assumption on V is closely related to low-dim assumption on P

The MatrixRL Algorithm

e At the beginning of the (n+1)th episode, suppose the samples collected so far are
{(Sn’ha an,h)D Sn,h+1 } — {¢n,h9 l/jn,h} = {¢(Sn,h9 an,h)’ l//(Sn,h+1)}
e We will use their corresponding feature vectors.

* Estimate the transition core via matrix ridge regression

: 2
+ [|M][%
2

M, = arg min Z

T -1 _ 4T
l//n’,hKl// n’,hM
M

n'<n,h<H

Where Kl,, IS a precomputed matrix

e However, using empirical estimate greedily would lead to poor exploration

e Borrow ideas from linear bandit (Dani et al 08, Chu et al 11, ...)

The MatrixRL Algorithm

e Construct a matrix confidence ball around the estimated transition core

B = {M R |[(A)AM = M)||, < ,/ﬁn}
 Find optimistic Q-function estimate

Q,.1(s,a) = r(s,a) + max ¢(s, a)'M ‘I’TVn,h 1 O

n,H = O
MeB,

where the value estimate is given by
Van(s) = [max Q, ,,(s, a)]
a

* In the new episode, choose actions greedily by max Q, ,(s,a)
a

* The optimistic Q encourage exploration: (s,a) with higher uncertainty gets
tried more often

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)

Regret Analysis

Theorem Under the embedding assumption and regularity
assumptions, the T-time-step regret of MatrixRL satisfies with high
probability thats

Regret(T) < C-dH?-4/T,
First polynomial regret bound for RL in feature space.
Independent of S
Minimax optimal?

It is optimal in d and T, close to optimal in H

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, Preprint, 2019)

The special case where W= |

A nonparametric model where P cannot be encoded using a small # of
parameters

P(s’ | s,a) = ¢(s,a) M*¥y (s, where vy =1.

It only needs features to describe left principal space of P

In this case, MatrixRL has closed-form updates:

0,(5:0) = r(5,@) + (5. @) "MV, jr + OBy | DA D Qun =

Theorem Under the embedding assumption and if ¢= |, the T-time-step
regret of MatrixBandit is

Regret(T) < C - d*’H?* -4\/T,

From feature to kernel

Suppose that we are given a kernel function over the state-action space
instead of explicit feature maps

K((s, a), (s’,a"))
 RL in kernel space? (Ormoneit & San 02, Ormoneit & Glynn 02, ...)

* Kernel presents a very flexible framework for extrapolating information
from seen states to unseen states

 We consider the generic assumption that the transition kernel belongs
to the product Hilbert spaces spanned by these features:

Pe%¢x%w

MatrixRL has a equivalent kernelization

Algorithm 2 KernelMatrixRL: Reinforcement Learning with Kernels

1: Input: An episodic MDP environment M = (S, A, P, so, T, H), kernel functions kg, ky;

2: Total number of episodes IV;

3: Initialize: empty reply buffer B = {};

4. forepisoden =1,2,..., N do

5 For (s,a) € S x A, let
wn(s,a) = \/k¢[(s, a), (s,a)] — kgn_l’s,a(I +Ks,)" Ke,_,.0.a;

zn(s,a) = ke, 50l +Ke,_,) 'Ky, , Ky, Ky, ;) 'Ku,;
6: Let {Qn,»} be defined as follows:
V(s,a) e S X A: Qnu+1(s,a):=0 and
Vhe [H]: Qunn(s,a):=7(s,a) + zn(s,a) Vo i1 + Dnwn(s,a),)

where
Va,n(s) = o, o [mf,x Qn.n(s, a)] Vs,a,n, h;

and 7y, is a parameter to be determined;
7 for stage h =1,2,...,H do

8: Let the current state be s, p;
9: Play action an,, = arg maxgee A Qn,h(Sn,h,a);
10: Record the next state sn h+1: B <= BU {(Sn,h;, @n,h, Sn,h+1) };
11: end for
12: end for
7.2
Theorem Regret(T) < 0(1PNl ¢ x¢, - 1og(T) - d - H” - \/7)

RL regret in kernel space depends on Hilbert space norm of the transition kernel and
effective dimension of the kernel space

(RL in Feature Space: Matrix Bandit, Kernels, and Regret Bounds, w. Lin Yang, 2019)

Pros and cons for using features for RL

Deep connection to regression. Theoretical guarantee

Easy to implement. Not many parameters to tune.

* Rely on good known features pk

Pathological policy oscillation and chattering

T#k+2
I I T k+1
 Not as rich as nonlinear models R k+3 7
Ruk+2
(Bertsekas 07)

® Not very surprising that good features can reduce the dimensionality of RL ... Can we
do well without known features?

® Many works in this domain, eqg state representation learning (Lesort et al 08), latent state
encoding (Du et al 19)

What could be good state features?

* QGiven a stationary Markov chain with transition operator P and one-
step reward function r, the average-reward difference-of-value
function is given by

v=lim (r + Pr+ P’r+ -+ Plr—(TF)- 1).

T—

e Suppose that P admits the decomposition
P = oPY!

 Both the value v and the invariant measure ¢ lie in low-dim spaces:
v € Span(®) & e Span(¥P)

Good value features ¢ shall span the column space of P

Learning features automatically from time
series data

e Consider a state-transition trajectory
X, X5, o, X, oo

e Spectral decomposition of the transition operator

r

PXay | X) &) (X)X,

Markov features l
*u,(-) s v -)’s are natural features for RL
* Reward-independent

Estimate x — ¥(x)from data to “preserve dynamics” (approximate leading singular functions of
P)

max Tr < J‘P(x)p(x, y)‘l’(y)dea’y>

¥Y: X Rr,‘PjEH

e Statistical error bounds and information-theoretic limits proved (w AZ 2018, w YD, KZ, 2018, w YS,
YD, GH, 2019)

Kernelized state embedding from random features

Data: A high-dimensional time series and a kernel space with K

X, X5, o, X, oee, where X, € R
Solution:
1. Open up the kernel space and approximate with random features

K(x,y) = ¢(x) () PC-) = [P1(-)y (]!

2. Estimate a projection matrix of the transition kernel onto the K space

. 1
0= 2:, PX)PX,)T
3. Find the best rank-r approximation O = UAVT, Qr —UAV!

Output: Low-dim state embedding (a kernelized diffusion map)

X P(-1X)~»¥YX) =¢pX)'U. e R

e Minimax-optimal error bounds for recovering P proved in (w Sun, Duan, Gong 2019)

Some theory

e The diffusion distance between two states is
dist(x,y) = ||p(- |x) — p(- [V

 Kernelized state embedding preserves the diffusion
distance up to error

A A rKt, .
| dist(x,y) — ||[¥'(x) = Y)[|| <O \/ — |, Vxy

n

where r is rank, k is MC’s condition number, n is the length
of trajectory.

Finding Metastable State Clusters

 We want to find a partition of the state space such that that states within the
same set shares similar future paths

m

min min 3 | aOllpC- 19 - gl
Q;

Q ’...,Q RPN :
1 m 41 9m i=1

e If the MC is reversible, the problem finds the optimal metastable partition [E
2008]

(A%, -, A%) = argmax, > p(Ac] Ay
k=1

e Solution: 1. Estimate state embedding; 2. Solve

min min 2 2 ||‘i’(xl-) —Sillzdx

Q. ... O e 5. R’
(1 s m) Sla 7Sk€ l=1 ZE[N]

Example: stochastic diffusion process

Invariant Measurement p(xy, x2)

potential

10.03

10.025

-0.2
0.02

-0.4

0.015

-0.6

0.01
-0.8

0.005

$x,$ & ox.$

5 0 5
1

Potential Function True Invariant Measure

Metastable clusters learned from Pt

7=0.1, n=10°% r = 4, #Cluster= 9
Distance to clustring center in the embedding space

7=1,n=10% r =8, #Cluster=9

7 =03, n=10 r =4, #Cluster=9
’ ! » 7 Distance to clustring center in the embedding space

7=3,n=10% r =8, #Cluster=9
Distance to clustring center in the embedding space

Distance to clustring center in the embedding space
; : . : : 4l ol
(
3t 3t
(
2+ 2L
(
1+ 1k
(20 0r
C 1t At
i 2t
1(-2
3t 3
1C
4 4r .
— ‘ —0 4 2 0 2 4
4 2 0 2 4 4 -3 2 1 0 1 2 3 4 z
&I T 1

Learning metastable sets from state trajectories

0.¢

0.:

0.4

0.

0.

0.]

Example: State Trajectories of Demon
Attack

(a) Before Embedding (b) After Embedding

-."‘.:.. b ; > ‘ - -
® ';'. f. ..' .. = . s ‘. "‘ . L
: \'a: - ‘.‘ “ B ﬁ. 1'.)‘ "“’..‘4.‘ ".::\{-o .‘: '] .~ }l.‘ ‘e
O e g Kl P AR ARG N
S oot \i‘. asd I £} ‘3} K. L
¢ TN A\ e ' ~ Wi cuk e
BT v A . £
: L ie Lyt e ER. W
.« ¢ 2 ¥ . s L0 S
- . . .: \.og‘ f}' *
‘ . @ - a0 . ® - . ‘M .“
_.‘o\:' .".",.‘ ‘.: e ’ . & 'bs
a SRV s e :'o.‘ B . ! o »
AR TN ST SR S o T
A o e L S * K '.. e
o Q\o...‘:'.:'.f ". ° » » .: @ e 0. Kl o..z " ‘.':’.’. ; .;. ..’..~
2 %o o ‘:0 e W8 0 S fe .-»' ‘.‘9 "v‘.
® -‘:"... L) l‘ ;'. . -ra"-:' °? o \‘o\ "’r f‘ ;) A ¢
.'0"" '.- s : ".."oﬁ P K o) * 'i'.‘h 2 “» 'I-:q. 'li' -'. + S ~07
. * i BEY X P P LR L b2 L g0 we . . -
¥ 4 4 B » Fubor o000 3% - “ o
> - Sppes ® ‘e A :,f‘. 9 VA,
;¢ QLI OREAY - TRR N
% Sese % Y A Sl e
p o WY eay - 2 Rl ¥ ol
‘. o~ .-.' N .- Q < ‘ @ -5 n" S ‘ot .:b) o ...:’l
3%y’ 't'-,o s* - e s A - ':‘-.- wﬁ 'f(;.
Relo 03, . RIS Bt si
s ey, ‘ ~° "“&é.s ’.":9"
o =

4.0

Visualization of game states before and after embedding in t-SNE plots.

Game states that are close after embedding

O: V=627 O:V=614 ANA:V=617 AV =616 < : V=444 < :V =435

Waiting for new targets;

" moving to the left moving to center from
moving to the left PP g g

opposite ends

State embedding identifies states as similar in low-dim
space if they share similar future paths

Collaborators

Aaron Sidford Yinyu Ye

Yichen Chen Yaqi Duan Hao Gong Yifan Sun Zeyu Jia

Thank you!

