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https://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

interviewer: OK, so I need you to print the numbers from 1 to 100, except that if
the number is divisible by 3 print ”fizz”, if it’s divisible by 5 print ”buzz”, and if
it’s divisible by 15 print ”fizzbuzz”.
Do you need help getting started?

me: No, no, I’m good. So let’s start with some standard imports:

Postscript: I didn’t get the job. So I tried actually running this, and it
turned out it got some of the outputs wrong! Thanks a lot, machine
learning!
I guess maybe I should have used a deeper network ...
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Depth Efficiency

Basic question: on which distributions deeper networks are much
better than shallow ones?

Several recent results show

Depth Separation

There exist functions which can be expressed by a small deep network but
must have an exponential width in order to be expressed by a shallow
network

E.g. Telgarsky 2015, Safran and Shamir 2016, Cohen et al 2016,
Daniely 2017, Poggio et al 2017

Shai Shalev-Shwartz (huji,ME) Deeper 2019 3 / 19



Depth Efficiency

Basic question: on which distributions deeper networks are much
better than shallow ones?

Several recent results show

Depth Separation

There exist functions which can be expressed by a small deep network but
must have an exponential width in order to be expressed by a shallow
network

E.g. Telgarsky 2015, Safran and Shamir 2016, Cohen et al 2016,
Daniely 2017, Poggio et al 2017

Shai Shalev-Shwartz (huji,ME) Deeper 2019 3 / 19



Outline

Main Claim

Strong depth separation ⇒ Gradient based Algorithms fail

1 Case study: Fractal Distributions

2 Depth Separation

3 Approximation Curve and Strong Depth Separation

4 Success of SGD depends on the Approximation Curve
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Fractals

Iterated Function System:

K0 = [−1, 1]d

Kn = F1(Kn−1) ∪ . . . ∪ Fr(Kn−1)

We assume Fi are affine, invertible, contractive, and for i 6= j, the
images of Fi and Fj are disjoint.

The “depth” of the fractal is n

Example: Fi(x) = ci + 1
4(x− ci) for ci ∈ {±1}2
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F2
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Fractal Distributions

A “fractal distribution” is a distribution in which positive examples
are sampled from the set Kn and negative examples are sampled from
its complement

Examples:

Cantor Sierpinsky Vicsek Pentaflake

Shai Shalev-Shwartz (huji,ME) Deeper 2019 6 / 19



Depth Separation

Theorem

Consider an IFS over [−1, 1]d with r generating functions and depth n.
For any fractal distribution Dn there exists a ReLU feed forward network
of depth 2n+ 1 and width 5dr which realizes Dn.

Proof by induction:

Basis: a shallow ReLU network can approximate I0(x) = 1x∈K0

Suppose we have a deep network expressing: In−1(x) = 1x∈Kn−1

Recall: Kn = F1(Kn−1) ∪ . . . ∪ Fr(Kn−1) and Fi are affine,
invertible, and have disjoint images

Take x ∈ Kn, then there’s z ∈ Kn−1 and i s.t. x = Fi(z), or
equivalently, z = F−1i (x)

Therefore,
[∑

i In−1(F
−1
i (x))

]
+
−
[∑

i In−1(F
−1
i (x))− 1

]
+

= 1x∈Kn
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Depth Separation

Theorem

If Dn has non-zero probability in any area of Kn, then a network of depth
t must have a width of at least d

er
n
td to realize Dn.

Proof idea:

A network of width k and depth t has at most (ek/d)td linear regions

To realize the fractal distribution, we need rn linear regions
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Approximation Curve

We saw: a network of depth O(n) can express a depth n fractal, but
a shallower network requires exponential width to fully realizes the
distribution

Approximation curve: How much of the negative examples are on the
fine details of the fractal:

P (j) := 1− LDn(1x∈Kj ) := 1− P
(x,y)∼Dn

[x ∈ Kj ∧ y = −1]

Note: P (0) = 1/2, P (n) = 1, and P is monotonically increasing
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Approximation Curve: coarse vs. fine

P (j) = 1− LDn(1x∈Kj )
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Approximation Curve and Strong Depth Separation

The following theorem shows that with reasonable width, the error of a
depth Θ(j) network is roughly 1− P (j)

Theorem

Fix a depth n distribution with approximation curve P . Then, for every j

1 For a depth t = 2j + 2 and width k = 5dr network we have

LDn(Ht,k) ≤ (1− P (j))

2 For every s, if k < rs and t < j/s then

(1− rst−j)(1− P (j)) ≤ LDn(Ht,k)
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One dimensional Cantor Fractal with “Fine” Distribution

This shows that using the approximation curve of distribution Dn allows us to give an upper bound187

on the approximation error for networks that are not deep enough. We give a lower bound for this188

error in a more restricted case. We limit ourselves to the case where d = 1, and observe networks of189

width k < rs for some s. Furthermore, we assume that the probability of seeing each subset of the190

fractal is the same. Then we get the following theorem:191

Theorem 4 Assume that Dn is a distribution on R (d = 1). Note that for every j, Kj is a union of rj192

intervals, and we denote Kj = [rj

i=1Ii for intervals Ii. Assume that the distribution over each interval193

is equal, so for every i, `, y0: P(x,y)⇠Dn
[x 2 Ii and y = y0] = P(x,y)⇠Dn

[x 2 I` and y = y0]. Then194

for depth t and width k < rs, for n > j > st we get: LDn
(Hk,t) � (1 � rst�j)(1 � P (j)).195

The above theorem shows that for shallow networks, for which st ⌧ j, the approximation curve gives196

a very tight lower bound on the approximation error. This is due to the fact that shallow networks197

have a limited number of linear regions, and hence effectively give constant prediction on most of the198

“finer” details of the fractal distribution. This result implies that there are fractal distributions that199

are not only hard to realize by shallow networks, but that are even hard to approximate. Indeed, fix200

some small ✏ > 0 and let j := st + logr(
1
2✏ ). Then if the approximation curve stays flat for the first201

j levels (i.e P (j) = 1
2 ), then from Theorem 4 the approximation error is at least 1

2 � ✏.202

This gives a strong depth separation result: shallow networks have an error of ⇡ 1
2 while a network203

of depth t � 2bn/sc + 2 can achieve zero error (on any fractal distribution). This strong depth204

separation result occurs when the distribution is concentrated on the “fine” details, i.e when the205

approximation curve stays flat throughout the “coarse” levels. In the next section we relate the206

approximation curve to the success of fitting a deep network to the fractal distribution, using gradient-207

based optimization algorithms. Specifically, we claim that distributions with strong depth separation208

cannot be learned by any network, deep or shallow, using gradient-based algorithms.209

4 Optimization Analysis210

So far, we analyzed the ability of neural-networks to express and approximate different fractal211

distributions. But it remains unclear whether these networks can be learned with gradient-based212

optimization algorithms. In this section, we show that the success of the optimization highly depends213

on the approximation curve of the fractal distribution. Namely, we show that for distributions with a214

“fine” approximation curve, that are concentrated on the “fine” details of the fractal, the optimization215

fails with high probability, for any gradient-based optimization algorithm.216

C1

C2

C3

...

Figure 3: “Fine” cantor dis-
tributions of growing depth.
Negative areas in orange, posi-
tive in blue.

To simplify the analysis, we focus in this section on a very simple217

fractal distribution: a distribution over the Cantor set in R. The218

Cantor set Cn is defined recursively by C0 = [0, 1] and Cn =219

F1(Cn�1) [ F2(Cn�1), where F1(x) = 1
3 � 1

3x and F2(x) =220

2
3 + 1

3x. Now, fix margin � < 3�n

2 . We define the distribution D+
n221

to be the uniform distribution over C�
n ⇥ {+1}. The distribution222

D�
n is a distribution over C0 \ Cn, where we sample from each223

“level” Cj (j < n) with probability pj . Formally, we define Ej :=224

Cj�1 \ Cj to be the j-th level of the negative distribution. We use225

U(Ej) to denote the uniform distribution on set Ej , then: D�
n =226 Pn

j=1 pj (U(Ej) ⇥ {�1}). Notice that the approximation curve of227

this distribution is given by: P (j) = 1
2 + 1

2

Pj
i=1 pi. As before, we wish to learn Dn = 1

2 (D+
n +D�

n ).228

Figure 3 shows a construction of such distribution.229

The main theorem in this section shows the connection between the approximation curve and the230

behavior of a gradient-based optimization algorithm. This result shows that for deep enough cantor231

distributions, the value of the approximation curve on the fine details of the fractal bounds the norm232

of the population gradient for randomly initialized network:233

Theorem 5 Fix some depth t, width k and some � 2 (0, 1). Let n, n0 2 N such that n > n0 >234

log�1( 3
2 ) log( 4tk2

� ). Let Dn be some cantor distribution with approximation curve P . Assume235

we initialize a neural-network NW,B of depth t and width k, with weights initialized uniformly236

in [� 1
2nin

, 1
2nin

] (where nin denotes the in-degree of each neuron), and biases initialized with a237

5

C0 = [0, 1] and Cn = F1(Cn−1) ∪ F2(Cn−1), where F1(x) = 1
3 − 1

3x
and F2(x) = 2

3 + 1
3x

“Fine” cantor distributions of growing depth. Negative areas in
orange, positive in blue.

Shai Shalev-Shwartz (huji,ME) Deeper 2019 14 / 19



Gradient at Initialization and the Approximation Curve

Theorem

Consider a depth t, width k, network, and suppose the weights, W , are
initialized randomly in the “normal” way. Consider a depth n,
one-dimensional Cantor fractal, and let j = dlog(tk2/δ)e. Then, with
probability > 1− δ, all elements of the gradient at W are of magnitude
< 5(P (j)− 1

2).

Corollary: gradient descent is likely to fail on every cantor distribution
with strong depth separation, even though the deep network is
expressive enough
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Success of SGD depends on the Approximation Curve
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Figure 5: Learning depth 5 network on 2D cantor set of depth 5, with different approximation
curves. The figures show the values of the approximation curve (denoted P ) at different levels of the
fractal. Large values correspond to more weight. In red is the accuracy of the best depth 5 network
architecture trained on these distributions.

wide enough depth 5 network gets almost zero error. Importantly, we can see a clear depth separation:322

deeper networks achieve better accuracy, and are more efficient in utilizing the network parameters.323

Next, we observe the effect of the approximation curve on learning the distribution. We compare the324

performance of the best depth 5 networks, when trained on distributions with different approximation325

curves. The training and validation process is as described previously. We also plot the value of326

the approximation curve for each distribution, in levels 3, 4, 5 of the fractal. The results of this327

experiment are shown in figure 5. Clearly, the approximation curve has a crucial effect on learning328

the distribution. While for “coarse” approximation curves the network achieves an error that is close329

to zero, distributions with “fine” approximation curves cause a drastic degradation in performance.330
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Figure 6: The effect of depth on learning
CIFAR-10, line colors as in figure 4. We
train CNNs with Adam for 60K steps. All
layers are 5x5 Convolutions with ReLU acti-
vation, except the readout layer. We perform
max-pool only in the first two layers. We use
augmentations and training pipeline in [20].

We perform the same experiments with different frac-331

tal structures (figure 1 shows these distributions). Ta-332

bles 1, 2 in the appendix summarize the results. We333

note that the effect of depth can be seen clearly in334

all fractal structures. The effect of the approxima-335

tion curve is observed in all fractals, except the Sier-336

pinsky Triangle (generated with 3 transformations),337

where the approximation curve seems to have no ef-338

fect when the width of the network is large enough.339

This might be due to the fact that a depth 5 IFS with340

3 transformations generates a small number of linear341

regions, making the problem overall relatively easy.342

Finally, we want to show that the results given in343

this paper are interesting beyond the scope of our344

admittedly synthetic fractal distributions. We note345

that the use of fractal distributions is favorable from a346

theoretical perspective, as it allows us to develop crisp347

analysis and insightful results. On the other hand, it348

may raise a valid concern regarding the applicability349

of these results to real-world scenarios. To address350

this concern, we performed similar experiments on351

the CIFAR-10 data, studying the effect of width and depth on the performance of neural-networks352

on real data. The results are shown in figure 6. Notice that the trends on the CIFAR data resemble353

the behavior on the “coarse” fractal distributions. Importantly, note that the CIFAR data does not354

exhibit a strong depth separation, as depth gives only gradual improvement in performance. That is,355

while deeper networks indeed exhibit better performance, a shallow network already gives a good356

approximation. A similar behavior is observed even on the ImageNet dataset (see fig. 2 in [1]).357

8

Learning depth 5 network on 2D cantor set of depth 5, with different
approximation curves.
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Is Deep Good only When Shallow is Also Good ?
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The effect of depth on learning CIFAR-10.

We train CNNs with Adam for 60K steps. All layers are 5x5
Convolutions with ReLU activation, except the readout layer

Line colors correspond to different network depth
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Summary

Fractal distributions are natural for studying depth efficiency of deep
learning

The “approximation curve” is correlated with how much going deeper
really helps

Strong depth separation: shallow networks perform like random guess
while deeper networks realize the distribution

Conjecture: gradient based algorithms fail when there is strong depth
separation. In other words,
deep is better only when shallow is also good
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A more concrete formalism of the conjecture

Conjecture:

Let H be all functions which cannot be approximated by a shallow
network. Then:

1 For each f ∈ H there exists a distribution Df on X × {±1} for which
f achieves zero loss while the best shallow network achieves a loss
> 1/2− ε.

2 For every such Df , gradient-descent fails to learn a deep network.
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