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PN https://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

interviewer: OK, so | need you to print the numbers from 1 to 100, except that if
the number is divisible by 3 print "fizz", if it's divisible by 5 print "buzz", and if
it's divisible by 15 print " fizzbuzz".

Do you need help getting started?

me: No, no, I'm good. So let's start with some standard imports:

import numpy as np
import tensorflow as tf
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TNt https://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

interviewer: OK, so | need you to print the numbers from 1 to 100, except that if
the number is divisible by 3 print "fizz", if it's divisible by 5 print "buzz", and if
it's divisible by 15 print " fizzbuzz".

Do you need help getting started?

me: No, no, I'm good. So let's start with some standard imports:

import numpy as np
import tensorflow as tf

Postscript: | didn't get the job. So | tried actually running this, and it
turned out it got some of the outputs wrong! Thanks a lot, machine
learning!
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PN https://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/

interviewer: OK, so | need you to print the numbers from 1 to 100, except that if
the number is divisible by 3 print "fizz", if it's divisible by 5 print "buzz", and if
it's divisible by 15 print " fizzbuzz".

Do you need help getting started?

me: No, no, I'm good. So let's start with some standard imports:

import numpy as np
import tensorflow as tf

Postscript: | didn't get the job. So | tried actually running this, and it
turned out it got some of the outputs wrong! Thanks a lot, machine
learning!

| guess maybe | should have used a deeper network ...
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Depth Efficiency

@ Basic question: on which distributions deeper networks are much
better than shallow ones?
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Depth Efficiency

@ Basic question: on which distributions deeper networks are much
better than shallow ones?

@ Several recent results show

Depth Separation

There exist functions which can be expressed by a small deep network but
must have an exponential width in order to be expressed by a shallow
network

E.g. Telgarsky 2015, Safran and Shamir 2016, Cohen et al 2016,
Daniely 2017, Poggio et al 2017
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Strong depth separation = Gradient based Algorithms fail l

@ Case study: Fractal Distributions

© Depth Separation
e Approximation Curve and Strong Depth Separation

@ Success of SGD depends on the Approximation Curve
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@ Iterated Function System:

Ky = [_171]d
K, = Fl(anl) Uu...u Fr(anl)

@ We assume F; are affine, invertible, contractive, and for i # j, the
images of F; and F} are disjoint.
@ The “depth” of the fractal is n

o Example: F;(z) = ¢; + 1(z — ¢;) for ¢; € {1}

F3 Iy
F F
b /1[}([]
Ky . K \D h
Fy =< Fy

Fy Fy
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Fractal Distributions

o A “fractal distribution” is a distribution in which positive examples

are sampled from the set K, and negative examples are sampled from
its complement

@ Examples:

Vicsek Pentaflake

Shai Shalev-Shwartz (huji,ME) Deeper 2019 6/19



Depth Separation

Consider an IFS over [—1,1]¢ with r generating functions and depth n.
For any fractal distribution D,, there exists a RelU feed forward network
of depth 2n + 1 and width 5dr which realizes D,,.
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Depth Separation

Consider an IFS over [—1,1]¢ with r generating functions and depth n.
For any fractal distribution D,, there exists a RelU feed forward network
of depth 2n + 1 and width 5dr which realizes D,,.

Proof by induction:
@ Basis: a shallow ReLU network can approximate Ip(z) = l,ek,
@ Suppose we have a deep network expressing: I,,_1(x) = lzek,
@ Recall: K,, = F1(K,—1)U...UF,(K,_1) and F; are affine,
invertible, and have disjoint images
o Take z € K, then there's z € K,,_; and i s.t. = Fj(z), or
equivalently, z = F"!(z)

(2

o Therefore, [>, In_l(Fi_l(ac))]+ — [ I (F N (2) — 1]+ = lzek,
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Depth Separation

If D,, has non-zero probability in any area of K,,, then a network of depth
t must have a width of at least gr% to realize D,,.
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Depth Separation

If D,, has non-zero probability in any area of K,,, then a network of depth
t must have a width of at least Yria to realize D,,.

e

Proof idea:
o A network of width k and depth ¢ has at most (ek/d)! linear regions

@ To realize the fractal distribution, we need 7™ linear regions
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Strong depth separation = Gradient based Algorithms fail l

@ Case study: Fractal Distributions

© Depth Separation
e Approximation Curve and Strong Depth Separation

@ Success of SGD depends on the Approximation Curve
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Approximation Curve

@ We saw: a network of depth O(n) can express a depth n fractal, but
a shallower network requires exponential width to fully realizes the
distribution

@ Approximation curve: How much of the negative examples are on the
fine details of the fractal:

P(]) ::1—LDn(1x€Kj)::1— P [:EEKj VAN y:—l]
(xzy)NDn

e Note: P(0) =1/2, P(n) =1, and P is monotonically increasing
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Approximation Curve and Strong Depth Separation

The following theorem shows that with reasonable width, the error of a
depth O(j) network is roughly 1 — P(j)

Fix a depth n distribution with approximation curve P. Then, for every j
©Q For a deptht = 25 + 2 and width k = 5dr network we have

Lp,(Hyi) < (1—P(j))
@ Foreverys, ifk<r®andt< j/s then

(1—r*7)1 - P(j)) < Lp,(Hyy)
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Strong depth separation = Gradient based Algorithms fail l

@ Success of SGD depends on the Approximation Curve
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One dimensional Cantor Fractal with “Fine” Distribution

e Cyp=1[0,1] and C), = F1(Cp—1) U F5(Cp_1), where Fi(z) = % - %x
and Fp(z) = 2 + 3z

@ “Fine” cantor distributions of growing depth. Negative areas in
orange, positive in blue.
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Gradient at Initialization and the Approximation Curve

Theorem

Consider a depth t, width k, network, and suppose the weights, W, are
initialized randomly in the “normal” way. Consider a depth n,
one-dimensional Cantor fractal, and let j = [log(tk?/)]. Then, with
probability > 1 — §, all elements of the gradient at W are of magnitude
<5(P(j) — 3)-

@ Corollary: gradient descent is likely to fail on every cantor distribution
with strong depth separation, even though the deep network is
expressive enough
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Success of SGD depends on the Approximation Curve
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Learning depth 5 network on 2D cantor set of depth 5, with different
approximation curves.
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Is Deep Good only When Shallow is Also Good ?
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@ The effect of depth on learning CIFAR-10.

@ We train CNNs with Adam for 60K steps. All layers are 5x5
Convolutions with RelLU activation, except the readout layer

@ Line colors correspond to different network depth
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o Fractal distributions are natural for studying depth efficiency of deep
learning

@ The “approximation curve” is correlated with how much going deeper
really helps

@ Strong depth separation: shallow networks perform like random guess
while deeper networks realize the distribution

@ Conjecture: gradient based algorithms fail when there is strong depth

separation. In other words,
deep is better only when shallow is also good
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A more concrete formalism of the conjecture

Conjecture:
@ Let H be all functions which cannot be approximated by a shallow
network. Then:

@ For each f € H there exists a distribution Dy on X x {£1} for which
f achieves zero loss while the best shallow network achieves a loss
>1/2—e

@ For every such Dy, gradient-descent fails to learn a deep network.
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