
Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

Nicholas Carlini
Google Research

Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

How do we generate
adversarial examples?

Truck

Dog

Dog

Truck

Airplane

(
(

Threat Models

A threat model is a formal
statement defining when a

system is intended
to be secure.

What dataset is considered?

Adversarial example definition?

What does the attacker know?
(model architecture? parameters? 
 training data? randomness?)

If black-box: are queries allowed?

Good Threat Model:
"Robust when L2 distortion is less

than 5, given the attacker has
white-box knowledge"

Claim: 90% accuracy on ImageNet

Dog

Truck

Airplane

Classified
as 7

Classified
as 1

Classified
as 8

Classified
as 8

Classified
as 7

Classified
as 1

Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

A defense is a neural network that

1. Is accurate on the test data
2. Resists adversarial examples

This talk: non-certified defenses

For example:
adversarial training

For example:
Adversarial Training

Claim:
Neural networks don't generalize

F
Normal Training

(,)
(,)

7
3

Training

7(,)
(,)

Adversarial Training (1)

(,)7
3

Attack

3(,)

7

G
Adversarial Training (2)

3

(,)
(,)

7
3

Training

(,)
(,)

Or:
Thermometer Encoding

Claim:
Neural networks are "overly linear"

T(0.13) = 1 1 0 0 0 0 0 0 0 0
T(0.66) = 1 1 1 1 1 1 0 0 0 0
T(0.97) = 1 1 1 1 1 1 1 1 1 1

Solution

Or:
Input Transformations

Claim:
Perturbations are brittle

Solution

Random
Transform

Solution

JPEG
Compress

Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

What does it meant to evaluate
the robustness of a defense?

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Pipeline

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Pipeline

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Pipeline

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Evaluations

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Evaluations

What are robustness evaluations?

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 x_test, y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Standard ML Evaluations

model = train_model(x_train, y_train)
acc, loss = model.evaluate( 
 A(x_test), y_test)  
if acc > 0.96:
 print("State-of-the-art")  
else:
 print("Keep Tuning
 Hyperparameters")

Adversarial ML Evaluations

How complete are evaluations?

Case Study:
ICLR 2018

Serious effort  
to evaluate 

By space, most
papers are ½
evaluation

We re-evalauted
these defenses ...

2

7

4 Out of scope
Broken Defenses
Correct Defenses

2

7

4 Out of scope
Broken Defenses
Correct Defenses

2

7

4 Out of scope
Broken Defenses
Correct Defenses

So what did
defenses do?

Lessons Learned from
Evaluating the Robustness of

Defenses to Adversarial Examples

Lessons (1 of 2)
what we learn from evaluations

(and why to evaluate thoroughly)

A Brief History of Time Defenses

 - S&P'16 - gradient masking
 - ICLR'17 - attack objective functions
 - CCS'17 - transferability of examples
 - ICLR'18 - obfuscated gradients

"Fixing" Gradient Descent

[0.1, 
0.3,
0.0,  
0.2,
0.4]

Disentangling
true robustness

from
apparent robustness

is nontrivial

Lessons (2 of 2)
performing better evaluations

Everything the
following papers do
is standard practice

Actionable advice
requires specific,

concrete examples

Perform an
adaptive attack

A "hold out" set is
not an adaptive attack

Stop using FGSM
(exclusively)

Use more than 100
(or 1000?) iteration of

gradient descent

Iterative attacks should
always do better than
single step attacks.

Unbounded optimization attacks should
eventually reach in 0% accuracy

Unbounded optimization attacks should
eventually reach in 0% accuracy

Unbounded optimization attacks should
eventually reach in 0% accuracy

Model accuracy should be
monotonically decreasing

Model accuracy should be
monotonically decreasing

✓

Evaluate against the
worst attack

Plot accuracy vs distortion

Verify enough iterations
of gradient descent

Try gradient-free
attack algorithms

Try random noise

Conclusion

Conclusion

To understand adversarial examples,
repeatedly attack and defend,
optimizing for lessons learned.

Questions?

nicholas@carlini.com https://nicholas.carlini.com

mailto:nicholas@carlini.com
https://nicholas.carlini.com

