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How do we generate 
adversarial examples?
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Threat Models



A threat model is a formal 
statement defining when a 

system is intended  
to be secure.



What dataset is considered? 

Adversarial example definition? 

What does the attacker know? 
(model architecture? parameters? 
 training data? randomness?) 

If black-box: are queries allowed?



Good Threat Model:
"Robust when L2 distortion is less 

than 5, given the attacker has 
white-box knowledge" 

Claim: 90% accuracy on ImageNet
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A defense is a neural network that 

1. Is accurate on the test data 
2. Resists adversarial examples



This talk: non-certified defenses



For example:  
adversarial training



For example: 
Adversarial Training

Claim: 
Neural networks don't generalize



F
Normal Training

(    ,  )
(    ,  )

7
3

Training



7(    ,  )
(    ,  )

Adversarial Training (1)

(    ,  )7
3

Attack

3(    ,  )



7

G
Adversarial Training (2)

3

(    ,  )
(    ,  )

7
3

Training

(    ,  )
(    ,  )



Or:  
Thermometer Encoding

Claim: 
Neural networks are "overly linear"



T(0.13) = 1 1 0 0 0 0 0 0 0 0 
T(0.66) = 1 1 1 1 1 1 0 0 0 0 
T(0.97) = 1 1 1 1 1 1 1 1 1 1

Solution



Or:  
Input Transformations

Claim: 
Perturbations are brittle



Solution

Random 
Transform



Solution

JPEG 
Compress
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What does it meant to evaluate 
the robustness of a defense?



model = train_model(x_train, y_train) 
acc, loss = model.evaluate(  
              x_test, y_test)  
if acc > 0.96: 
    print("State-of-the-art")  
else: 
    print("Keep Tuning 
           Hyperparameters")

Standard ML Pipeline
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What are robustness evaluations?



model = train_model(x_train, y_train) 
acc, loss = model.evaluate(  
              x_test, y_test)  
if acc > 0.96: 
    print("State-of-the-art")  
else: 
    print("Keep Tuning 
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model = train_model(x_train, y_train) 
acc, loss = model.evaluate(  
              A(x_test), y_test)  
if acc > 0.96: 
    print("State-of-the-art")  
else: 
    print("Keep Tuning 
           Hyperparameters")

Adversarial ML Evaluations



How complete are evaluations?



Case Study:
ICLR 2018



Serious effort  
to evaluate 

By space, most 
papers are ½ 
evaluation 



We re-evalauted 
these defenses ...
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So what did 
defenses do?
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Lessons (1 of 2) 
what we learn from evaluations 

(and why to evaluate thoroughly)



A Brief History of Time Defenses 

  - S&P'16 - gradient masking 
  - ICLR'17 - attack objective functions 
  - CCS'17 - transferability of examples 
  - ICLR'18 - obfuscated gradients 













"Fixing" Gradient Descent

[0.1, 
0.3,
0.0,  
0.2,
0.4]



Disentangling  
true robustness  

from  
apparent robustness  

is nontrivial





Lessons (2 of 2) 
performing better evaluations









Everything the 
following papers do 
is standard practice

Actionable advice 
requires specific, 

concrete examples



Perform an 
adaptive attack







A "hold out" set is 
not an adaptive attack



Stop using FGSM 
(exclusively)



Use more than 100 
(or 1000?) iteration of 

gradient descent



Iterative attacks should 
always do better than 
single step attacks.



Unbounded optimization attacks should 
eventually reach in 0% accuracy



Unbounded optimization attacks should 
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Unbounded optimization attacks should 
eventually reach in 0% accuracy



Model accuracy should be 
monotonically decreasing



Model accuracy should be 
monotonically decreasing



✓



Evaluate against the 
worst attack



Plot  accuracy vs distortion



Verify enough iterations 
of gradient descent



Try gradient-free 
attack algorithms



Try random noise





Conclusion



Conclusion

To understand adversarial examples, 
repeatedly attack and defend, 
optimizing for lessons learned.



Questions?

nicholas@carlini.com       https://nicholas.carlini.com
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