| essons Learned from
Evaluating the Robustness of
Defenses to Adversarial Examples

Nicholas Carlin
Google Research



| essons Learned from
Evaluating the Robustness of
Defenses to Adversarial Examples



| essons Learned from
Evaluating the Robustness of
Defenses to Adversarial Examples



adversarial
perturbation

99% guacamole

88% tabby cat



HOowW do we generate
adversarial examples”






Airplane









Threat Models



A threat model Is a formal
statement defining when a
system IS Intended
to be secure.



What dataset is considered”?

Adversarial example definition®

What does the attacker know??

(model architecture” parameters?
training data”? randomness?)

f black-box: are queries allowed?



Good Threat Model:
‘RHobust when Lz distortion IS 1eSss
than 5, given the attacker has
white-box knowledge”

Claim: 90% accuracy on ImageNet



Airplane



Classified Classified
as / as



Classified Classified
as 8 as 8



Classified Classified
as / as
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A defense Is a neural network that

1. Is accurate on the test data
2. Resists adversarial examples



This talk: non-certified detenses



-Or example:
adversarial training



-Or example:
Adversarial Training

Claim:
Neural networks don't generalize



Normal [raining
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Adversarial Training (1)
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Adversarial Training (2)

Training




Or:
Thermometer Encoding

Claim:
Neural networks are "overly linear’



Solution

T(0.13)=1100000000
T(066)=1111110000
TO097)=111111111 1



Or:
Input Transformations

Claim:
Perturpbations are prittle



olution

Random
Transform



Solution

JPEG
Compress
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What does It meant to evaluate
the robustness of a defense”?



Standard ML Pipeline

mode l

train model (x

train,

Y

train)



Standard ML Pipeline

model = train model (x train, y train)

acc, loss = model.evaluate (
x test, y test)




Standard ML Pipeline

model = train model (x
acc, loss = model.eva.
X test,

F

1f acc > 0.96:

print ("State-o:
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Standard ML Evaluations

cc,

loss = mode.

.evalu

x test, v
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LES




Standard ML Evaluations

cc, loss = model.evaluate (
x test, y test)




What are robustness evaluations®?



Standard ML Evaluations

cc,

loss = mode.
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Adversarial ML Evaluations

cc,

loss = mode.
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A(x tes
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How complete are evaluations”



Case Study:
|CLR 2018



Serious effort
to evaluate

By space, most
pDapers are 2
evaluation




We re-evalauted
these defenses ...



© Out of scope




© Out of scope

© Correct Defenses



© Out of scope
© Broken Defenses
© Correct Defenses




So what did
defenses do”















Defensive Distillation is Not Robust to Adversarial Examples
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Adversarial Examples Are Not Easily Detected:
Bvnassing Ten Detection Methods

MagNet and “Efficient Defenses Against Adversarial Attacks”
are Not Robust to Adversarial Examples
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Obfuscated Gradients Give a False Sense of Security
Circumventing Defenses to Adversarial Examples
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Is Aml (Attacks Meet Interpretability)
Robust to Adversarial Examples?

Nicholas Carlini (Google Brain)

Abstract—No.

I. ATTACKING “ATTACKS MEET INTERPRETABILITY"
Aml (Attacks meet Interpretability) is an “attribute-steered”
defense [3] to detect [1] adversarial examples [2] on face-
recognition models. By applying interpretability techniques
to a pre-trained neural network, Aml identifies “important™
neurons. It then creates a second augmented neural network
with the same parameters but increases the weight activations
of important neurons. Aml rejects inputs where the original
and augmented neural network disagree.

We find that this defense (presented at at NeurIPS 2018 as
a spotlight paper—the top 3% of submissions) is completely
ineffective, and even defense-oblivious' attacks reduce the
detection rate to 0% on untargeted attacks. That is, Aml is no
more robust to untargeted attacks than the undefended original
network. Figure 1 contains examples of adversarial examples
that fool the Aml defense. We are incredibly grateful to the
authors for releasing their source code’* which we build on’.
We hope that future work will continue to release source code
by publication time to accelerate progress in this field.

A. Evaluation
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Lessons (1 of 2)
what we learn from evaluations
(and why to evaluate thoroughly)



A Brief History of Hme Defenses

- S&P'16 - gradient masking

- |CLR'17 - attack objective functions
- CCS'17 - transferability of examples
- |CLR'18 - obfuscated gradients
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Disentangling
true robustnhess
from

apparent robustness
'S nontrivial







Lessons (2 of 2)
performing better evaluations
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ON EVALUATING ADVERSARIAL ROBUSTNESS

Nicholas Carlini', Anish Athalye?, Nicolas Papernot!, Wieland Brendel®, Jonas Rauber?,
Dimitris Tsipras?, Ian Goodfellow!, Aleksander Madry?, Alexey Kurakin!~

I Google Brain 2 MIT ° University of Tiibingen






Actionable advice
requires specific,
concrete examples

cverytning the
following papers do
'S standard practice



the adversary has access to those networks (but does not have
access to the input transformations applied at test time).

2The white-box attacks defined in this paper should be called oblivious
attacks according to Carlin1 and Wagner’s definition [3]

an adversary gains

access to all parameters and weights of a model that is trained
on benign images, but is unaware of the defense strategy.

Perform an
agaptive attack
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an AUC-ROC of 98.79% against Adaptive-CW-L;, with
N 30 and « 1,006 for a sct of unseen test-samples
(1024 pre-test) and the correspoading ad ] examples
In contrast 10 other defenses that are vuls le to Adaptive-
CW { & Wagner, 2017a), we find that NewralF P

15 robust even under this whitebox-attack threat model

4. Related Work

3.1. Effectiveness

3.1. Effectiveness

Adversarial Attacks. We test on the following attacks:

5. Discussion and Future Work

3.4, Robustness to Adaptive Whitebox-Attackers

cf ICr consades .u".:,'ﬂ.\.‘ attacker that has knowl-
¢ of the predetermined fingerprints and mode]l weaghts,
imilar to (C & Wagr 17a). Here, the adaptive
! er (/ tive-CW-L.) trics to find an ersanal ex-
ample =" tha also mimimizes 3oy loss, atacking
a CIFAR-10 model trained with NewralFP. To this end, the
CW-L; objective is modified as

min r'lls 4 Lew (2') + Lo (2. 97, 6:0)) (29
Here, y* 1s the label-vector, + 10 7,10" is & scalar
found through a bisection scarch, L, is the fingerpeint-loss
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.1. Effective |
L L
Adversarial Attacks. We test on the following attacks: -
5. Discussion and Future Work
3.4. Robustness to Adaptive Whitebox-Attackers




We now evaluate on two held out L attacks

A "hold out” set Is
Not an adaptive attack



To create adversarial examples 1n our evaluation, we use FGSM,

For the next series of experiments, we test
against the Fast Gradient Sign Method

In our experiment, we use the Fast Gradient Sign Method (FGSM)

TABLE 4: Performance of detecting FGSM adversarial

examples with different scalar quantization schemes.

Stop using FGSM
(exclusively)




e Number of attack steps: 10

experiments on CIFAR used
e = 0.031 and 7 steps for iterative attacks;

Use more than 100
(or 10007) iteration of
gradient descent



| Model | FGSM | PGD

terative attacks should
always do better than
single step attacks.



Attack Parameter Fooling Rate  Detection Rate

DeepFool 99.35% 97.83%
Carlini k=0.0 100.0% 95.66%

Unbounded optimization attacks should
eventually reach in 0% accuracy



Unbounded optimization attacks should
eventually reach in 0% accuracy



—— clean iImages

Unbounded optimization attacks should
eventually reach in 0% accuracy



Vlodel accuracy should be
monotonically decreasing



Vlodel accuracy should be
monotonically decreasing






Model

R110k
R110p (Ours)

clean
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step_l1
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(a) MNIST, /., norm

Plot accuracy vs distortion



MaxlIter Modell Model2 Model3d Modeld

Natural 99.1% 98.5% 98.7% 98.2%
100 70.2% 01.7% T77.6% 75.6%

1000 0.05% 51.5% 20.37% 24.4%

10K 70 16.0% 20.1% 24.4%
100K 9.8% 20.1% 24.4%
1M 0% 7.6% 20.1% 24.4%

Verity enough iterations
of gradient descent



By using a gradient-free method, we are able

to attack the end-to-end model, despite the lack of an ana-
lytic gradient.

Try gradient-free
attack algorithms



Performance of broken adyersarial defenses in noise

uracy

trained on noise
Ditdepth reduction

®  peqg compression

-

pixel deflection
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* tv-minimize
@ represenation guided denoiser
randomization paper
l l
0.10 J.1 0.20

Noise scale

Try random







Conclusion



Conclusion

lo understand adversarial examples,
repeatedly attack and defend,
optimizing for lessons learned.



Questions?

nicholas@carlini.com https://nicholas.carlini.com
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