Nicholas Carlini Google Research

adversarial perturbation

88% tabby cat

99% guacamole

How do we generate adversarial examples?

Truck

Airplane

Threat Models

A threat model is a **formal** statement defining when a system is intended to be secure.

What dataset is considered? Adversarial example definition?

What does the attacker know? (model architecture? parameters? training data? randomness?)

If black-box: are queries allowed?

Good Threat Model "Robust when L₂ distortion is less than 5, given the attacker has white-box knowledge"

Claim: 90% accuracy on ImageNet

Airplane

Classified as 7

Classified as 1

Classified as 8

Classified as 8

Classified as 7

Classified as 1

A defense is a neural network that

Is accurate on the test data Resists adversarial examples

This talk: non-certified defenses

For example: adversarial training

For example: Adversarial Training

Claim: Neural networks don't generalize

Normal Training

Training

Adversarial Training (1)

Attack

Adversarial Training (2)

Training

Thermometer Encoding

Claim: Neural networks are "overly linear"

Solution T(0.66) = 1111110000T(0.97) = 11111111111111

Input Transformations

Claim: Perturbations are brittle

Solution

Solution

What does it meant to evaluate the robustness of a defense?

model = train model(x train, y train) acc, loss = model.evaluate(x test, y test) if acc > 0.96. print("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

Standard ML Pipeline

model = train model(x train, y train) acc, loss = model.evaluate(x test, y test) if acc > 0.96. print("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

Standard ML Pipeline
model = train model(x train, y train) acc, loss = model.evaluate(x test, y test)

- if acc > 0.96: print("State-of-the-art")
- else:
 - print ("Keep Tuning

Standard ML Pipeline

Hyperparameters"

Standard ML Evaluations

model = train model(x train, y train) acc, loss = model.evaluate(x test, y test) if acc > 0.96. print ("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

Standard ML Evaluations

model = train model(x train, y train) acc, loss = model.evaluate(x_test, y_test) if acc > 0.96. print ("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

What are robustness evaluations?

Standard ML Evaluations

model = train model(x train, y train) acc, loss = model.evaluate(x test, y test) if acc > 0.96. print ("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

Adversarial ML Evaluations

model = train model(x train, y train) acc, loss = model.evaluate(A(x test), y test) if acc > 0.96. print ("State-of-the-art") else: print ("Keep Tuning Hyperparameters")

How complete are evaluations?

Case Study: ICLR 2018

Serious effort to evaluate

By space, most papers are 1/2 evaluation

We re-evalauted these defenses ...

Out of scope

Out of scope

Correct Defenses

Out of scope Broken Defenses **Correct Defenses**

So what did defenses do?

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

Abst

We sh more unpro 1 It is they sive d to ma versar In t tillatio ificati ample strate Dis adver inputs attack magni two of

achiev of ima

2 H 2.1

We as sarial briefly Let param last 1 layer $F(\theta, x)$ cation proba $C(\theta, z)$ tion o we ar greyse

ABSTRAC

fact not. Finally

future propose

1 INTRO

Recent years h

Neural netwo

driving force b

been demonstr

[38], to beating

In this pape

sification. Wh

learning appro

who attempts t

x, an adversar

has a different

adversarial ex

nearly all dom

proposing mar

ples correctly

these defenses

Due to this

detect them in

seven papers

pare their effic

With new atta

evaded by an a

datasets, the a

Permission to mal

classroom use is gi

for profit or commo

on the first page. (

author(s) must be l

republish, to post o

and/or a fee. Requ

AISec'17, Novembe

© 2017 Copyright

tion for Computin

ACM ISBN 978-1-4

https://doi.org/10.1

correctly.

The researc

cars [6].

Neural netwo ples: inputs the In order to bet survey ten reco pare their effic new loss funct nificantly har properties bel

Abstract

MagNet and posed as a d we can cons defenses wit

1 Introd

It is an oper they will be cently, three networks rob

- MagNe neural r through ial exar to lie o rectly, v the data classific the whi MagNe adversa the para rameter
- An effi neural r amples during function but clai

ent maskii sense of s examples gradients based atta effect can teristic be and for ea dients we to overco certified w we find ob rence, wit gradients. vent 6 cor threat mo

We identi

1. Introduct

In response to t sarial example there has been s fenses to increa progress has b against adversa the adversary solution has no As benchmark tacks (e.g., Ki Advers: Carlini & Wag

Neural netv adversarial two white-2018 and fir existing tec of the defer

1. Introduction

Training neural sarial examples (Two defenses that this problem: "I Deflection" (Pral versarial Attacks Denoiser" (Liao

In this note, we in the white-box examples that re ImageNet datas a small ℓ_{∞} pert considered in the A. Evaluation

Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples

On the Robustness of the CVPR 2018 White-Box Adversarial Example Defenses

Is AmI (Attacks Meet Interpretability) Robust to Adversarial Examples?

Nicholas Carlini (Google Brain)

Abstract-No.

I. ATTACKING "ATTACKS MEET INTERPRETABILITY"

AmI (Attacks meet Interpretability) is an "attribute-steered" defense [3] to detect [1] adversarial examples [2] on facerecognition models. By applying interpretability techniques to a pre-trained neural network, AmI identifies "important" neurons. It then creates a second augmented neural network with the same parameters but increases the weight activations of important neurons. AmI rejects inputs where the original and augmented neural network disagree.

We find that this defense (presented at at NeurIPS 2018 as a spotlight paper-the top 3% of submissions) is completely ineffective, and even defense-oblivious1 attacks reduce the detection rate to 0% on untargeted attacks. That is, AmI is no more robust to untargeted attacks than the undefended original network. Figure 1 contains examples of adversarial examples that fool the AmI defense. We are incredibly grateful to the authors for releasing their source code² which we build on³. We hope that future work will continue to release source code by publication time to accelerate progress in this field.

are Not Robust to Adversarial Examples

MagNet and "Efficient Defenses Against Adversarial Attacks"

Lessons Learned from Evaluating the Robustness of Defenses to Adversarial Examples

Lessons (1 of 2) what we learn from evaluations (and why to evaluate thoroughly)

A Brief History of **Time** Defenses

- S&P'16 - gradient masking
- ICLR'17 - attack objective functions
- CCS'17 - transferability of examples
- ICLR'18 - obfuscated gradients

"Fixing" Gradient Descent

[0.1, 0.3, 0.0, 0.2, 0.4]

Disentangling true robustness from apparent robustness is nontrivial

Lessons (2 of 2) performing better evaluations

Cumulative Number of Versarial Example Papers	1000 -			
	600 - 400 -			
	200 -			
Adv	0 -			
		2014	2015	20

On Evaluating Adversarial Robustness

Nicholas Carlini¹, Anish Athalye², Nicolas Papernot¹, Wieland Brendel³, Jonas Rauber³, Dimitris Tsipras², Ian Goodfellow¹, Aleksander Mądry², Alexey Kurakin¹*

¹ Google Brain ² MIT ³ University of Tübingen

Actionable advice requires specific, concrete examples

Everything the following papers do is standard practice

the adversary has access to those networks (but does not have access to the input transformations applied at test time).

attacks according to Carlini and Wagner's definition [3]

on benign images, but is unaware of the defense strategy.

- ²The white-box attacks defined in this paper should be called oblivious
- an adversary gains access to all parameters and weights of a model that is trained
 - Perform an adaptive attack

3.1. Effectiveness

3.4. Robustness to Adaptive Whitebox-Attackers

We further considered an adaptive attacker that has knowledge of the predetermined fingerprints and model weights, similar to (Carlini & Wagner, 2017a). Here, the adaptive attacker (Adaptive-CW-L2) tries to find an adversarial example x' that also minimizes the fingerprint-loss, attacking a CIFAR-10 model trained with NeuralFP. To this end, the CW-L2 objective is modified as:

$$\min ||x - x'||_2 + \gamma (L_{CW}(x') + L_{fp}(x', y^*, \xi; \theta)) \quad (29)$$

Here, y^* is the label-vector, $\gamma \in [10^{-3}, 10^6]$ is a scalar found through a bisection search, $L_{\rm fp}$ is the fingerprint-loss we trained on and $L_{\rm CW}$ is an objective encouraging misclassification. Under this threat model, NeuralFP achieves an AUC-ROC of 98.79% against Adaptive-CW-L2, with N = 30 and $\epsilon = 0.006$ for a set of unseen test-samples (1024 pre-test) and the corresponding adversarial examples. In contrast to other defenses that are vulnerable to Adaptive-CW-L2 (Carlini & Wagner, 2017a), we find that NeuralFP is robust even under this whitebox-attack threat model.

4. Related Work

5. Discussion and Future Work

We now evaluate on two held out L_0 attacks

A "hold out" set is not an adaptive attack

To create adversarial examples in our evaluation, we use FGSM,

For the next series of experiments, we test against the Fast Gradient Sign Method

In our experiment, we use the Fast Gradient Sign Method (FGSM)

examples with different scalar quantization schemes.

TABLE 4: Performance of detecting FGSM adversarial

Stop using FGSM (exclusively)

Number of attack steps: 10

experiments on CIFAR used $\varepsilon = 0.031$ and 7 steps for iterative attacks;

Use more than 100 (or 1000?) iteration of gradient descent

Iterative attacks should always do better than single step attacks.

Attack Parameter

DeepFool Carlini

 $\kappa = 0.0$

Unbounded optimization attacks should eventually reach in 0% accuracy

Fooling Rate Detection Rate

99.35% 100.0% 97.83% 95.66%

Unbounded optimization attacks should eventually reach in 0% accuracy

Unbounded optimization attacks should eventually reach in 0% accuracy

Model accuracy should be monotonically decreasing

Model accuracy should be monotonically decreasing

Model	clean	step_11		step_FGSM		iter_FGSM		CW	
	Uluul	<i>ϵ</i> =2	<i>ϵ</i> =16	<i>ϵ</i> =2	<i>ϵ</i> =16	<i>ϵ</i> =2	<i>ϵ</i> =4	<i>ϵ</i> =2	<i>ϵ</i> =4
R110 _K	92.3	88.3	90.7	86.0	95.2	59.4	9.2	25	4
$R110_{P}$ (Ours)	92.3	86.0	89.4	81.6	91.6	64.1	20.9	32	7
R110 _E	92.3	86.3	74.3	84.1	72.9	63.5	21.1	24	6
$R110_{K,C}$ (Ours)	92.3	86.2	72.8	82.6	66.7	69.3	33.4	20	5
$R110_{P,E}$ (Ours)	91.3	84.0	65.7	77.6	54.5	66.8	38.3	38	16
$R110_{P,C}$ (Ours)	91.5	85.7	76.4	82.4	69. 1	73.5	42.5	27	15

Evaluate against the worst attack

Plot accuracy vs distortion

MaxIter	Model1	Model2	Model3	Model4
Natural	99.1%	98.5%	98.7%	98.2%
100	70.2%	91.7%	77.6%	75.6%
1000	0.05%	51.5%	20.3%	24.4%
10K	0%	16.0%	20.1%	24.4%
100K	070	9.8%	20.1%	24.4%
1M	0%	7.6%	20.1%	24.4%

Verify enough iterations of gradient descent

By using a gradient-free method, we are able to attack the end-to-end model, despite the lack of an analytic gradient.

Try gradient-free attack algorithms

Iry random noise

Performance of broken adversarial defenses in noise 0.20 0.25 0.30 0.35 0.40 Noise scale

Conclusion

To understand adversarial examples, repeatedly attack and defend, optimizing for lessons learned.

Conclusion

Questions?

nicholas@carlini.com

https://nicholas.carlini.com

