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Generalization bounds for DNNs

Substantial progress in theoretical analysis of the generalization of
deep learning models [Zhang et al., 2016, Dziugaite and Roy, 2017,
Bartlett et al., 2017, Neyshabur et al., 2017, 2018, Arora et al., 2018,
Neyshabur et al., 2019].

[Bartlett, 1998]: Even if there are many parameters, the set of models
computable using weights with small magnitude is limited enough to
provide leverage for induction [Bartlett et al., 2017, Neyshabur et al.,
2018].

There is a tendency for these algorithms to produce small weights
(implicit bias in deep learning). [Gunasekar et al., 2017, 2018,, Ma
et al., 2018].
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Distance to initialization

Generalization bounds in terms of the distance from the initial setting
of the weights instead of the size of the weights [Bartlett et al., 2017,
Neyshabur et al., 2019].

Small initial weights may promote vanishing gradients; Instead,
choose initial weights that maintain a strong but non-exploding signal
as computation flows through the network [LeCun et al., 2012, Glorot
and Bengio, 2010, Saxe et al., 2013, He et al., 2015].

For a large network initialized in this way, a variety of well-behaved
functions can be found through training by traveling a short distance
in parameter space [Du et al., 2019,, Allen-Zhu et al., 2019].

The distance from initialization may be expected to be significantly
smaller than the magnitude of the weights. Furthermore, there is
theoretical reason to expect that, as the number of parameters
increases, the distance from initialization decreases.
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Generalization bounds for CNNs

Convolutional layers are used in all competitive deep neural network
architectures applied to image processing tasks.

The most influential generalization analyses in terms of distance from
initialization have so far concentrated on networks with fully
connected layers.

A convolutional layer has an alternative representation as a fully
connected layer, earlier analyses apply in the case of convolutional
networks

But, intuitively, the weight-tying employed in the convolutional layer
constrains the set of functions computed by the layer.

This additional restriction should be expected to aid generalization.
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Summary of Our Results

Our bounds are in terms of

∗ the training loss,

∗ the number of parameters

∗ the Lipschitz constant of the loss

∗ distance from the weights to the initial weights.

They are independent of

∗ the number of pixels in the input,

∗ the height of hidden feature maps;

∗ the width of hidden feature maps;

The first supervised learning bounds for deep convolutional networks with
this property.
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Recap: Convolution

∀ij, Yij =
∑
p∈[n]

∑
q∈[n]

Xi+p,j+qKp,q

5/ 27



Convolution: A linear Operator

1D Convolution

∀i, Yi =
∑
p∈[n]

Xi+pKp

Operator matrix A = op(K)
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Convolution: A linear Operator

2D Single channel Convolution

Yij =
∑
p∈[n]

∑
q∈[n]

Xi+p,j+qKp,q

A =


circ(K0,:) circ(K1,:) . . . circ(Kn−1,:)

circ(Kn−1,:) circ(K0,:) . . . circ(Kn−2,:)
...

...
...

...
circ(K1,:) circ(K2,:) . . . circ(K0,:)


= op(K)
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Spectral Analysis of Convolution [Sedghi et al., 2019]

Analyzed 2D multi-channel convolution.

Proposed simple, efficient algorithm to find the spectrum.

Proposed upper bounds for spectral norm of 2D multi-channel
convolution.

Proposed an algorithm for projecting a convolutional layer onto an
operator-norm ball.

Can be extended to 3D multi-channel convolution.

H. Sedghi, V. Gupta and P. Long, The Singular Values of Convolutional Layers, ICLR 2019
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Bounds for a basic setting

Zero-padding, pooling, the activations are 1-Lipschitz and
nonexpansive (e.g, ReLU, tanh)

Input x ∈ Rd×d×c, ‖ vec(x)‖ ≤ 1.

Number of channels c, Kernels K(i) ∈ Rk×k×c×c, ∀i ∈ [L]

W = Lk2c2 total no. of parameters

Loss function ` : R× R→ [0, 1], `(·, y) is λ-Lipschitz for all y.

|| op(K
(i)
0 )||2 = 1, ∀i ∈ [L]

||K −K0||σ
def
=
∑L

i=1 || op(K(i))− op(K
(i)
0 )||2.

Fβ = {fK : ||K −K0||σ ≤ β}.
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Bounds for a basic setting

Theorem (Basic bounds)

For any η > 0, there is a C > 0 such that for any β ≥ 5, λ ≥ 1, δ > 0, for
any joint probability distribution P over Rd×d×c × R, if a training set S of
n examples is drawn independently at random from P , then, with
probability at least 1− δ, for all f ∈ Fβ,

Ez∼P [`f (z)] ≤ (1 + η)ES [`f (z)] +
C(W (β + log(λn)) + log(1/δ))

n

and

Ez∼P [`f (z)] ≤ ES [`f (z)] + C

√
W (β + log(λ)) + log(1/δ)

n
.
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Tools and Proof Outline

Definition

For d ∈ N, a norm over Rd is full if its unit ball has positive volume.

Definition

For d ∈ N , a set G of functions with a common domain Z, we say that G
is (B, d)-Lipschitz parameterized if there is a full norm || · || on Rd and a
mapping φ from the unit ball w.r.t. || · || in Rd to G such that, for all θ
and θ′ such that ||θ|| ≤ 1 and ||θ′|| ≤ 1, and all z ∈ Z,
|(φ(θ))(z)− (φ(θ′))(z)| ≤ B||θ − θ′||.
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Tools and Proof Outline

Lemma [Vapnik and Chervonenkis, 1971, Vapnik, 1982, Pollard, 1984,
Giné and Guillou, 2001]
A set G of functions g : Z → [0,M ] is (B, d)-Lipschitz parameterized.
Then, for any η > 0, there is a C such that, for all large enough n ∈ N, for
any δ > 0, with probability at least 1− δ, for all g ∈ G,

Ez∼P [g(z)] ≤ (1 + η)ES [g] +
CM(d log(Bn) + log(1/δ))

n

and

Ez∼P [g(z)] ≤ ES [g] + CM

√
d logB + log(1/δ)

n
.

We show `Fβ is
(
βλeβ,W

)
-Lipschitz parameterized.
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A closer look

The old [Vapnik and Chervonenkis, 1971, Vapnik, 1982, Pollard, 1984]

Ez∼P [g(z)] ≤ (1 + η)ES [g] +
CM(d log(Bn) + log(1/δ))

n

The newer! [Giné and Guillou, 2001]

Ez∼P [g(z)] ≤ ES [g] + CM

√
d logB + log(1/δ)

n
.

The secret?

When using covering bounds of the form
(
B
ε

)d
, they paid particular

attention to the dependence of the resulting generalization bound on
B.
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Lipschitz Parametrization

Parameter change in one layer

` is λ-Lipschitz w.r.t. its first argument,
|`(fK(x), y)− `(fK̃(x), y)| ≤ λ|fK(x)− fK̃(x)|,
Bound |fK(x)− fK̃(x)|.

fK = gdown ◦ fop(K(j)) ◦ gup.

u = gup(x), ‖u‖ ≤
∏
i<j

∥∥∥op(K(i))
∥∥∥
2
.

|fK(x)− fK̃(x)| = |gdown(op(K(j))u)− gdown(op(K̃(j))u)|

≤

∏
i 6=j

∥∥∥op(K(i))
∥∥∥
2

∥∥∥op(K(j))− op(K̃(j))
∥∥∥
2

≤

∏
i 6=j

(1 + βi)

∥∥∥op(K(j))− op(K̃(j))
∥∥∥
2
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Lipschitz Parametrization

Parameter change in one layer

|`(fK(x), y)− `(fK̃(x), y)| ≤ λ
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2
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triangle inequality
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Comparison to [Bartlett et al., 2017]

Parametrize convolution as fully connected

h.p bound on Ez∼P [`f (z)]− ES [`f (z)].

Simplify: Initialization computes Identity, K = K0 + ε1

Our bound

c3/2kL+ ck
√

log(λ) +
√

log(1/δ)√
n

.

[Bartlett et al., 2017] bound

(c+ 1)L
√
cd(d/k)3/2L3/2λ log(dcL) +

√
log(1/δ)√

n

In this scenario, the new bound is independent of d, and grows more
slowly with λ, c and L.
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A more general setting

Zero-padding, pooling activations are nonexpansive (e.g., ReLU ,
tanh)

Lc convolutional layers, Lf fully connected layers.

x ∈ Rd×d×c, ‖ vec(x)‖ ≤ χ, and y ∈ Rd×d×c,

`(·, y) is λ-Lipschitz for all y and that `(ŷ, y) ∈ [0,M ] for all ŷ and y.

|| op(K
(i)
0 )||2 ≤ 1 + ν, and for all fully connected layers i,

||V (i)
0 ||2 ≤ 1 + ν.
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A more general setting

Notation

V (i): weights for the ith fully connected layer.

Θ = (K(1), ...,K(Lc), V (1), ..., V (Lf )) all parameters

L = Lc + Lf .

||Θ−Θ̃||N =
(∑Lc

i=1 || op(K(i))− op(K̃(i))||2
)

+
∑Lf

i=1 ||V (i)− Ṽ (i)||2.

Fβ,ν = {fΘ : ||Θ− Θ̃||N ≤ β}.
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General bound

Theorem (General Bound)

For any η > 0, there is a constant C such that the following holds. For
any β, ν, χ > 0 such that χλβeβ ≥ 5, for any δ > 0, for any joint
probability distribution P over Rd×d×c × Rm such that, with probability 1,
(x, y) ∼ P satisfies || vec(x)||2 ≤ χ, if a training set S of n examples is
drawn independently at random from P , then, with probability at least
1− δ, for all f ∈ Fβ,ν ,

Ez∼P [`f (z)] ≤ (1 + η)ES [`f (z)] +
CM (W (β + νL+ log(χλβn)) + log(1/δ))

n

and,

Ez∼P [`f (z)] ≤ ES [`f (z)] + CM

√
W (β + νL+ log(χλβ)) + log(1/δ)

n
.
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Corollary

||K −K0||σ ≤ || vec(K)− vec(K0)||1 [Sedghi et al., 2019].

Same bounds can be reached if the definition of Fβ is replaced with
the analogous definition using || vec(Θ)− vec(Θ̃0)||1.

Bound holds uniformly for models at a distance β from initialization –
can be modified using standard techniques to get nonuniform bound
in terms of distance.
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Another Comparison: Fully connected case

D = cd2, each hidden layer has D components, D classes.

For all i, V
(i)
0 = I and V (i) = I +H/

√
D, H is a Hadamard matrix.

Each layer V , ||V ||2 = 2, ||V − V0||2 = 1, ||V − V0||2.1 = D.

Our bound
DL+D

√
L log(λ) +

√
log(1/δ)√

n

[Bartlett et al., 2017] bound

λ2LL3/2D ln(DL) +
√

log(1/δ)√
n
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Experiments: CIFAR10

Setting

VGG style 10-layer all-convolutional model

CIFAR10 dataset

dropout, exponential learning rate schedule.

repeatedly trained for different values of batch size and initial learning
rate.

Generalization gap
def
= Difference between train and test error
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Generalization gap

Figure: Generalization gaps for a 10-layer all-conv model on CIFAR10 dataset.
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Generalization gap as a function of W

We increase no. of parameters by making the network wider.

As the network becomes more over-parametrized,the generalization gap
remains almost flat.
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Distance to initialization as a function of W

(a) mean and error bar (b) median

Figure: ||K −K0||σ as a function of W .

Increasing W leads to a decrease in value of ||K −K0||σ.
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Experiments: Role of input size

Downsampled CIFAR-10 images from 32× 32 to 16× 16

Figure: Generalization gaps of 10-layer conv models

Generalization gap does not depend on the input size.
Our bounds capture this.
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Conclusion and Future Work

First size-free generalization bounds for deep CNN models.

Our analysis applies to practical architectures.

The activation functions and pooling operators can have larger
Lipschitz constants.

Many variants of our bounds are possible.

We have chosen to present relatively simple and interpretable bounds.
bounds in terms of Lipschitz constants of subnetworks which are
bounded above by eβ .

Future work: use the insights for better training.

Pre-print available on arXiv.

Thank You!
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[8] Evarist Giné and Armelle Guillou. On consistency of kernel density estimators for randomly censored data: rates holding
uniformly over adaptive intervals. In Annales de l’IHP Probabilités et statistiques, volume 37, pages 503–522, 2001.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256, 2010.

[10] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit regularization
in matrix factorization. In Advances in Neural Information Processing Systems, pages 6151–6159, 2017.

[11] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization
geometry. arXiv preprint arXiv:1802.08246, 2018.

[12] Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on linear convolutional
networks. In Advances in Neural Information Processing Systems, pages 9461–9471, 2018.

28/ 27



References II

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.
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