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Sample-Efficiency Challenge i RL

Trials and errors:
> Try the current strategy and collet feedbacks
> Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)?
> Model-based RL

> Imitation learning from expert demonstrations
> Multi-task, lifelong, continual RL

> Hierarchical RL

> Safe RL

> ...




Backgrounds and Terminologies

(on Continuous State-Space, Deterministic Dynamics)

> Timet =0,..,T(x o)
> State s, € R%; action a, € R¥

> e.g., state = location of arm;
action = desired movement

» Unknown dynamics/environment M™: s, = M™(s¢, a;)

» Trajectory:

> Policy m: states — actions

> Reward r(s;, a;) € R
> Expected payoff of a policy:

ﬂ(lﬁo) ;) 7ds;) mdss3)

V™= Eg)~p,, [R(Sq, ag) + R(sy,a1) + R(s3,a3) + -]



Model-Based Keinforcement Learning

> Learn the dynamics M™ somewhat explicitly

» Standard model-based RL algorithm:

Repeat:
1. Sample trajectories from real dynamics M™* using current policy
Sog ~ DSO — S§§ —> Sy —> S3 —> Sy ree

2. Learn a dynamical model using existing trajectories
: 2
mﬂ}ln2| IM(s¢, ar) — Seall3

3. Find a good policy for the learned dynamics M

> Does not cost real samples; any RL algo. may be used as a
blackbox




3. Planning the vacation at home
1. Go, enjoy, and explore

2. Keep notes on the good restaurants

Repeat:
1. Sample trajectories from real dynamics M™* using current policy

SO NDSO —> Sl —> S2 — 53 —_ 54 ......

2. Learn a dynamical model using existing trajectories
: 2
mIVIInZI IM(s¢, at) — Seqall2

3. Find a good policy for the learned dynamics M

> Does not cost real samples; any RL algo. may be used as a
blackbox




Challenges in Analyzing Deep Model-Based RL

» High-dimensional state and action space
» Non-linear dynamics M, policy T parameterized by neural networks

» Goal: an analyzable algorithm with # samples polynomial in dimension
(assuming some computational oracles)

Prior work

> Finite state space: [Jaksch et al., 2010; Bartlett & Tewari, 2009; Fruit et
al., 2018; Lakshmanan et al., 2015; Hinderer, 2005; Pirotta et al., 2015;
2013)

> Linear dynamics: [Abbasi-Yadkori & Szepesvari, 2011; Simchowitz et al.,
2018; Dean et al., 2017; Sutton et al., 2012; Tamar et al., 2012]

> Sample complexity result: [Sun et al.’2017]



Challenges 1n Analyzing Deep Model-Based RL (Cont'd)

> Issue: the learned dynamics are not accurate for those states unseen in
training trajectories

> Exploitation: only go to places that the dynamics is certain

> Exploration: improve the certainty of the model by trying diverse
policies

S1 S2
. . . SO - 4_—_*
testing predictions ‘\ %54 oredicted traj.

on a different policy T N— L T . .
¥ fore} — {raining traj.

(- )\ on real dynamics



R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

> Explore a policy if it is good for some reasonable dynamics



R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

Q1: how do we express the constraint for non-linear models?

> confidence intervals for finite state space or linear models; not
feasible for neural nets



R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

Q2: how do we measure the “consistency”?

> how do we measure the errors of the learned dynamics?



The Same Prediction Loss Could Mean Very Differently For
Different States and Actions




Our Idea

|deal loss for M =~ error of predicting future payoff using M

|VTL',M _ VTL',M*l

/ AN

total payoff on total payoff on true
estimated dynamics M dynamics M*

> Design an upper bound of the ideal loss and use it as a surrogate loss or
a consistency measure

VoM — M| < D(M, )

> A dynamics M has low loss (is consistent with existing data) if M can
predict the real reward with small error upper bound D (M, 1)

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees
Luo-Xu-Tian-Darrell-M. 19]



Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics « argmax ymM
T,

st M , it _— : :

s.t., D(m,M) < €

> {M:D(m,M) < €} is a confidence region depending on
and the reward function

> Next: absorb the constraint in the objective




Meta-Rlgorithm for Medel-Based RL with Convergence
Guarantees

Fromk =1toT:
1. Sample trajectories using 7y, build upper bound Dy, (T, M)

M
2. Mpy1, Tey1 = argmax, 5, V™" — Dy, (m, M)

 —~m —
~

lower bound of real reward := L(M, )

Theorem: Assume the model family contains M*, and the inner
optimization is solvable, then,

LM < yT2M* < ... < yrrM* < ..

* . *
and V™M" converges to a local maximum of V™"




Meta-Rlgorithm for Medel-Based RL with Convergence
Guarantees

Fromk =1toT:
1. Sample trajectories using 7y, build upper bound Dy, (T, M)

M
2. Mpy1, Tey1 = argmax, 5, V™" — Dy, (m, M)

 —~m —
~

lower bound of real reward := L(M, )




Optimizahle Upper Bounds of Ideal Loss

> Design an upper bound of the ideal loss

|V1I,M _

VTL',M*

| S Dﬂref(M' T[)

Lemma:
|V7T,M . V7T,M*| S

E

(s,a,8")~m,M*

V(M (s, a)) = VT (S]]

\

N\

> (s,a,s’) shorthand for (s¢, as, S¢+1) > VM(s): = the total payoff

> Issue: requires samples from the
environment to estimate the loss

of the policy on dynamics M
starting from state s

- VM = Eg VM (5,)]



Optimizahle Upper Bounds of Ideal Loss (Cont'd)

Improved Lemma: =D (M,m)
ref ¢
V7 that is close to mqf : /\
* - N
’Vﬂ',M . Vﬁ,]\/f | S D [|V7T’A[(M<S, Cl)) . Vﬂ',ﬂ[(sl)u
(s,a,8')~Trrer, M*

> Upper bound can be re-used if m doesn’t change much

» Recovers the norm-based loss, if V"M is Lipschitz w.rt || - ||

Dp..(M,m) < E |M(s,a) — s'||[=—— Nosquare

(s,a)~mg, M* compared to MSE

Tref

> Inspires a practical algorithm (SLBO) that uses ¥, loss (not MSE) and
optimizes the objective with SGD

» no optimism is practically needed though



Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts

Ilteration 10



Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts
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Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts

Ilteration 210



Evaluations on MujeCo Benchmark Tasks
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> Outperforms prior works when 1M (or fewer) samples are permitted

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees
Luo-Xu-Tian-Darrell-M. 19]



Follow-up: Model-based Multi-task R

Setting: A single robot, but multiple tasks
> e.g., humanoid runs with different speeds and directions

» Our algo.: learns a dynamics shared across tasks sequentially
> Amortized sample costs over tasks

> Prior work: MAML (model-agnostic meta-learning)
> Learns a shared policy that can be adapted to tasks

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.19]



Average return

-----------------------------------------------
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Tasks: running with random velocities in the interval/region

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.19]



Imitation Learning

> RL from scratch alone may still be not sample-efficient enough

> Imitation learning: learning from (human) experts demonstration

Formulation:

> experts run a policy 1, to collect trajectories
@ @) @ 0 "
R = {(SO Ay, ""ST‘l’aT—l’ST)}i=1
> we learn a policy from R with or without additional samples



R Classic Algorithm: Behavioral Cloning

> Supervised learning on demonstrations

R = {(S(gi)' a(()i)' e S;izr ag"izl’ ST)}:;

> Fit a policy mgc such that g (S,fi)) ~ agi)
> Well-known issue: distribution drift and cascading errors

" goal  demonstration
states set:=U

far from the distribution
of demonstration states;
no guarantees



Rnother Attempt: Learning Value Functions from Demonstrations
> Recall V™e(s): = total payoff of expert policy starting from s

> If s € demonstration states U, we know V™ e(s)
> Attempt: learn V™e by supervised learning on ‘U

> Same issue: V™e extrapolates falsely outside ‘U
goal

_— demonstrations

| ]

» Correct values on U

— : S > Wrong values outside U

4



Our Idea: Learning a Better Value Function (and Use 1t Correct
Mistakes of Behavioral Cloning)

> Key: the value V™e(s) should be relatively smaller for s € U

» = following the value function leads us back to U

falsely-extrapolated conservatively-extrapolated

| ]

o



Theoretical Results

> Conservatively-extrapolated value function I/:
V(s) =V7™(s) £ oy, ifsel
V(s) =V7T(ly(s)) — Alls — Iy (s) | + ov if s ¢ U

Theorem (informal): Assume the access to an approximate model M.
Then, the policy induced from a conservatively-extrapolated value I/

(below) stays close to ‘U and has good performance:

n(s) = argmaxV(M(s,a))

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling
Luo-Xu-M. 19]



Theoretical Results (Cont'd)

> Note: dynamics may be hard to learn from demonstrations (can only
expect it to work around expert actions)

model M approximately correct
near the demonstration

Theorem (informal): Assume the access to an-appreximate-medel-M.

Then, the policy induced from a conservatively-extrapolated value V

(below) stays close to ‘U and has good performance:

ﬂ(SJ;a#g?aX—ll@él-ésra})
w(s) = argm?u)( V(M(s,a))
a:||la—mpc(s)]|<€




Experiments

> Learn conservatively-

extrapolated value functions
with a heuristic borrowed from

NLP, negative sampling

VINS (ours) BC
Reach 100 100 + 0% 100 + 0%
Pick 100  75.7+1.0% 668+ 1.1%
Pick 200 84.0+0.5% 82.0 +0.8%
Push 100  44.0+1.5% 373+ 1.1%
Push200 55.2+0.7% 51.3+0.6%

v
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n

v
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n

> Initialize an RL algorithm (that
takes additional samples) with
value function, policy, and
dynamics learned from
demonstrations

Pick-And-Place Push
1.00 .
0.75«rﬂ\/‘W .
0.50
9
0.25 VINS+RL (ours) § 0.25 VINS+RL (ours)
Nair et al.'18 Nair et al.'18
0.00 T T T 0.00 T . y
0.00 025 050 075 100 0.00 025 050 0.75 1100
# samples (steps) 1le5 # samples (steps) le5

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling

Luo-Xu-M. 19]



Summary

> Convergence guarantees for a meta model-based RL algorithm
> Reward-aware loss for learning dynamics

> SLBO: a much simplified instantiation of the meta-algorithm that works
well empirically

> Model-based multi-task RL

> Learning self-correctable policy via learning conservatively-extrapolated
value functions

» Open questions:
» How to empirically leverage optimism in model-based RL?

> How to customize algorithms for particular environments?
> How to apply dynamical models to other settings (e.g., hierarchical RL)?

Thank you!



