Model-based Algorithms for
Reinforcement Learning and Imitation
Learning with Theoretical Analyses

Tengyu Ma
(Stanford)

Nick Landolfi Yuping Luo Garrett Thomas Huazhe Xu
(Stanford) Princeton ,Q“Stanford)» (Berkele)

Trevor Darrell Yuandong Tian
(Berkeley) (Facebook)

Sample-Efficiency Challenge i RL

Trials and errors:
> Try the current strategy and collet feedbacks
> Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)?
> Model-based RL

> Imitation learning from expert demonstrations
> Multi-task, lifelong, continual RL

> Hierarchical RL

> Safe RL

> ...

Backgrounds and Terminologies

(on Continuous State-Space, Deterministic Dynamics)

> Timet =0,..,T(x o)
> State s, € R%; action a, € R¥

> e.g., state = location of arm;
action = desired movement

» Unknown dynamics/environment M™: s, = M™(s¢, a;)

» Trajectory:

> Policy m: states — actions

> Reward r(s;, a;) € R
> Expected payoff of a policy:

ﬂ(lﬁo) ;) 7ds;) mdss3)

V™= Eg)~p,, [R(Sq, ag) + R(sy,a1) + R(s3,a3) + -]

Model-Based Keinforcement Learning

> Learn the dynamics M™ somewhat explicitly

» Standard model-based RL algorithm:

Repeat:
1. Sample trajectories from real dynamics M™* using current policy
Sog ~ DSO — S§§ —> Sy —> S3 —> Sy ree

2. Learn a dynamical model using existing trajectories
: 2
mﬂ}ln2| IM(s¢, ar) — Seall3

3. Find a good policy for the learned dynamics M

> Does not cost real samples; any RL algo. may be used as a
blackbox

3. Planning the vacation at home
1. Go, enjoy, and explore

2. Keep notes on the good restaurants

Repeat:
1. Sample trajectories from real dynamics M™* using current policy

SO NDSO —> Sl —> S2 — 53 —_ 54

2. Learn a dynamical model using existing trajectories
: 2
mIVIInZI IM(s¢, at) — Seqall2

3. Find a good policy for the learned dynamics M

> Does not cost real samples; any RL algo. may be used as a
blackbox

Challenges in Analyzing Deep Model-Based RL

» High-dimensional state and action space
» Non-linear dynamics M, policy T parameterized by neural networks

» Goal: an analyzable algorithm with # samples polynomial in dimension
(assuming some computational oracles)

Prior work

> Finite state space: [Jaksch et al., 2010; Bartlett & Tewari, 2009; Fruit et
al., 2018; Lakshmanan et al., 2015; Hinderer, 2005; Pirotta et al., 2015;
2013)

> Linear dynamics: [Abbasi-Yadkori & Szepesvari, 2011; Simchowitz et al.,
2018; Dean et al., 2017; Sutton et al., 2012; Tamar et al., 2012]

> Sample complexity result: [Sun et al.’2017]

Challenges 1n Analyzing Deep Model-Based RL (Cont'd)

> Issue: the learned dynamics are not accurate for those states unseen in
training trajectories

> Exploitation: only go to places that the dynamics is certain

> Exploration: improve the certainty of the model by trying diverse
policies

S1 S2
. . . SO - 4_—_*
testing predictions ‘\ %54 oredicted traj.

on a different policy T N— L T . .
¥ fore} — {raining traj.

(-)\ on real dynamics

R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

> Explore a policy if it is good for some reasonable dynamics

R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

Q1: how do we express the constraint for non-linear models?

> confidence intervals for finite state space or linear models; not
feasible for neural nets

R Classical Idea: Optimism in the Face of Uncertainty

Repeat:
1. Sample trajectories from real dynamics using current policy
payoff of orj
2. policy, dynamics « argm?wx yM ' learned dynamics
T,

s.t., M is consistent with existing trajectories

Q2: how do we measure the “consistency”?

> how do we measure the errors of the learned dynamics?

The Same Prediction Loss Could Mean Very Differently For
Different States and Actions

Our Idea

|deal loss for M =~ error of predicting future payoff using M

|VTL',M _ VTL',M*l

/ AN

total payoff on total payoff on true
estimated dynamics M dynamics M*

> Design an upper bound of the ideal loss and use it as a surrogate loss or
a consistency measure

VoM — M| < D(M,)

> A dynamics M has low loss (is consistent with existing data) if M can
predict the real reward with small error upper bound D (M, 1)

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees
Luo-Xu-Tian-Darrell-M. 19]

Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics « argmax ymM
T,

st M , it _— : :

s.t., D(m,M) < €

> {M:D(m,M) < €} is a confidence region depending on
and the reward function

> Next: absorb the constraint in the objective

Meta-Rlgorithm for Medel-Based RL with Convergence
Guarantees

Fromk =1toT:
1. Sample trajectories using 7y, build upper bound Dy, (T, M)

M
2. Mpy1, Tey1 = argmax, 5, V™" — Dy, (m, M)

 —~m —
~

lower bound of real reward := L(M,)

Theorem: Assume the model family contains M*, and the inner
optimization is solvable, then,

LM < yT2M* < ... < yrrM* < ..

* . *
and V™M" converges to a local maximum of V™"

Meta-Rlgorithm for Medel-Based RL with Convergence
Guarantees

Fromk =1toT:
1. Sample trajectories using 7y, build upper bound Dy, (T, M)

M
2. Mpy1, Tey1 = argmax, 5, V™" — Dy, (m, M)

 —~m —
~

lower bound of real reward := L(M,)

Optimizahle Upper Bounds of Ideal Loss

> Design an upper bound of the ideal loss

|V1I,M _

VTL',M*

| S Dﬂref(M' T[)

Lemma:
|V7T,M . V7T,M*| S

E

(s,a,8")~m,M*

V(M (s, a)) = VT (S]]

\

N\

> (s,a,s’) shorthand for (s¢, as, S¢+1) > VM(s): = the total payoff

> Issue: requires samples from the
environment to estimate the loss

of the policy on dynamics M
starting from state s

- VM = Eg VM (5,)]

Optimizahle Upper Bounds of Ideal Loss (Cont'd)

Improved Lemma: =D (M,m)
ref ¢
V7 that is close to mqf : /\
* - N
’Vﬂ',M . Vﬁ,]\/f | S D [|V7T’A[(M<S, Cl)) . Vﬂ',ﬂ[(sl)u
(s,a,8')~Trrer, M*

> Upper bound can be re-used if m doesn’t change much

» Recovers the norm-based loss, if V"M is Lipschitz w.rt || - ||

Dp..(M,m) < E |M(s,a) — s'||[=—— Nosquare

(s,a)~mg, M* compared to MSE

Tref

> Inspires a practical algorithm (SLBO) that uses ¥, loss (not MSE) and
optimizes the objective with SGD

» no optimism is practically needed though

Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts

Ilteration 10

Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts

Ilteration 20

Demo: learning to walk to the right as fast as possible

> What the learned dynamics > What the humanoid does in reality
predicts

Ilteration 210

Evaluations on MujeCo Benchmark Tasks

120
100 4+ s 4000
g 8o 3 3000 e 5
8 g
o 60 Py o
& 2 2000
5 40 g ol
> >
2 5 Z 1000
0 0
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
samples (million) # samples (million) # samples (million)
(a) Swimmer (b) Half Cheetah (c) Ant
4000 1000
800
£ 3000 :
2 3
3 2 6001
@ 2000)
@ g 400
g g
< 1000 < 200
0 0
00 02 04 06 08 1.0 00 02 04 06 08 10
samples (million) # samples (million)
(d) Walker (e) Humanoid
—— SLBO —— SLBO-MSE —— MB-TRPO —— SAC —— MF-TRPO

> Outperforms prior works when 1M (or fewer) samples are permitted

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees
Luo-Xu-Tian-Darrell-M. 19]

Follow-up: Model-based Multi-task R

Setting: A single robot, but multiple tasks
> e.g., humanoid runs with different speeds and directions

» Our algo.: learns a dynamics shared across tasks sequentially
> Amortized sample costs over tasks

> Prior work: MAML (model-agnostic meta-learning)
> Learns a shared policy that can be adapted to tasks

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.19]

Average return

Sssessecrmems————————| |77
—40 g BT ———
- 150 LT I
—60 e S g € s00
] S
- - -
_80 g — o 140 2 600
@ 100 o Qe
-100 e MAML 8 = 2 400
=-= Ours a>) 5 o
-120 vv oracle Z 50 3: :: 200
-140 0
—1605 4 8 12 % 4 8 12 805 8 16 24 —2005 8 16 24
Samples (x1000) Samples (x1000) Samples (x1000) Samples (x1000)

(a) Cheetah [0, 2] (b) Ant [0, 3] (c) Humanoid [0, 1.5] (d) Ant forward/back

200 180 350

160 300p e
1s0f L7 e
ol o aemT 250

100 200

150

50
100

52 e
—50 /

-100
24 0

Average return
bbb L Ly
o w (=] w o w
o o o o o o

Average return

Average return
N Py [=2] =]

o o o (=} (=]
4 .
B \
Average return

=330 4 8 12 ~1005
Samples (x1000)

12

[S)

4] 8 16 2 8
Samples (x1000) Samples (x1000) Samples (x1000)

(e) Cheetah [—2, 2] (f) Ant [—3, 3] (g) Humanoid [—1.5, 1.5] (h) Ant [—3, 3]

Tasks: running with random velocities in the interval/region

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.19]

Imitation Learning

> RL from scratch alone may still be not sample-efficient enough

> Imitation learning: learning from (human) experts demonstration

Formulation:

> experts run a policy 1, to collect trajectories
@ @) @ 0 "
R = {(SO Ay, ""ST‘l’aT—l’ST)}i=1
> we learn a policy from R with or without additional samples

R Classic Algorithm: Behavioral Cloning

> Supervised learning on demonstrations

R = {(S(gi)' a(()i)' e S;izr ag"izl’ ST)}:;

> Fit a policy mgc such that g (S,fi)) ~ agi)
> Well-known issue: distribution drift and cascading errors

" goal demonstration
states set:=U

far from the distribution
of demonstration states;
no guarantees

Rnother Attempt: Learning Value Functions from Demonstrations
> Recall V™e(s): = total payoff of expert policy starting from s

> If s € demonstration states U, we know V™ e(s)
> Attempt: learn V™e by supervised learning on ‘U

> Same issue: V™e extrapolates falsely outside ‘U
goal

_— demonstrations

|]

» Correct values on U

— : S > Wrong values outside U

4

Our Idea: Learning a Better Value Function (and Use 1t Correct
Mistakes of Behavioral Cloning)

> Key: the value V™e(s) should be relatively smaller for s € U

» = following the value function leads us back to U

falsely-extrapolated conservatively-extrapolated

|]

o

Theoretical Results

> Conservatively-extrapolated value function I/:
V(s) =V7™(s) £ oy, ifsel
V(s) =V7T(ly(s)) — Alls — Iy (s) | + ov if s ¢ U

Theorem (informal): Assume the access to an approximate model M.
Then, the policy induced from a conservatively-extrapolated value I/

(below) stays close to ‘U and has good performance:

n(s) = argmaxV(M(s,a))

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling
Luo-Xu-M. 19]

Theoretical Results (Cont'd)

> Note: dynamics may be hard to learn from demonstrations (can only
expect it to work around expert actions)

model M approximately correct
near the demonstration

Theorem (informal): Assume the access to an-appreximate-medel-M.

Then, the policy induced from a conservatively-extrapolated value V

(below) stays close to ‘U and has good performance:

ﬂ(SJ;a#g?aX—ll@él-ésra})
w(s) = argm?u)(V(M(s,a))
a:||la—mpc(s)]|<€

Experiments

> Learn conservatively-

extrapolated value functions
with a heuristic borrowed from

NLP, negative sampling

VINS (ours) BC
Reach 100 100 + 0% 100 + 0%
Pick 100 75.7+1.0% 668+ 1.1%
Pick 200 84.0+0.5% 82.0 +0.8%
Push 100 44.0+1.5% 373+ 1.1%
Push200 55.2+0.7% 51.3+0.6%

v
-
o
n
n

v
J
2
3
n

> Initialize an RL algorithm (that
takes additional samples) with
value function, policy, and
dynamics learned from
demonstrations

Pick-And-Place Push
1.00 .
0.75«rﬂ\/‘W .
0.50
9
0.25 VINS+RL (ours) § 0.25 VINS+RL (ours)
Nair et al.'18 Nair et al.'18
0.00 T T T 0.00 T . y
0.00 025 050 075 100 0.00 025 050 0.75 1100
samples (steps) 1le5 # samples (steps) le5

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling

Luo-Xu-M. 19]

Summary

> Convergence guarantees for a meta model-based RL algorithm
> Reward-aware loss for learning dynamics

> SLBO: a much simplified instantiation of the meta-algorithm that works
well empirically

> Model-based multi-task RL

> Learning self-correctable policy via learning conservatively-extrapolated
value functions

» Open questions:
» How to empirically leverage optimism in model-based RL?

> How to customize algorithms for particular environments?
> How to apply dynamical models to other settings (e.g., hierarchical RL)?

Thank you!

