
Tengyu Ma
(Stanford)

Huazhe Xu
(Berkeley)

Yuping Luo
(Princeton)

Garrett Thomas
(Stanford)

Nick Landolfi
(Stanford)

Yuandong Tian
(Facebook)

Trevor Darrell
(Berkeley)

Trials and errors:
Ø Try the current strategy and collet feedbacks
Ø Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)?
Ø Model-based RL
Ø Imitation learning from expert demonstrations
Ø Multi-task, lifelong, continual RL
Ø Hierarchical RL
Ø Safe RL
Ø …

millions of games

Ø Time ! = 0,… , &(≈ ∞)

Ø State +, ∈ ℝ/; action 1, ∈ ℝ2

Ø Unknown dynamics/environment 3⋆: +,67 = 3⋆(+,, 1,)

Ø Trajectory:
+8 ∼ :;< ⟶ +7 ⟶ +> ⟶ +? ⟶ +@ ⋯⋯

18 17 1> 1?

Ø Policy B: states → actions

B(+8) B(+7) B(+>) B(+?)

Ø Reward D +,, 1, ∈ ℝ

Ø Expected payoff of a policy:

!

! !

!

EF:= G;<∼HI<[K +8, 18 + K +7, 17 + K +>, 1> + ⋯]

Ø e.g., state = location of arm;
action = desired movement

Ø Learn the dynamics !⋆ somewhat explicitly
Ø Standard model-based RL algorithm:

Repeat:
1. Sample trajectories from real dynamics !⋆ using current policy

2. Learn a dynamical model using existing trajectories

3. Find a good policy for the learned dynamics !
Ø Does not cost real samples; any RL algo. may be used as a

blackbox

#$ ∼ &'(⟶ #* ⟶ #+ ⟶ #, ⟶ #- ⋯⋯

min2 ∑||! #5, 75 − #59*||++

3. Planning the vacation at home
1. Go, enjoy, and explore
2. Keep notes on the good restaurants

Repeat:
1. Sample trajectories from real dynamics !⋆ using current policy

2. Learn a dynamical model using existing trajectories

3. Find a good policy for the learned dynamics !
Ø Does not cost real samples; any RL algo. may be used as a

blackbox

#$ ∼ &'(⟶ #* ⟶ #+ ⟶ #, ⟶ #- ⋯⋯

min2 ∑||! #5, 75 − #59*||++

Deep

Ø High-dimensional state and action space

Ø Non-linear dynamics !, policy " parameterized by neural networks

Ø Goal: an analyzable algorithm with # samples polynomial in dimension
(assuming some computational oracles)

Prior work

Ø Finite state space: [Jaksch et al., 2010; Bartlett & Tewari, 2009; Fruit et
al., 2018; Lakshmanan et al., 2015; Hinderer, 2005; Pirotta et al., 2015;
2013)

Ø Linear dynamics: [Abbasi-Yadkori & Szepesvári, 2011; Simchowitz et al.,
2018; Dean et al., 2017; Sutton et al., 2012; Tamar et al., 2012]

Ø Sample complexity result: [Sun et al.’2017]

Deep

Ø Issue: the learned dynamics are not accurate for those states unseen in
training trajectories

Ø Exploitation: only go to places that the dynamics is certain
Ø Exploration: improve the certainty of the model by trying diverse

policies

!" !#
training traj.

on real dynamics

predicted traj.
!$!% !&

testing predictions
on a different policy

Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax',) *',)

s.t., + is consistent with existing trajectories

payoff of , on
learned dynamics

Ø Explore a policy if it is good for some reasonable dynamics

Q1: how do we express the constraint for non-linear models?
Ø confidence intervals for finite state space or linear models; not

feasible for neural nets

Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax',) *',)

s.t., + is consistent with existing trajectories

payoff of , on
learned dynamics

Q2: how do we measure the “consistency”?
Ø how do we measure the errors of the learned dynamics?

Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax',) *',)

s.t., + is consistent with existing trajectories

payoff of , on
learned dynamics

Ideal loss for ! ≈ error of predicting future payoff using !
|$%,' − $%,'⋆ |

total payoff on true
dynamics !⋆

total payoff on
estimated dynamics !

Ø Design an upper bound of the ideal loss and use it as a surrogate loss or
a consistency measure

|$%,' − $%,'⋆ | ≤ +(!, -)
Ø A dynamics ! has low loss (is consistent with existing data) if ! can

predict the real reward with small error upper bound +(!, -)

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees

Luo-Xu-Tian-Darrell-M.’19]

s.t., ! ",$ ≤ &

Repeat:
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax-, . /-,.

s.t., $ is consistent with existing trajectories

Ø {$:! ",$ ≤ &} is a confidence region depending on "
and the reward function

Ø Next: absorb the constraint in the objective

From ! = 1 to $:
1. Sample trajectories using &', build upper bound ()*(&,-)
2.

lower bound of real reward ∶= 0(-, &)

Theorem: Assume the model family contains -⋆, and the inner
optimization is solvable, then,

2)3,4⋆ ≤ 2)6,4⋆ ≤ ⋯ ≤ 2)8,4⋆ ≤ …
and 2)*,4⋆ converges to a local maximum of 2),4⋆ .

From ! = 1 to $:
1. Sample trajectories using &', build upper bound ()*(&,-)
2.

lower bound of real reward ∶= 0(-, &)

0(-', &)
0(-'12, &)

3),4⋆

Lemma:
|V ⇡,M � V ⇡,M?

| E
(s,a,s0)⇠⇡,M?

⇥
|V ⇡,M (M(s, a))� V ⇡,M (s0)|

⇤

Ø Issue: requires samples from the
environment to estimate the loss

Ø Design an upper bound of the ideal loss

|"#,% − "#,%⋆ | ≤)#*+,(., /)

Ø 1, 2, 13 shorthand for (14, 24, 1456) Ø "#,% 1 := the total payoff
of the policy on dynamics .
starting from state 1

Ø "#,% = 9:;["#,% 1=]

Improved Lemma:

8⇡ that is close to ⇡ref :

Ø Upper bound can be re-used if ! doesn’t change much

:= "#$%&((, !)

Ø Recovers the norm-based loss, if +#,, is Lipschitz w.r.t || ⋅ ||
No square

compared to MSE
D⇡ref(M,⇡) . E

(s,a)⇠⇡k,M?
kM(s, a)� s0k

Ø Inspires a practical algorithm (SLBO) that uses ℓ0 loss (not MSE) and
optimizes the objective with SGD
Ø no optimism is practically needed though

Demo: learning to walk to the right as fast as possible
Ø What the learned dynamics

predicts
Ø What the humanoid does in reality

Iteration 10

Demo: learning to walk to the right as fast as possible
Ø What the humanoid does in reality

Iteration 20

Ø What the learned dynamics
predicts

Demo: learning to walk to the right as fast as possible
Ø What the humanoid does in reality

Iteration 210

Ø What the learned dynamics
predicts

Ø Outperforms prior works when 1M (or fewer) samples are permitted

[Algorithmic Framework for Model-based
Reinforcement Learning with Theoretical Guarantees

Luo-Xu-Tian-Darrell-M.’19]

Multi-task

Setting: A single robot, but multiple tasks
Ø e.g., humanoid runs with different speeds and directions

Ø Our algo.: learns a dynamics shared across tasks sequentially
Ø Amortized sample costs over tasks

Ø Prior work: MAML (model-agnostic meta-learning)
Ø Learns a shared policy that can be adapted to tasks

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.’19]

Tasks: running with random velocities in the interval/region

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning
Landolfi-Thomas-M.’19]

Ø RL from scratch alone may still be not sample-efficient enough
Ø Imitation learning: learning from (human) experts demonstration

Formulation:
Ø experts run a policy !" to collect trajectories

ℛ = %&' ,)&' , … , %+,-' ,)+,-' , %+ '.-

/

Ø we learn a policy from ℛ with or without additional samples

Ø Supervised learning on demonstrations
ℛ = #$% , '$% , … , #)*+% , ')*+% , #) %,+

-

Ø Fit a policy ./0 such that ./0 #1(%) ≈ '1(%)

Ø Well-known issue: distribution drift and cascading errors

goal

567 far from the distribution
of demonstration states;

no guarantees

demonstration
states set:= 8

Ø Recall !"# $:= total payoff of expert policy starting from $
Ø If $ ∈ demonstration states (, we know !"#($)
Ø Attempt: learn !"# by supervised learning on (
Ø Same issue: !"# extrapolates falsely outside (

goal

$+

Ø Correct values on (
Ø Wrong values outside (

demonstrations

Ø Key: the value !"#(s) should be relatively smaller for ' ∉)
Ø⇒ following the value function leads us back to)

falsely-extrapolated conservatively-extrapolated

Ø Conservatively-extrapolated value function !:
#$% &

'

Π'&

Theorem (informal): Assume the access to an approximate model).
Then, the policy induced from a conservatively-extrapolated value !
(below) stays close to ' and has good performance:

+ & = argmax
2

!() &, 5)

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling

Luo-Xu-M.’19]

Ø Note: dynamics may be hard to learn from demonstrations (can only
expect it to work around expert actions)

Theorem (informal): Assume the access to an approximate model !.
Then, the policy induced from a conservatively-extrapolated value #
(below) stays close to $ and has good performance:

% & = argmax
-

#(! &, 0)

model ! approximately correct
near the demonstration

% & = argmax
-:||-4567 8 ||9:

#(! &, 0)

Ø Learn conservatively-
extrapolated value functions
with a heuristic borrowed from
NLP, negative sampling

Ø Initialize an RL algorithm (that
takes additional samples) with
value function, policy, and
dynamics learned from
demonstrations

[Learning Self-Correctable Policies and Value Functions
from Demonstrations with Negative Sampling

Luo-Xu-M.’19]

Ø Convergence guarantees for a meta model-based RL algorithm

Ø Reward-aware loss for learning dynamics

Ø SLBO: a much simplified instantiation of the meta-algorithm that works

well empirically

Ø Model-based multi-task RL

Ø Learning self-correctable policy via learning conservatively-extrapolated

value functions

Ø Open questions:

Ø How to empirically leverage optimism in model-based RL?

Ø How to customize algorithms for particular environments?

Ø How to apply dynamical models to other settings (e.g., hierarchical RL)?

Thank you!

