Model-based Algorithms for Reinforcement Learning and Imitation Learning with Theoretical Analyses

Tengyu Ma (Stanford)

Nick Landolfi (Stanford)

Yuping Luo (Princeton)

Garrett Thomas (Stanford)

Huazhe Xu (Berkeley)

Trevor Darrell (Berkeley) Yuandong Tian (Facebook)

Sample-Efficiency Challenge in RL

Trials and errors:

- Try the current strategy and collet feedbacks
- Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)?

- Model-based RL
- Imitation learning from expert demonstrations
- Multi-task, lifelong, continual RL
- Hierarchical RL
- Safe RL

Backgrounds and Terminologies (on Continuous State-Space, Deterministic Dynamics)

- ≻ Time t = 0, ..., T(≈ ∞)
- ▶ State $s_t \in \mathbb{R}^d$; action $a_t \in \mathbb{R}^k$

 S_0

- > Unknown dynamics/environment M^* : $s_{t+1} = M^*(s_t, a_t)$
- > Trajectory:

$$\sim D_{s_0} \xrightarrow{\pi(\mathfrak{s}_0)} \begin{array}{c} \pi(\mathfrak{s}_1) & \pi(\mathfrak{s}_2) & \pi(\mathfrak{s}_3) \\ \xrightarrow{} & S_1 \xrightarrow{} & S_2 \xrightarrow{} & S_3 \xrightarrow{} & S_4 \cdots \end{array}$$

- ▶ Policy π : states → actions
- ▶ Reward $r(s_t, a_t) \in \mathbb{R}$
- Expected payoff of a policy:

$$V^{\pi} := \mathbb{E}_{s_0 \sim D_{s_0}} [R(s_0, a_0) + R(s_1, a_1) + R(s_2, a_2) + \cdots]$$

> e.g., state = location of arm; action = desired movement

Model-Based Reinforcement Learning

- > Learn the dynamics M^* somewhat explicitly
- Standard model-based RL algorithm:

Repeat:

1. Sample trajectories from real dynamics M^* using current policy

$$s_0 \sim D_{s_0} \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \cdots \cdots$$

2. Learn a dynamical model using existing trajectories

$$\min_{M} \sum ||M(s_t, a_t) - s_{t+1}||_2^2$$

- 3. Find a good policy for the learned dynamics *M*
 - Does not cost real samples; any RL algo. may be used as a blackbox

- 3. Planning the vacation at home
- 1. Go, enjoy, and explore
- 2. Keep notes on the good restaurants

Repeat:

1. Sample trajectories from real dynamics M^* using current policy

$$s_0 \sim D_{s_0} \longrightarrow s_1 \longrightarrow s_2 \longrightarrow s_3 \longrightarrow s_4 \cdots \cdots$$

2. Learn a dynamical model using existing trajectories

$$\min_{M} \sum ||M(s_t, a_t) - s_{t+1}||_2^2$$

- 3. Find a good policy for the learned dynamics *M*
 - Does not cost real samples; any RL algo. may be used as a blackbox

Challenges in Analyzing Deep Model-Based RL

- > High-dimensional state and action space
- > Non-linear dynamics M, policy π parameterized by neural networks
- Goal: an analyzable algorithm with # samples polynomial in dimension (assuming some computational oracles)

Prior work

- Finite state space: [Jaksch et al., 2010; Bartlett & Tewari, 2009; Fruit et al., 2018; Lakshmanan et al., 2015; Hinderer, 2005; Pirotta et al., 2015; 2013)
- Linear dynamics: [Abbasi-Yadkori & Szepesvári, 2011; Simchowitz et al., 2018; Dean et al., 2017; Sutton et al., 2012; Tamar et al., 2012]
- Sample complexity result: [Sun et al.'2017]

Challenges in Analyzing Deep Model-Based RL (Cont'd)

- Issue: the learned dynamics are not accurate for those states unseen in training trajectories
- > Exploitation: only go to places that the dynamics is certain
- Exploration: improve the certainty of the model by trying diverse policies

A Classical Idea: Optimism in the Face of Uncertainty

Explore a policy if it is good for some reasonable dynamics

A Classical Idea: Optimism in the Face of Uncertainty

Q1: how do we express the constraint for non-linear models?

confidence intervals for finite state space or linear models; not feasible for neural nets

A Classical Idea: Optimism in the Face of Uncertainty

Q2: how do we measure the "consistency"?

> how do we measure the errors of the learned dynamics?

The Same Prediction Loss Could Mean Very Differently For Different States and Actions

Our Idea

Ideal loss for $M \approx$ error of predicting future payoff using M

Design an upper bound of the ideal loss and use it as a surrogate loss or a consistency measure

$$|V^{\pi,M} - V^{\pi,M^*}| \leq \mathcal{D}(M,\pi)$$

> A dynamics *M* has low loss (is consistent with existing data) if *M* can predict the real reward with small error upper bound $\mathcal{D}(M, \pi)$

[Algorithmic Framework for Model-based Reinforcement Learning with Theoretical Guarantees Luo-Xu-Tian-Darrell-M.'19]

Repeat:

1. Sample trajectories from real dynamics using current policy

2. policy, dynamics $\leftarrow \underset{\pi, M}{\operatorname{argmax}} V^{\pi, M}$ s.t., *M* is consistent with existing trajectories

s.t.,
$$\mathcal{D}(\pi, M) \leq \epsilon$$

- \succ {*M*: D(π, *M*) ≤ ε} is a confidence region depending on π and the reward function
- > Next: absorb the constraint in the objective

Meta-Algorithm for Model-Based RL with Convergence Guarantees

From
$$k = 1$$
 to T :
1. Sample trajectories using π_k , build upper bound $\mathcal{D}_{\pi_k}(\pi, M)$
2. $M_{k+1}, \pi_{k+1} = \operatorname{argmax}_{\pi,M} V^{\pi,M} - \mathcal{D}_{\pi_k}(\pi, M)$
lower bound of real reward $:= L(M, \pi)$

Theorem: Assume the model family contains M^* , and the inner optimization is solvable, then,

$$V^{\pi_1, M^*} \le V^{\pi_2, M^*} \le \dots \le V^{\pi_T, M^*} \le \dots$$

and V^{π_k,M^*} converges to a local maximum of V^{π,M^*}

Meta-Algorithm for Model-Based RL with Convergence Guarantees

From k = 1 to T: 1. Sample trajectories using π_k , build upper bound $\mathcal{D}_{\pi_k}(\pi, M)$ 2. $M_{k+1}, \pi_{k+1} = \operatorname{argmax}_{\pi, M} V^{\pi, M} - \mathcal{D}_{\pi_k}(\pi, M)$ lower bound of real reward $:= L(M, \pi)$

$$V^{\pi,M^{\star}}$$

$$L(M_{k},\pi)$$

Optimizable Upper Bounds of Ideal Loss

Design an upper bound of the ideal loss

$$|V^{\pi,M} - V^{\pi,M^{\star}}| \leq \mathcal{D}_{\pi_{\mathrm{ref}}}(M,\pi)$$

Optimizable Upper Bounds of Ideal Loss (Cont'd)

> Upper bound can be re-used if π doesn't change much

> Recovers the norm-based loss, if $V^{\pi,M}$ is Lipschitz w.r.t $|| \cdot ||$

> Inspires a practical algorithm (SLBO) that uses ℓ_2 loss (not MSE) and optimizes the objective with SGD

> no optimism is practically needed though

Demo: learning to walk to the right as fast as possible

- What the learned dynamics predicts
- > What the humanoid does in reality

Iteration 10

Demo: learning to walk to the right as fast as possible

- What the learned dynamics predicts
- > What the humanoid does in reality

Iteration 20

Demo: learning to walk to the right as fast as possible

- What the learned dynamics predicts
- > What the humanoid does in reality

Iteration 210

Evaluations on MuJoCo Benchmark Tasks

Outperforms prior works when 1M (or fewer) samples are permitted

[Algorithmic Framework for Model-based Reinforcement Learning with Theoretical Guarantees Luo-Xu-Tian-Darrell-M.'19]

Follow-up: Model-based Multi-task RL

Setting: A single robot, but multiple tasks

e.g., humanoid runs with different speeds and directions

Our algo.: learns a dynamics shared across tasks sequentially
 Amortized sample costs over tasks

Prior work: MAML (model-agnostic meta-learning)
 Learns a shared policy that can be adapted to tasks

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning Landolfi-Thomas-M.'19]

Tasks: running with random velocities in the interval/region

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning Landolfi-Thomas-M.'19]

Imitation Learning

RL from scratch alone may still be not sample-efficient enough

Imitation learning: learning from (human) experts demonstration

Formulation:

 $\succ \text{ experts run a policy } \pi_e \text{ to collect trajectories} \\ \mathcal{R} = \left\{ \left(s_0^{(i)}, a_0^{(i)}, \dots, s_{T-1}^{(i)}, a_{T-1}^{(i)}, s_T \right) \right\}_{i=1}^n$

 \succ we learn a policy from \mathcal{R} with or without additional samples

A Classic Algorithm: Behavioral Cloning

➤ Supervised learning on demonstrations $\mathcal{R} = \left\{ \left(s_0^{(i)}, a_0^{(i)}, \dots, s_{T-1}^{(i)}, a_{T-1}^{(i)}, s_T \right) \right\}_{i=1}^n$ ➤ Fit a policy \$\pi_{BC}\$ such that \$\pi_{BC}\$ \$\left(s_t^{(i)} \right) \approx \$a_t^{(i)}\$

> Well-known issue: distribution drift and cascading errors

Another Attempt: Learning Value Functions from Demonstrations

- > Recall $V^{\pi_e}(s)$: = total payoff of expert policy starting from s
- ▶ If $s \in \text{demonstration states } \mathcal{U}$, we know $V^{\pi_e}(s)$
- > Attempt: learn V^{π_e} by supervised learning on \mathcal{U}
- > Same issue: V^{π_e} extrapolates falsely outside $\mathcal U$

Our Idea: Learning a Better Value Function (and Use it Correct Mistakes of Behavioral Cloning)

- > Key: the value $V^{\pi_e}(s)$ should be relatively smaller for $s \notin \mathcal{U}$
- $\succ \Rightarrow$ following the value function leads us back to $\mathcal U$

falsely-extrapolated

conservatively-extrapolated

Theoretical Results

Conservatively-extrapolated value function V:

$$V(s) = V^{\pi_{\mathbf{e}}}(s) \pm \delta_V, \qquad \text{if } s \in \mathcal{U}$$

$$V(s) = V^{\pi_{e}}(\Pi_{\mathcal{U}}(s)) - \lambda \|s - \Pi_{\mathcal{U}}(s)\| \pm \delta_{V} \qquad \text{if } s \notin \mathcal{U}$$

Theorem (informal): Assume the access to an approximate model M. Then, the policy induced from a conservatively-extrapolated value V(below) stays close to \mathcal{U} and has good performance:

$$\pi(s) = \operatorname*{argmax}_{a} V(M(s, a))$$

[Learning Self-Correctable Policies and Value Functions from Demonstrations with Negative Sampling Luo-Xu-M.'19]

Theoretical Results (Cont'd)

Note: dynamics may be hard to learn from demonstrations (can only expect it to work around expert actions)

model *M* approximately correct near the demonstration

Theorem (informal): Assume the access to an approximate model M. Then, the policy induced from a conservatively-extrapolated value V(below) stays close to \mathcal{U} and has good performance:

$$\pi(s) = \underset{a}{\operatorname{argmax}} V(M(s, a))$$

 $\pi(s) = \operatorname*{argmax}_{a:||a - \pi_{BC}(s)|| \le \epsilon} V(M(s, a))$

Experiments

Learn conservativelyextrapolated value functions with a heuristic borrowed from NLP, negative sampling Initialize an RL algorithm (that takes additional samples) with value function, policy, and dynamics learned from demonstrations

[Learning Self-Correctable Policies and Value Functions from Demonstrations with Negative Sampling Luo-Xu-M.'19]

Summary

Convergence guarantees for a meta model-based RL algorithm

- Reward-aware loss for learning dynamics
- SLBO: a much simplified instantiation of the meta-algorithm that works well empirically
- Model-based multi-task RL
- Learning self-correctable policy via learning conservatively-extrapolated value functions
- Open questions:
 - How to empirically leverage optimism in model-based RL?
 - How to customize algorithms for particular environments?
 - How to apply dynamical models to other settings (e.g., hierarchical RL)?

Thank you!