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Trials and errors:
Ø Try the current strategy and collet feedbacks
Ø Use the feedbacks to improve the strategy

How to reduce the amount of trials (samples)? 
Ø Model-based RL
Ø Imitation learning from expert demonstrations
Ø Multi-task, lifelong, continual RL  
Ø Hierarchical RL 
Ø Safe RL
Ø … 

millions of games 



Ø Time ! = 0,… , &(≈ ∞)

Ø State +, ∈ ℝ/; action 1, ∈ ℝ2

Ø Unknown dynamics/environment 3⋆: +,67 = 3⋆(+,, 1,)

Ø Trajectory:
+8 ∼ :;< ⟶ +7 ⟶ +> ⟶ +? ⟶ +@ ⋯⋯

18 17 1> 1?

Ø Policy B: states → actions

B(+8) B(+7) B(+>) B(+?)

Ø Reward D +,, 1, ∈ ℝ

Ø Expected payoff of a policy:

!

! !

!

EF:= G;<∼HI<[K +8, 18 + K +7, 17 + K +>, 1> + ⋯ ]

Ø e.g., state = location of arm; 
action = desired movement



Ø Learn the dynamics !⋆ somewhat explicitly 
Ø Standard model-based RL algorithm: 

Repeat: 
1. Sample trajectories from real dynamics !⋆ using current policy

2. Learn a dynamical model using existing trajectories

3. Find a good policy for the learned dynamics !
Ø Does not cost real samples;  any RL algo. may be used as a 

blackbox

#$ ∼ &'( ⟶ #* ⟶ #+ ⟶ #, ⟶ #- ⋯⋯

min2 ∑||! #5, 75 − #59*||++



3. Planning the vacation at home
1. Go, enjoy, and explore
2. Keep notes on the good restaurants

Repeat: 
1. Sample trajectories from real dynamics !⋆ using current policy

2. Learn a dynamical model using existing trajectories

3. Find a good policy for the learned dynamics !
Ø Does not cost real samples;  any RL algo. may be used as a 

blackbox

#$ ∼ &'( ⟶ #* ⟶ #+ ⟶ #, ⟶ #- ⋯⋯

min2 ∑||! #5, 75 − #59*||++



Deep

Ø High-dimensional state and action space

Ø Non-linear dynamics !, policy " parameterized by neural networks

Ø Goal: an analyzable algorithm with # samples polynomial in dimension 
(assuming some computational oracles)

Prior work

Ø Finite state space: [Jaksch et al., 2010; Bartlett & Tewari, 2009; Fruit et 
al., 2018; Lakshmanan et al., 2015; Hinderer, 2005; Pirotta et al., 2015; 
2013)

Ø Linear dynamics: [Abbasi-Yadkori & Szepesvári, 2011; Simchowitz et al., 
2018; Dean et al., 2017; Sutton et al., 2012; Tamar et al., 2012]

Ø Sample complexity result: [Sun et al.’2017]



Deep

Ø Issue: the learned dynamics are not accurate for those states unseen in 
training trajectories

Ø Exploitation: only go to places that the dynamics is certain
Ø Exploration: improve the certainty of the model by trying diverse 

policies

!" !#
training traj. 

on real dynamics

predicted  traj.
!$ !% !&

testing predictions 
on a different policy



Repeat: 
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax', ) *',)

s.t., + is consistent with existing trajectories

payoff of , on 
learned dynamics

Ø Explore a policy if it is good for some reasonable dynamics



Q1: how do we express the constraint for non-linear models? 
Ø confidence intervals for finite state space or linear models; not 

feasible for neural nets

Repeat: 
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax', ) *',)

s.t., + is consistent with existing trajectories

payoff of , on 
learned dynamics



Q2: how do we measure the “consistency”?
Ø how do we measure the errors of the learned dynamics? 

Repeat: 
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax', ) *',)

s.t., + is consistent with existing trajectories

payoff of , on 
learned dynamics





Ideal loss for ! ≈ error of predicting future payoff using !
|$%,' − $%,'⋆ |

total payoff on true 
dynamics !⋆

total payoff on 
estimated dynamics !

Ø Design an upper bound of the ideal loss and use it as a surrogate loss or 
a consistency measure

|$%,' − $%,'⋆ | ≤ +(!, -)
Ø A dynamics ! has low loss (is consistent with existing data) if ! can 

predict the real reward with small error upper bound +(!, -)

[Algorithmic Framework for Model-based 
Reinforcement Learning with Theoretical Guarantees

Luo-Xu-Tian-Darrell-M.’19]



s.t., ! ",$ ≤ &

Repeat: 
1. Sample trajectories from real dynamics using current policy

2. policy, dynamics ← argmax-, . /-,.

s.t., $ is consistent with existing trajectories

Ø {$:! ",$ ≤ &} is a confidence region depending on "
and the reward function

Ø Next: absorb the constraint in the objective



From ! = 1 to $:
1. Sample trajectories using &', build upper bound ()*(&,-)
2.

lower bound of real reward ∶= 0(-, &)

Theorem:  Assume the model family contains -⋆, and the inner 
optimization is solvable, then, 

2)3,4⋆ ≤ 2)6,4⋆ ≤ ⋯ ≤ 2)8,4⋆ ≤ …
and 2)*,4⋆ converges to a local maximum of 2),4⋆ .



From ! = 1 to $:
1. Sample trajectories using &', build upper bound ()*(&,-)
2.

lower bound of real reward ∶= 0(-, &)

0(-', &)
0(-'12, &)

3),4⋆



Lemma:
|V ⇡,M � V ⇡,M?

|  E
(s,a,s0)⇠⇡,M?

⇥
|V ⇡,M (M(s, a))� V ⇡,M (s0)|

⇤

Ø Issue: requires samples from the 
environment to estimate the loss

Ø Design an upper bound of the ideal loss

|"#,% − "#,%⋆ | ≤ )#*+,(., /)

Ø 1, 2, 13 shorthand for (14, 24, 1456) Ø "#,% 1 := the total payoff 
of the policy on dynamics .
starting from state 1

Ø "#,% = 9:;["#,% 1= ]



Improved Lemma:

8⇡ that is close to ⇡ref :

Ø Upper bound can be re-used if ! doesn’t change much

:= "#$%&((, !)

Ø Recovers the norm-based loss, if +#,, is Lipschitz w.r.t || ⋅ ||
No square 

compared to MSE
D⇡ref(M,⇡) . E

(s,a)⇠⇡k,M?
kM(s, a)� s0k

Ø Inspires a practical algorithm (SLBO) that uses ℓ0 loss (not MSE) and 
optimizes the objective with SGD 
Ø no optimism is practically needed though



Demo: learning to walk to the right as fast as possible
Ø What the learned dynamics

predicts
Ø What the humanoid does in reality

Iteration 10



Demo: learning to walk to the right as fast as possible
Ø What the humanoid does in reality

Iteration 20

Ø What the learned dynamics
predicts



Demo: learning to walk to the right as fast as possible
Ø What the humanoid does in reality

Iteration 210

Ø What the learned dynamics
predicts



Ø Outperforms prior works when 1M (or fewer) samples are permitted

[Algorithmic Framework for Model-based 
Reinforcement Learning with Theoretical Guarantees

Luo-Xu-Tian-Darrell-M.’19]



Multi-task

Setting: A single robot, but multiple tasks
Ø e.g., humanoid runs with different speeds and directions

Ø Our algo.: learns a dynamics shared across tasks sequentially 
Ø Amortized sample costs over tasks 

Ø Prior work: MAML (model-agnostic meta-learning)
Ø Learns a shared policy that can be adapted to tasks

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning 
Landolfi-Thomas-M.’19]



Tasks: running with random velocities in the interval/region

[A Model-based Approach for Sample-efficient Multi-task Reinforcement Learning 
Landolfi-Thomas-M.’19]



Ø RL from scratch alone may still be not sample-efficient enough
Ø Imitation learning: learning from (human) experts demonstration

Formulation: 
Ø experts run a policy !" to collect trajectories

ℛ = %&' , )&' , … , %+,-' , )+,-' , %+ '.-

/

Ø we learn a policy from ℛ with or without additional samples



Ø Supervised learning on demonstrations 
ℛ = #$% , '$% , … , #)*+% , ')*+% , #) %,+

-

Ø Fit a policy ./0 such that ./0 #1(%) ≈ '1(%)

Ø Well-known issue: distribution drift and cascading errors

goal

567 far from the distribution 
of demonstration states; 

no guarantees 

demonstration 
states set:= 8



Ø Recall !"# $ := total payoff of expert policy starting from $
Ø If $ ∈ demonstration states (, we know !"#($)
Ø Attempt: learn !"# by supervised learning on (
Ø Same issue: !"# extrapolates falsely outside (

goal

$+

Ø Correct values on (
Ø Wrong values outside (

demonstrations



Ø Key: the value !"#(s) should be relatively smaller for ' ∉ )
Ø⇒ following the value function leads us back to )

falsely-extrapolated conservatively-extrapolated



Ø Conservatively-extrapolated value function !:
#$% &

'

Π'&

Theorem (informal): Assume the access to an approximate model ).
Then, the policy induced from a conservatively-extrapolated value !
(below) stays close to ' and has good performance:

+ & = argmax
2

!() &, 5 )

[Learning Self-Correctable Policies and Value Functions 
from Demonstrations with Negative Sampling 

Luo-Xu-M.’19]



Ø Note: dynamics may be hard to learn from demonstrations (can only 
expect it to work around expert actions)

Theorem (informal): Assume the access to an approximate model !.
Then, the policy induced from a conservatively-extrapolated value #
(below) stays close to $ and has good performance:

% & = argmax
-

#(! &, 0 )

model ! approximately correct 
near the demonstration

% & = argmax
-:||-4567 8 ||9:

#(! &, 0 )



Ø Learn conservatively-
extrapolated value functions 
with a heuristic borrowed from 
NLP, negative sampling

Ø Initialize an RL algorithm (that 
takes additional samples) with 
value function, policy, and 
dynamics learned from
demonstrations

[Learning Self-Correctable Policies and Value Functions 
from Demonstrations with Negative Sampling 

Luo-Xu-M.’19]



Ø Convergence guarantees for a meta model-based RL algorithm

Ø Reward-aware loss for learning dynamics

Ø SLBO: a much simplified instantiation of the meta-algorithm that works 

well empirically 

Ø Model-based multi-task RL

Ø Learning self-correctable policy via learning conservatively-extrapolated

value functions

Ø Open questions: 

Ø How to empirically leverage optimism in model-based RL?

Ø How to customize algorithms for particular environments?

Ø How to apply dynamical models to other settings (e.g., hierarchical RL)?

Thank you!


