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Phenotypic models of development:

Development happens in time, progressive refinement of pattern
(genomes + ChlIP-seq, RNA-seq tells us nothing about morphogenesis)

‘Geometry’ (& bifurcations) of dynamical systems define the
phenotypic models

Can evolution alone predict the phenotypic properties of genetic
networks (common to phyla)?

Phenotypic evolution (19th C Darwinism) by positive selection
Implications:
What we see is what evolved quickly, survival of the fleetist.
Phenotypic evolution convergent (molecular implementation contingent)
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Setup

Fitness:
Formulated as quality of pattern, case by case, not reproductive fitness

Evolve features common to phyla, not particular species.

Representation:
Dynamical systems made from interaction of pseudo-biochem parts.

Impose simple dynamics i.e., Morse-Smale
Change network & parameters, only neutral and fitness incr. changes.

Time evolve network + boundary conditions, at T=o0, evaluate fitness.

Problems:
How much does the fitness matter?
Mutation rates matter? (alleviated if dominated by positive selection)

Non problems:
All systems small; no issue of complexity with ‘N’.

No biological reason to insist learn all members of concept class.

Ex: Nilsson&Pelger 1994, “~Evolution eye” Quant Genetics (Barton).
Fitness= acuity via physical optics, shape and refractive index change,
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Fitness for embryonic patterning (1)

M Body axes Cartesian: AP x DV
‘ Development via pattern refinement

Selector gene hypothesis:
Define compartments/segments,
tracks cell lineage, cell autonomous

‘Morphology’ —-> network that
positions the selector genes
C
— . — >
X
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Methods

Evolve gene networks via mutation-selection of both network topology,
parameters, and ‘outputs’ (from which fitness calculated)

(~ simulated annealing, no recombination... CP)

Embryo a line of ‘cells’

Network functions identically in all cells, which differ only in exposure to

morphogen G (external protein whose spacial profile determines fate),
no direct cell-cell communication in example here.

Interactions either activate & add, or repress & multiply

eg A auto-activates, repressed by R1 Rz (dropping csts), G(time)

A™ ) 1 1
"1+ Am 71+ RT? 14+ RS3
G A

/\FJ_ = max(activators) *T[(repressors) - degradation
1

R>

A = maxz(G(t)
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Fitness for embryonic patterning (1Dim)

Require for fitness:

1. Assign a number to any collection of selector genes Ci(x)
2. Max. diversity... many selector genes expressed in embryo
3. Min. diversity for given x... (unique fate)

4. Smooth function that rewards a little bit of pattern
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Fitness as mutual entropy:

P(i | x) = Ci(x) / 2i Ci(x) (only relative concentrations matter)
P(x) = 1/L  (uniform probability on cells)
P(i,x) = P(x)*P(i | x)

Fitness favors:
1. ‘Max. diversity’ -=> Max entropy, Si1, of P(i): (-2 P(i) Log(P(i) )
2. ‘Min. diversity given x’ -=> Min entropy, Sz of P(i | x):

How to combine 2 terms?

3. Assume gene duplication neutral ->
‘fitness’ = -S1 + S2 = - mutual information (i, x). Ci <=> X
(best fitness ~ free energy is most negative)

For N selector genes fitness > -log(N).
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Mutual entropy fitness
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Networks for static ‘morphogen’
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Time (development) dynamics in evolved

v Morpho

' Network
gene

A Selector
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Properties of Networks static gradient
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Networks ‘cell autonomous’ (ho communication between
cells)-> morphogen defines cell position.

Morphogen disappears -> multi-stability -> sharp boundaries
& only need repression between ~adjacent domains

Multi-stability -> order of gene expression matters & numbers
determine final state.

Morphogen sets anterior boundaries, repression sets posterior
boundaries -> statistical char. of evolved networks.
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Anterior-Posterior patterning
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Hox genes conserved in
bilaterians

Define coarse AP coordinates

Cellular “Zip code” controls
master regulatory genes

Biochem of regulation very

complex, but simple
phenomenology
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Mouse vertebrae reflect Hox territories
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Phenomenology of Hox expression

1.Spacial colinearity: 3’ to 5’ genome order follows A to P expr.
2. Temporal colinearity: (vertebrates) temporal order follows A to P

3.Posterior prevalence rule: most posterior Hox gene imposes fate
on all anterior genes

Hox mutation haltere->wing Hox expression Ato P
haltere Hox3
wing Hox?2

@ Hox1
/i % '\“jf wing Hox3

&, wing — Mmutate
¢ v Hox1

wing = (1 AND NOT(2,3..))
haltere = (2 AND NOT(3,..))
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Xenopus development (2)

Stage 7 (Morula) Stage 11 (Gastrula) Stage 11 Stage 12

Stage 15 (Neurula) Stage 24 (dorsal) Stage 24 (lateral)

Stage 9 Stage 10 (Gastrulation begins) Stage 10+ Stage 32 Stage 36 Stage 40

1.2mm egg, 7hrs stage 9 4000+ cells; 17hrs stage 15; 40hrs stage 32 @23C
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Gastrulation of Xenopus

1.2mm egg

5 hrs fertilization to MovieO
4000+ cells

17hrs @23C Movie

Anterior

Dorsa)Vview

Posterior
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Patterning a field of cells : AP growth

Model ‘patterning during growth’

as sliding morphogen that marks
boundary between growth zone
and patterned tissue.

Hox expression marked as colors.
Temporal sequence of expression

on equator->spacial domains AP ) o, y o,
“ P Anterior Posterior

‘organizer’ is point where
converging equator -> extending AP 8 8

. | vov LU
morphogen step ~ organizer

Wacher 2004 %y
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A only triangles
enter fitness
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Sliding morphogen (2)
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Temporal colinearity
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Temporal colinearity: Hox(time) fixed posterior cell -->
Anterior-Posterior progression
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Anterior Homeotic Mutation (2)
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Properties of Networks with Sliding Gradient

Recall static morphogen: anterior boundaries positioned from morphogen.
Analogue for sliding gradient?

Position == time exposed to morphogen:
‘Timer’ converts time in morphogen to
morphogen level + cell autonomy. Static Morph
<-> Sliding Morph.

Genes(time) 1 cell
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Good for growth control, change all rates get
same pattern (Deschamps etal timer ~ CAUDAL,
CDX2)
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Hox phenomenology: temporal colinearity, anterior homeotic mutation

Evolution of long from short germ band insects.
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Phylogeny of short (seq) and long germ insects
(seq ~ vertebrates, pattern during growth)
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Schistocerca sp. ;
Orthoptera : P hemi no seq ?
Gryllus bimaculatus
Hemiptera Oncopeltus fasciatus hemi ? seq ?
Nasonia vitripennis yes long yes
Bracon hebetor es long
Hymenoptera . : holo y = ?
Aphidius ervi no seq
Apis mellifera yes long* ?
Tribolium castaneum se es
Coleoptera . holo yes q..\, y 5
Callosobruchus maculates long* !
‘ R T Bombyx mori bl no seq* 9
préoprere Manduca sexta ? long* '
o Drosophila melanogaster , ‘
et Diptera ‘ : holo yes long yes
Anopheles gambiae

AD Peel, Phil. Trans. R. Soc 2008

Short to long germ: timer gene -> static morphogen. Down stream network
Invariant

Insect evolution focuses on segmentation, but Hox supplies identity.
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Other systems evolved:

e Clocks and bistable systems: (Francois & Hakim PNAS 2004)

e Somitogenesis (eg vertebrae): (Francois, Hakim, ES Mol.Sys.Bio. 2007)

e Adaptation to temporal signal (Francois & ES, Phys.Bio. 2008)

e AP-Hox patterning (Francois & ES, Development 2010)

e Temperature compensated clocks that entrain (Francois & ES, PLoS Comp Bio)
e Networks that take a spatial derivative of transient morphogen

e Fit genes to topology (Corson & ES PNAS 2012)

A few other applications in brief
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T Cell Activation

T cell receptors will respond to a few molecules of agonist and ignore a
> 10% higher concentration of ‘self’ proteins, based on a 3-4x slower off
rate from the receptor. (Kinetic proof reading will not explain this).

Model of phosphorylation cascade + self activated kinase/phosphatase
can: (Altan-Bonnet & Germain PLoS Bio 2005)

System also evolved by Lalanne & Francois PRL 2013 (see also Francois
etal PNAS 2013)

v Output/activate
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Optimal decision theory (Explore-Exploit)

1. Given a stream of data from distribution A or B, what is minimum
average decision time to identify the source for a given error rate, and what
is the algorithm that realizes it?? (Wald 1945)

2. A stream of data changes from type A to type B at an unknown time T.
What is the minimum average time lag in detecting the change point, for a
prescribed false positive rate??

Plausible constraint on sensory systems, from cells in an embryo to higher
cognition, decision speed matters.

Refs:
Neural MN Shadlen ~2006
Cellular, Kobayashi 2010;
Vergassola & EDS 2013, Simple biochemical networks can optimally
solve 1 & 2 and the parameters fit via local search.
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‘Saddle points’ or last common ancestor
(or how to turn a fly into a mosquito)

Maternal determinants
Gap genes

Pair-rule genes

i

”’lmm- Segment polarity genes (phylotypic stage)

Hox genes

Peel, Nat. Rev. Genet 2005
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Engrailed (and wg) mark segment boundaries
N H Patel Development Suppl 201-207 1994
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gap genes regulate eve.
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Signaling pathways involved 1n cell fate determination
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Are there any biophysical principles such as dynamical behavior that control where/when
certain pathways used? Could evolution simulations define discrete dynamical types?

(Brivanlou and Darnell 2002, Science)
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Characteristics of evolved models

e Close to dynamical system picture, evolve topology of flow, not genes ->
visualize minimal parameter description (-> genes to be fit). Evolution as
cascade of bifurcations.

eNetwork and parameters evolve together, de novo fitting of all parameters
in final network could be hard.

e Networks work by sloppy confluence of opposing activities; with tuned
rates; no time scale separation # 19th C applied math. BUT simple in that
parameters follow by gradient search.

e Evolved models not obvious, like genetic screen

e Relevance to experiment, hi level (static <-> dynam morpho), lo level (fit
parameters)

e 19th C Darwinism -> grad search, Useful engineering principle for specific
systems.
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The End
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