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(stochastic) model for ridesharing

• K units (cars) across n stations (closed network)

• system state ∈ Sn,K = {(xi )i∈[n]|
∑n

i=1 xi = K}
• i → j passengers arrive via Poisson process with rate φij
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(stochastic) model for ridesharing

• passenger requests ride if offered price is acceptable

• matched to idle unit, which then travels to destination

• trips have independent travel-times
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(stochastic) model for ridesharing

• myopic customers: abandon system if unit unavailable

platform objective

maximize long-term average welfare/revenue
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control levers for ridesharing

• pricing

– modulates demand between locations

– dynamic, state-dependent
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control levers for ridesharing

• dispatch: choose ‘nearby’ car to serve demand

– can use any car within ‘ETA target’
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control levers for ridesharing

• rebalancing: re-direct free car to empty location

– incur a cost for moving the car

– driver ‘nudges’ (heat-maps), autonomous vehicles
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key assumptions

assumption 1: timescales of platform operations

# of cars, arrival rates, demand elasticities remain constant over time

– time-varying rates (re-solve policies at change-points. . .)

– drawbacks: driver entry/exit behavior, bursty arrivals

assumption 2: timescales of strategic interactions

– passengers abandon if price too high/no vehicle

– drivers react at longer timescales

assumption 3: availability of data

platform has perfect knowledge of arrival rates, demand elasticities

– can be relaxed via online learning techniques
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flow model for ridesharing

flow model for ridesharing Markov chain

flows of cars in network

– occupied car-flows + empty-car flows (rebalancing)

– satisfies admitted passenger flows on edges

– flow-balance constraints at nodes 7/29



from online policy to fluid model

how well can we approximate the flow model via online controls?

theorem [B, Freund & Lykouris 2017]

flow relaxation gives state-independent dispatch policy which is

• 1 + n−1
K approximate (with instantaneous trips)

• 1 + O
(

1√
K

)
approximate (with travel-times)

theorem [B, Kanoria & Qian 2018]

family of state-dependent dispatch policies which are

• 1 + e−Θ(K) approximate (for large K , instantaneous trips)

• convex program gives optimal exponent

survey chapter: Ride Sharing, B & Johari

in Sharing Economy, Springer Series in Supply Chain Management
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our initial ETA prediction

are we there yet?
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the price of demand fragmentation
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price of fragmentation in ridesharing ecosystems

• what is the ‘societal cost’ of decentralized optimization?

– multiple platforms with (random) exogenously partitioned demands

– individual platforms do optimal empty-vehicle rebalancing

price of fragmentation

under exogenous demand split, increase in rebalancing costs of multiple

platforms vs. single platform (under large-market scaling)
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formal model

• n nodes, distance matrix D = (dij)(i,j)

• steady-state customer flows: for each edge (i,j), demand Λij

• total demand at node Λi =
∑

j(Λij − Λji ) = (A.Λ)i

rebalancing cost

RC (Λ) : min
∑

(i,j) dijxij
s.t. ∀i ,

∑
j(xij − xji ) = Λi

price of fragmentation

operational cost scaling under a duopoly vis-a-vis monopoly:

γθ = Eλθ∼Pθ [RC (λθ) + RC (Λ− λθ)]− RC (Λ)

θ = demand scaling parameter (λθ = θΛ)

Pθ = demand splitting process
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counterfactual simulation: NYC taxi data

log(γθ) depending on log(θ). TLC Data clustered into 40 stations
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price of fragmentation in ridesharing markets

what we show

as demand scales, the price of fragmentation undergoes a phase

transition based on structure of underlying demand flows

– both regimes observed in NYC data (≈ 10% fragmentation-affected)
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the price of fragmentation: formal result

theorem [Séjourné, Samaranayake & B 2018]

Depending on the spatial homogeneity of market shares and the dual

degeneracy of the demand, the PoF undergoes a phase transition from

an exponential decay to a square root/ linear divergence

• this results remains true for a wide family of splitting processes

• It is true independently of the number of competing firms

• sufficient condition for dual degeneracy: presence of locally balanced

clusters, i.e. disconnected components in the rebalancing flow graph
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geometric intuition

dual formulation for RC(Λ)

max
∑
i

αi .Λi s.t. ∀(i , j), αi − αj ≤ dij

Λ1

Λ2

Cα Cβ

Cγ

Cα ∩ Cβ

Cβ ∩ Cγ

θ1

θ2 > θ1

Fragmentation-resilient regime

Λ1

Λ2

Cα Cβ

Cγ

Cα ∩ Cβ

Cβ ∩ Cγ

θ1

θ2 > θ1

Fragmentation-affected regime
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warning: affects numerical simulations in unpredictable ways

fraction of fragmentation-affected regimes depends on data-aggregation

granularity(number of stations/time interval)

effect of spatial granularity effect of temporal granularity
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summary and thoughts

• demand fragmentation has non-trivial effects on overall efficiency

– phase transition in rebalancing costs

– depends on structure of demand

• fragmentation reduces when demand has

– increased spatial homogeneity

– coarser granularity

• multi-homing is a potential solution

• affected regime caused by populations more suitable for mass transit

• may affect data-driven measurements, numerical studies
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designing a transit marketplace
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so did ridesharing ‘solve’ transit?
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not yet, but. . .
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the transit marketplace
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transit marketplace: the network

21/29



transit marketplace: passenger utilities

each commuter has a public type

– type = vector of valuations, one for each multi-modal option

– we normalize transit value to 0

market chooses price menu: price for each multi-modal option
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transit marketplace: objectives

operational objective

reduce frictions, improve reliability for multi-modal trips

economic objective

set prices to maximize overall social welfare

is this sufficient?
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pareto improvement as a desiderata for markets
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transit marketplace: objectives

operational objective

reduce frictions, improve reliability for multi-modal trips

economic objective

set prices to maximize overall social welfare AND ensure pareto

improvement for all
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transit marketplace: incorporating PI constraints

problem: this may be incompatible! (Myerson-Satterthwaite)
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transit marketplace: formal model
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transit marketplace: example result

– can also get bicriteria approximations in general settings
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and so we hit the road again

our journey so far

• unified flow-based models for ridesharing

– capture main operational and market-design details – guide for

designing good online controls

– sandbox for studying more complex problems

• operational losses from demand fragmentation

• the promise and challenges of multi-modal transit marketplaces

open questions

• detailed scaling limits of control policies; elementary proofs of scaling

• value of information: prediction-guided control, maxmin guarantees

• appropriate mix of drivers and autonomous cars

• ridesharing + society
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Thanks!
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