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The Bigger Picture

Over the next 10 years, the major breakthrough of economics
will be in applications of market design, which improves the
efficiency of markets using a combination of game theory,
economics and algorithm design. We've already seen fruitful
application in search auctions, spectrum auctions, kidney
exchange and school assignment.

(2016 will be the year that) Silicon Valley recognizes that the
value of Uber is its marketplace, not the data

Preston McAfee
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(stochastic) model for ridesharing
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e K units (cars) across n stations (closed network)
o system state € S, k = {(Xi)ie[n| >oi1 Xi = K}
e | — j passengers arrive via Poisson process with rate ¢;;
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(stochastic) model for ridesharing
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e passenger requests ride if offered price is acceptable
e matched to idle unit, which then travels to destination
e trips have independent travel-times
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(stochastic) model for ridesharing
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e myopic customers: abandon system if unit unavailable

platform objective

maximize long-term average welfare/revenue
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control levers for ridesharing

e pricing
— modulates demand between locations
— dynamic, state-dependent
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control levers for ridesharing

O

e dispatch: choose ‘nearby’ car to serve demand
— can use any car within ‘ETA target’
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control levers for ridesharing
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e rebalancing: re-direct free car to empty location
— incur a cost for moving the car
— driver ‘nudges’ (heat-maps), autonomous vehicles
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key assumptions

: timescales of platform operations
# of cars, arrival rates, demand elasticities remain constant over time
— time-varying rates (re-solve policies at change-points. . .)
— drawbacks:

: timescales of strategic interactions

— passengers abandon if price too high/no vehicle
— drivers react at longer timescales

: availability of data
platform has perfect knowledge of arrival rates, demand elasticities
— can be relaxed via online learning techniques
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flow model for ridesharing
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flow model for ridesharing Markov chain

— occupied car-flows + empty-car flows (rebalancing)
— satisfies admitted passenger flows on edges
— flow-balance constraints at nodes 7/29



from online policy to fluid model

how well can we approximate the flow model via online controls?

theorem [B, Freund & Lykouris 2017]
flow relaxation gives state-independent dispatch policy which is

° approximate (with instantaneous trips)

° approximate (with travel-times)
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https://link.springer.com/chapter/10.1007/978-3-030-01863-4_5

from online policy to fluid model

how well can we approximate the flow model via online controls?

theorem [B, Freund & Lykouris 2017]

flow relaxation gives state-independent dispatch policy which is

° approximate (with instantaneous trips)

o approximate (with travel-times)

e extends to controls, most objectives
° . factor goes to 1 as system scales

theorem [B, Kanoria & Qian 2018]
family of state-dependent dispatch policies which are

° approximate (for large K, instantaneous trips)

® convex program gives

8/29


https://link.springer.com/chapter/10.1007/978-3-030-01863-4_5

from online policy to fluid model

how well can we approximate the flow model via online controls?

theorem [B, Freund & Lykouris 2017]
flow relaxation gives state-independent dispatch policy which is

° approximate (with instantaneous trips)

° approximate (with travel-times)

theorem [B, Kanoria & Qian 2018]

family of state-dependent dispatch policies which are

° approximate (for large K, instantaneous trips)

e convex program gives

survey chapter: , B & Johari
in Sharing Economy, Springer Series in Supply Chain Management
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our initial ETA prediction

Summary

Main takeaways

@ Throughput of Dynamic Pricing (in the large-market limit) is:
Bounded by throughput of optimal static pricing
Robust to perturbations in system parameters

@ Results extend to revenue, networks of ride-sharing queues

The bigger picture

In many online marketplaces:

platform optimization < controlling the equilibrium

@ New sources of data, real-time monitoring and control tools

@ Many questions: information displays, long-term contracts,
competition between platforms, interaction with other systems, etc.

Sid Banerjee (Cornell ORIE) Pricing in Rideshare Platforms

Simons Workshop 19 / 19

are we there yet?
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the price of demand fragmentation



price of fragmentation in ridesharing ecosystems
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e what is the 'societal cost’ of decentralized optimization?
— multiple platforms with (random) exogenously partitioned demands
— individual platforms do optimal empty-vehicle rebalancing
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price of fragmentation in ridesharing ecosystems

@)
O

e what is the 'societal cost’ of decentralized optimization?

— multiple platforms with (random) exogenously partitioned demands
— individual platforms do optimal empty-vehicle rebalancing

price of fragmentation

under exogenous demand split, increase in rebalancing costs of multiple
platforms vs. single platform (under large-market scaling)
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formal model

e n nodes, distance matrix D = (d;;)i.j)
e steady-state customer flows: for each edge (i,j), demand Aj;

e total demand at node A; = >_;(A; — Aji) = (A.N);

rebalancing cost

RC(A) = min 32 5 diixj
s.t. Vl', Zj(xij — XJ,) = /\,‘
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formal model

e n nodes, distance matrix D = (d;;)i.j)
e steady-state customer flows: for each edge (i,j), demand Aj;
e total demand at node A; = >_;(A; — Aji) = (A.N);

rebalancing cost

RC(A) = min 32 5 diixj
s.t. Vl', Zj(xij — XJ,) = /\,‘

price of fragmentation
operational cost scaling under a duopoly vis-a-vis monopoly:
7% = Eyope [RC(A?) + RC(A — A%)] — RC(A)

(\? = 0A)
P? = demand splitting process
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counterfactual simulation: NYC taxi data
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price of fragmentation in ridesharing markets

what we show

as demand scales, the price of fragmentation undergoes a phase
transition based on structure of underlying demand flows

— both regimes observed in NYC data (~ 10% fragmentation-affected)
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the price of fragmentation: formal result

theorem [Séjourné, Samaranayake & B 2018]

Depending on the spatial homogeneity of market shares and the dual
degeneracy of the demand, the PoF undergoes a phase transition from
an exponential decay to a square root/ linear divergence

e this results remains true for a wide family of splitting processes

e It is true independently of the number of competing firms

e sufficient condition for dual degeneracy: presence of locally balanced
clusters, i.e. disconnected components in the rebalancing flow graph
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geometric intuition

dual formulation for RC(A)

max Za,-./\,- s.t. V(i J), ai—aj < dj
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: affects numerical simulations in unpredictable ways

fraction of fragmentation-affected regimes depends on data-aggregation
granularity(number of stations/time interval)
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demand fragmentation has non-trivial effects on overall efficiency

— phase transition in rebalancing costs
— depends on structure of demand

fragmentation reduces when demand has
— increased spatial homogeneity
— coarser granularity

multi-homing is a potential solution
affected regime caused by populations more suitable for mass transit

may affect data-driven measurements, numerical studies
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designing a transit marketplace



so did ridesharing ‘solve’ transit?

How Park-and-Ride Encourages Car Use

ERICJAFFE MAR 20,2013

A mew study finds that pesple who used te make the whole trip by bike or
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not yet, but...

" |\ LOOKS TO RIDESHARE T0
' BUILD THE FUTURE OF PUBLIC
K TRANSIT

FRIENDS
WITH TRANSIT

Exploring the intersection of Lyft and public transportation.

Coming soon to the Uber app: bikes, rental cars, and "
public transportation

Ub
son

ahi is in Washington, DC today to extend the hand of friendship to cities and make
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the transit marketplace

- enklare vardagsresande

‘ Commuters ‘ ‘ Price-setting platform ‘ ’ Providers ‘
2 B M¥e
- a

ooo
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transit marketplace: the network
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transit marketplace: passenger ut

each commuter has a public type
— type = vector of valuations, one for each multi-modal option

— we normalize transit value to 0
market chooses price menu: price for each multi-modal option
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transit marketplace: objectives

operational objective

reduce frictions, improve reliability for multi-modal trips
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transit marketplace: objectives

operational objective

reduce frictions, improve reliability for multi-modal trips

economic objective

set prices to maximize overall social welfare
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pareto improvement as a desiderata for markets

Buy-in from all parties (providers and commuters) necessary for success

COMPUTERS CAN SOLVE YOUR
PROBLEM. YOU MAY NOT LIKE

THE ANSWER.

What happened when Boston Public Schools tried for equity with an algorithm

| €he New ork Eimes

Airbnb Tax’ in N.J. Opens New Front

in Battle Over Internet Economy
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transit marketplace: objectives

operational objective

reduce frictions, improve reliability for multi-modal trips

economic objective

set prices to maximize overall social welfare AND

25/29



transit marketplace: incorporating Pl constraints

‘ Status quo ‘ Marketplace (First Best) l
0 .0
.‘. (VaB, Vacs) 3 (U/SJB'V/?CB) 3 (Vap) Vacs) 8 (Vap» Vacs)
MoD sets profit-maximizing prices. Marketplace sets welfare-maximizing prices.

Pareto improvement:

Marketplace utilities > Status quo utilities
Marketplace profit > Status quo profit

problem: this may be incompatible! (Myerson-Satterthwaite)
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transit marketplace: formal model

max W(p) * rotma el ]
P Poly-time (LP)
subject to Optimal for MoD to serve full demand
\‘ v Pm) Tom (D) = U, 76
\‘\‘w}» ( m (P SN i p) > I1°

Pareto improvement constraints introduce non-convexity
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transit marketplace: example result

1. Find welfare-maximizing prices (via LP).

2. Raises prices until one of three things happens?
i.  Efficient allocation is changed
ii. Commuter-Plis violated
iii. Enough money is raised

3. Final prices:

l System of linear inequalities
Linear in size of input

“Marketplace surcharge”
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transit marketplace: example result

1. Find welfare-maximizing prices (via LP).

2. Raises prices until one of three things happens:l
i.  Efficient allocation is changed # System of linear inequalities
ii. Commuter-Pl is violated Linear in size of input
iii. Enough money is raised

3. Final prices:

“Marketplace surcharge”

Informal Theorem. If there exist surcharges such that, for all commuters allocated a
mode in the efficient allocation: ’
Worst-

case welfare generated by commuter in marketplace ‘

)

max E (eij + cji) |p [>|Status quo utility + Surcharge
m
(L.1)EE.,

‘ Valuation of commuter for mode m ‘ ‘ Cost of m + local rebalancing ‘ \

‘ Welfare generated by commuter in status quo

and the surcharges make up the status quo profit, then First Best is Pareto-improving.

— can also get in general settings 28/29



and so we hit the road again

our journey so far

e unified flow-based models for ridesharing
— capture main operational and market-design details — guide for

designing good online controls

e operational losses from demand fragmentation

e the promise and challenges of multi-modal transit marketplaces

open questions
° of control policies; elementary proofs of scaling
° : prediction-guided control, maxmin guarantees
e appropriate

e ridesharing +
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Thanks!




