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Motivation: Testing algorithms

Suppose you are one of these:

lyRt Uber 2 & Uowork eb v

DOORDASH
POSTMATES

Linked m “w Booking.com Et Sy

STITCH FIX airbnb

You have two algorithms A and B that you want to compare (e.g., matching
algorithms).
Each algorithm changes the state of the system.

How do you design an experiment (A/B test) and an estimator to compare them?
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Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A
(heads) or B (tails).

Why is this not a good idea?
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Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A
(heads) or B (tails).

Why is this not a good idea?

Temporal interference: Each algorithm’s action changes the state as seen by the
other algorithm.

Therefore experimental units (time steps) interfere with each other, introducing
bias.
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Industry practice: Switchback designs

Many platforms (ridesharing, delivery marketplaces, etc.) use switchback designs
to run A/B tests of algorithms:

1.
2.
3.

Divide time into fixed length non-overlapping intervals.
In each successive interval, assign one of algorithm A or B.

Compute sample average estimate S/A\EA and S/AEB of reward of A and B
respectively.

Compute S/A\EA — S/A\EB as treatment effect estimate TE.

Note: Doesn't eliminate temporal interference.
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Overview of our contributions

We cast the problem of testing two algorithms as a theoretical problem of testing
two Markov chains.

We focus on consistent estimation of TE.

> We develop a Markov policy for allocation, that together with a MLE for
TE, is consistent and sample efficient.

> We develop a regenerative policy for allocation that is consistent when used
with the SAE for TE (but not sample efficient).
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Related work

» Mitigating network interference
Sobel (2006); Hudgens and Halloran (2008); Manski (2013); Ugander et al. (2013); Manski (2013);
Eckles et al. (2017); Choi (2017); Baird et al. (2018); Athey et al. (2018); Basse et al. (2019)

» Mitigating marketplace interference
Kohavi et al. (2009); Ostrovsky and Schwarz (2011); Bottou et al. (2013); Blake and Coey (2014); Basse
et al. (2016); Wager and Xu (2019)
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Related work (continued)

» Estimation of a single Markov chain
Billingsley (1961); Kutoyants (2013)

» Markov decision processes with minimum variance objectives: Generally
computationally intractable
Sobel (1982, 1994); Di Castroet et al. (2012); Filar et al. (1989); lancu et al. (2015); Mannor and
Tsitsiklis (2011); Yu et al. (2018)

» Pure exploration in reinforcement learning. Focus on finding the best policy
Brunskill et al. (2017); Putta and Tulabandhula (2017)

» Offline policy evaluation in reinforcement learning
Precup et al. (2000), Dudik et al. (2015), Theocharous et al. (2015), Thomas and Brunskill (2016), etc.
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Preliminaries
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Nonparametric model

» Discrete time n =0,1,2,...
» Finite state space S (z,y denote states)
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Nonparametric model
Discrete time n =10,1,2, ...
Finite state space S (x,y denote states)

>

>

» Two algorithms (actions) 1 and 2 (¢ denotes algorithm)

» Unknown irreducible transition matrices P(¢) = (P(¢{,x,y),z,y € 5)
>

Invariant distributions 7 (¢) = (7(¢,x),x € S) (row vector)
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Nonparametric model

Discrete time n =10,1,2, ...

Finite state space S (x,y denote states)

Two algorithms (actions) 1 and 2 (¢ denotes algorithm)

Unknown irreducible transition matrices P(¢) = (P({,z,y),x,y € S)
Invariant distributions 7 (¢) = (7(¢,x),x € S) (row vector)

Unknown reward distribution R ~ f(:|¢,z,y) (finite mean and variance)
r(l,z) = E[R|(, z]; 7({) = (r({,x),z € S) (column vector)

vVvyvyvVvyvyyy

9/27



Nonparametric model

Discrete time n =10,1,2, ...

Finite state space S (x,y denote states)

Two algorithms (actions) 1 and 2 (¢ denotes algorithm)

Unknown irreducible transition matrices P(¢) = (P({,z,y),x,y € S)
Invariant distributions 7 (¢) = (7(¢,x),x € S) (row vector)

Unknown reward distribution R ~ f(:|¢,z,y) (finite mean and variance)
r(l,z) = E[R|(, z]; 7({) = (r({,x),z € S) (column vector)

At time n: State X,,, action A,,, reward R,

vVvyvyvVvyvyyy
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The estimation problem

Treatment effect of interest is the steady state reward difference:

a=a2)-al)=) w222z Y w1 z)r(lz)

x xT

=7w(2)r(2) —w(1)r(1).
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The estimation problem

Treatment effect of interest is the steady state reward difference:

a=a2)-al)=) w222z Y w1 z)r(lz)

x xT

=7w(2)r(2) —w(1)r(1).

We get to choose an estimator and a policy:
» Estimator: o = (v, : n > 0), a, € R
» Policy: A= (A4,:n>0), 4, € {1,2}

Estimator and policy are adapted to history, and policy can be randomized.
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Maximum likelihood estimation

11/27



The maximum likelihood estimator

Definitions:
n—1
[',,(¢, z) :== # of plays of £ in first n steps = ZI(Xj =x,A;=10)
=0

>io [(X; =2, A5 = Ry
max{[', (¢, z),1}
SO I(X; =2, A =4, X401 =y)

rn(l,x) := SAE of r({,z) =

P, (¢ = SAE of P({,z,y) = ==
(¢, 2,y) := SAE of P((, z,y) R
Let 7,,(¢) be invariant distribution of P, (¢) (exists a.s. as n — o). Then:

aME — 7 (2)r,(2) — 7 (1), (1).

n
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Time-average regular policies

We optimize over time-average regular policies.

Definition
Policy A is time-average regular if

1

n

L4 ) 2y v, )

as n — oo for each x € S, = 1,2, and (possibly random) ~(¢, z).
We call v = (y(4,z) : © € S, ¢ = 1,2) the policy limit.

(For our theory we will require y(¢,z) > 0 a.s.)
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Central limit theorem for MLE

Theorem
For any time-average regular policy A with strictly positive policy limits:

12/ MLE m(2,x)0(2,x (1, 2)o(1,x
n'(a'F — ) iZWG@J) —ZWG(L@.

xT xT

where:
> G({,x) areiid. N(0,1);
> 0'2(6, J}) = Var (R] + g(f, XJ) | Xj—l =X, Aj—l = é)
(assume positive);
» g({) solves the following Poisson equation:

g(0) = (I - P(0) +11(0))"'r(0)

» II({) is the matrix where each row is 7 (/).
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Central limit theorem for MLE: Single chain

Key idea:
an(0) = () =Y m(l,z)ry(Cx) = Y w(l,x)r(l,x)

= 7 (0) (ra(0) = 7(0)) + (n () = 7(0))7(0)
= () (ra(£) = 7(0)) + () (P (0) — P(0))g(0)

-7
-7

We combine the preceding idea with martingale arguments to handle adaptive
sampling.
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Optimal oracle policy for MLE

Let K be the (convex, compact) set of all (k(¢,z) : z € S,¢ = 1,2) such that:
k(L y) + k(2,y) = ZZ (l,x)Pl,z,y), y€ES;
Z ZFL lx) =1,
l T

k(l,x) > 0.

Lemma: The law of any time-average regular policy limit v is
a probability measure over K.
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Optimal oracle policy for MLE

Let x* be the solution to the following convex optimization problem:

minimize (L, )0 (L, 2)
zg:; k(L x)

subject to x € K.

Then k* can be realized as the policy limit of the following
stationary, Markov policy:

Run algorithm ¢ in state x with probability:

K*({, x)
k*(1,2) + Kk*(2,2)

p(lx)=
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Optimal oracle policy for MLE

Theorem

The policy p* minimizes the asymptotic variance of n'/?(aM€ — a) over
time-average regular policies.

Proof idea: Use Jensen's inequality on asymptotic variance of n'/2(aME — a):

LR
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The value of cooperative exploration
Cooperative exploration: Two chains can yield much more efficient estimation
than either chain alone.

Example: Deterministic reward » = 1 in states 1,2, 3, and zero reward elsewhere.
Estimating red or blue chain alone has asymptotic variance ©(S) higher than
using both together!

(deterministic)
— D — — —
- (deterministic) \\

~~
i N
14 v
S 4
05 05 05
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Optimal online policy for MLE

Without knowledge of the primitives, we can compute x,, (¢, x) as the optimal
solution given P,,(¢), and set:

pa(l,z) = (1 - €,) ( in (L, 2) ) 1

kn(1, 1) + K, (2, ) t g

with €, = n~'/2 (forced exploration).

This yields the asymptotically optimal policy limits in an online fashion.
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Sample average estimation

21/27



Sample average estimation

Given a policy A, the sample average estimator is:

SAE _ S I(A; =R Y I(A; = 1) R

OéTL n— n—
Zj:(} [<Aj =2) ijol [(Aj =1)

This estimator is computationally much less intensive.

However, it suffers from temporal interference every time the policy switches
chains.
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Regenerative policies
Fix a state =" (the regeneration state).

Only change chains at visits to z"; at each visit, choose ¢ with probability p(¢).
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Regenerative policies
Fix a state 2" (the regeneration state).

Only change chains at visits to z"; at each visit, choose ¢ with probability p(¢).
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Regenerative policies
Fix a state 2" (the regeneration state).

Only change chains at visits to z"; at each visit, choose ¢ with probability p(¢).
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Consistency and central limit theorem

SAE of regenerative policy is consistent
(no temporal interference asymptotically by design).

Can show: There exists ¢(¢) (depending on z" and p) such that
q(1) +q(2) =1 and v(¢,z) = q()m (¢, x) for all ¢, z.

q(¢) gives the fraction of time spent with chain /.
(Can choose any g we want by varying p.)

Since as if we have two parallel runs of each chain,
convergence is at rate n'/? and CLT holds.
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Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

vy o)
A Oro)
where 32(0) = Y (€, z)0?(¢, z).

Scaled asymptotic variance of this policy is (a(1) + &(2))? (achievable with any
choice of z").

Can similarly construct an asymptotically equivalent online algorithm.
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Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

vy o)
A Oro)
where 32(0) = Y (€, z)0?(¢, z).

Scaled asymptotic variance of this policy is (a(1) + &(2))? (achievable with any
choice of z").

Can similarly construct an asymptotically equivalent online algorithm.

Unboundedly suboptimal in general relative to MLE with Markov optimal policy:
There we had |S| degrees of freedom vs. only one degree of freedom here.
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Concluding thoughts
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Summary and looking ahead

We proposed a benchmark model with which to evaluate sampling efficiency of
consistent estimator-design pairs for switchback experimentation.
There are several considerations we have not addressed:

» Finite horizon analysis

» Multiple treatments

» Nonstationarity

» Heterogeneous treatment effects
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