
Adaptive Experimental Design with
Temporal Interference

Mohammad Rasouli — Peter Glynn — Ramesh Johari
Stanford University

rjohari@stanford.edu

3 June 2019

1 / 27

Motivation: Testing algorithms
Suppose you are one of these:

You have two algorithms A and B that you want to compare (e.g., matching
algorithms).

Each algorithm changes the state of the system.

How do you design an experiment (A/B test) and an estimator to compare them?

2 / 27

Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A
(heads) or B (tails).

Why is this not a good idea?

Temporal interference: Each algorithm’s action changes the state as seen by the
other algorithm.

Therefore experimental units (time steps) interfere with each other, introducing
bias.

3 / 27

Naive solution: Randomize over time

Suppose at each decision epoch, we randomly flip a coin and run either A
(heads) or B (tails).

Why is this not a good idea?

Temporal interference: Each algorithm’s action changes the state as seen by the
other algorithm.

Therefore experimental units (time steps) interfere with each other, introducing
bias.

3 / 27

Industry practice: Switchback designs

Many platforms (ridesharing, delivery marketplaces, etc.) use switchback designs
to run A/B tests of algorithms:

1. Divide time into fixed length non-overlapping intervals.

2. In each successive interval, assign one of algorithm A or B.

3. Compute sample average estimate ŜAEA and ŜAEB of reward of A and B
respectively.

4. Compute ŜAEA − ŜAEB as treatment effect estimate T̂E.

Note: Doesn’t eliminate temporal interference.

4 / 27

Overview of our contributions

We cast the problem of testing two algorithms as a theoretical problem of testing
two Markov chains.

We focus on consistent estimation of TE.

I We develop a Markov policy for allocation, that together with a MLE for
T̂E, is consistent and sample efficient.

I We develop a regenerative policy for allocation that is consistent when used
with the SAE for T̂E (but not sample efficient).

5 / 27

Related work

I Mitigating network interference
Sobel (2006); Hudgens and Halloran (2008); Manski (2013); Ugander et al. (2013); Manski (2013);

Eckles et al. (2017); Choi (2017); Baird et al. (2018); Athey et al. (2018); Basse et al. (2019)

I Mitigating marketplace interference
Kohavi et al. (2009); Ostrovsky and Schwarz (2011); Bottou et al. (2013); Blake and Coey (2014); Basse

et al. (2016); Wager and Xu (2019)

6 / 27

Related work (continued)

I Estimation of a single Markov chain
Billingsley (1961); Kutoyants (2013)

I Markov decision processes with minimum variance objectives: Generally
computationally intractable
Sobel (1982, 1994); Di Castroet et al. (2012); Filar et al. (1989); Iancu et al. (2015); Mannor and

Tsitsiklis (2011); Yu et al. (2018)

I Pure exploration in reinforcement learning: Focus on finding the best policy
Brunskill et al. (2017); Putta and Tulabandhula (2017)

I Offline policy evaluation in reinforcement learning
Precup et al. (2000), Dudik et al. (2015), Theocharous et al. (2015), Thomas and Brunskill (2016), etc.

7 / 27

Preliminaries

8 / 27

Nonparametric model

I Discrete time n = 0, 1, 2, . . .

I Finite state space S (x, y denote states)

I Two algorithms (actions) 1 and 2 (` denotes algorithm)

I Unknown irreducible transition matrices P (`) = (P (`, x, y), x, y ∈ S)

I Invariant distributions π(`) = (π(`, x), x ∈ S) (row vector)

I Unknown reward distribution R ∼ f(·|`, x, y) (finite mean and variance)

I r(`, x) = E[R|`, x]; r(`) = (r(`, x), x ∈ S) (column vector)

At time n: State Xn, action An, reward Rn

9 / 27

Nonparametric model

I Discrete time n = 0, 1, 2, . . .

I Finite state space S (x, y denote states)

I Two algorithms (actions) 1 and 2 (` denotes algorithm)

I Unknown irreducible transition matrices P (`) = (P (`, x, y), x, y ∈ S)

I Invariant distributions π(`) = (π(`, x), x ∈ S) (row vector)

I Unknown reward distribution R ∼ f(·|`, x, y) (finite mean and variance)

I r(`, x) = E[R|`, x]; r(`) = (r(`, x), x ∈ S) (column vector)

At time n: State Xn, action An, reward Rn

9 / 27

Nonparametric model

I Discrete time n = 0, 1, 2, . . .

I Finite state space S (x, y denote states)

I Two algorithms (actions) 1 and 2 (` denotes algorithm)

I Unknown irreducible transition matrices P (`) = (P (`, x, y), x, y ∈ S)

I Invariant distributions π(`) = (π(`, x), x ∈ S) (row vector)

I Unknown reward distribution R ∼ f(·|`, x, y) (finite mean and variance)

I r(`, x) = E[R|`, x]; r(`) = (r(`, x), x ∈ S) (column vector)

At time n: State Xn, action An, reward Rn

9 / 27

Nonparametric model

I Discrete time n = 0, 1, 2, . . .

I Finite state space S (x, y denote states)

I Two algorithms (actions) 1 and 2 (` denotes algorithm)

I Unknown irreducible transition matrices P (`) = (P (`, x, y), x, y ∈ S)

I Invariant distributions π(`) = (π(`, x), x ∈ S) (row vector)

I Unknown reward distribution R ∼ f(·|`, x, y) (finite mean and variance)

I r(`, x) = E[R|`, x]; r(`) = (r(`, x), x ∈ S) (column vector)

At time n: State Xn, action An, reward Rn

9 / 27

The estimation problem

Treatment effect of interest is the steady state reward difference:

α = α(2)− α(1) =
∑
x

π(2, x)r(2, x)−
∑
x

π(1, x)r(1, x)

= π(2)r(2)− π(1)r(1).

We get to choose an estimator and a policy:

I Estimator: α = (αn : n ≥ 0), αn ∈ R
I Policy: A = (An : n ≥ 0), An ∈ {1, 2}

Estimator and policy are adapted to history, and policy can be randomized.

10 / 27

The estimation problem

Treatment effect of interest is the steady state reward difference:

α = α(2)− α(1) =
∑
x

π(2, x)r(2, x)−
∑
x

π(1, x)r(1, x)

= π(2)r(2)− π(1)r(1).

We get to choose an estimator and a policy:

I Estimator: α = (αn : n ≥ 0), αn ∈ R
I Policy: A = (An : n ≥ 0), An ∈ {1, 2}

Estimator and policy are adapted to history, and policy can be randomized.

10 / 27

Maximum likelihood estimation

11 / 27

The maximum likelihood estimator

Definitions:

Γn(`, x) := # of plays of ` in first n steps =
n−1∑
j=0

I(Xj = x,Aj = `)

rn(`, x) := SAE of r(`, x) =

∑n−1
j=0 I(Xj = x,Aj = `)Rj+1

max{Γn(`, x), 1}

Pn(`, x, y) := SAE of P (`, x, y) =

∑n−1
j=0 I(Xj = x,Aj = `,Xj+1 = y)

max{Γn(`, x), 1}

Let πn(`) be invariant distribution of P n(`) (exists a.s. as n→∞). Then:

αMLE
n = πn(2)rn(2)− πn(1)rn(1).

12 / 27

Time-average regular policies

We optimize over time-average regular policies.

Definition
Policy A is time-average regular if

1

n
Γn(`, x)

p−→ γ(`, x)

as n→∞ for each x ∈ S, ` = 1, 2, and (possibly random) γ(`, x).

We call γ = (γ(`, x) : x ∈ S, ` = 1, 2) the policy limit.

(For our theory we will require γ(`, x) > 0 a.s.)

13 / 27

Central limit theorem for MLE
Theorem
For any time-average regular policy A with strictly positive policy limits:

n1/2(αMLE
n − α)⇒

∑
x

π(2, x)σ(2, x)

γ(2, x)1/2
G(2, x)−

∑
x

π(1, x)σ(1, x)

γ(1, x)1/2
G(1, x).

where:
I G(`, x) are i.i.d. N(0, 1);
I σ2(`, x) = Var

(
Rj + g̃(`,Xj) | Xj−1 = x,Aj−1 = `

)
(assume positive);

I g̃(`) solves the following Poisson equation:

g̃(`) = (I − P (`) + Π(`))−1r(`)

I Π(`) is the matrix where each row is π(`).
14 / 27

Central limit theorem for MLE: Single chain

Key idea:

αn(`)− α(`) =
∑
x

πn(`, x)rn(`, x)−
∑
x

π(`, x)r(`, x)

= πn(`)
(
rn(`)− r(`)

)
+
(
πn(`)− π(`)

)
r(`)

= πn(`)
(
rn(`)− r(`)

)
+ πn(`)

(
P n(`)− P (`)

)
g̃(`)

We combine the preceding idea with martingale arguments to handle adaptive
sampling.

15 / 27

Optimal oracle policy for MLE

Let K be the (convex, compact) set of all
(
κ(`, x) : x ∈ S, ` = 1, 2

)
such that:

κ(1, y) + κ(2, y) =
∑
`

∑
x

κ(`, x)P (`, x, y), y ∈ S;∑
`

∑
x

κ(`, x) = 1;

κ(`, x) ≥ 0.

Lemma: The law of any time-average regular policy limit γ is
a probability measure over K.

16 / 27

Optimal oracle policy for MLE

Let κ∗ be the solution to the following convex optimization problem:

minimize
∑
`

∑
x

π2(`, x)σ2(`, x)

κ(`, x)

subject to κ ∈ K.

Then κ∗ can be realized as the policy limit of the following
stationary, Markov policy:

Run algorithm ` in state x with probability:

p∗(`, x) =
κ∗(`, x)

κ∗(1, x) + κ∗(2, x)
.

17 / 27

Optimal oracle policy for MLE

Theorem
The policy p∗ minimizes the asymptotic variance of n1/2(αMLE

n − α) over
time-average regular policies.

Proof idea: Use Jensen’s inequality on asymptotic variance of n1/2
(
αMLE
n − α

)
:

E
[∑

`

∑
x

π2(`, x)σ2(`, x)

γ(`, x)

]

18 / 27

The value of cooperative exploration
Cooperative exploration: Two chains can yield much more efficient estimation
than either chain alone.

Example: Deterministic reward r = 1 in states 1, 2, 3, and zero reward elsewhere.
Estimating red or blue chain alone has asymptotic variance Θ(S) higher than
using both together!

19 / 27

Optimal online policy for MLE

Without knowledge of the primitives, we can compute κn(`, x) as the optimal
solution given P n(`), and set:

pn(`, x) = (1− εn)

(
κn(`, x)

κn(1, x) + κn(2, x)

)
+

1

2
εn,

with εn = n−1/2 (forced exploration).

This yields the asymptotically optimal policy limits in an online fashion.

20 / 27

Sample average estimation

21 / 27

Sample average estimation

Given a policy A, the sample average estimator is:

αSAE
n =

∑n−1
j=0 I(Aj = 2)Rj+1∑n−1

j=0 I(Aj = 2)
−
∑n−1

j=0 I(Aj = 1)Rj+1∑n−1
j=0 I(Aj = 1)

This estimator is computationally much less intensive.

However, it suffers from temporal interference every time the policy switches
chains.

22 / 27

Regenerative policies

Fix a state xr (the regeneration state).

Only change chains at visits to xr; at each visit, choose ` with probability p(`).

23 / 27

Regenerative policies

Fix a state xr (the regeneration state).

Only change chains at visits to xr; at each visit, choose ` with probability p(`).

23 / 27

Regenerative policies

Fix a state xr (the regeneration state).

Only change chains at visits to xr; at each visit, choose ` with probability p(`).

23 / 27

Consistency and central limit theorem

SAE of regenerative policy is consistent
(no temporal interference asymptotically by design).

Can show: There exists q(`) (depending on xr and p) such that
q(1) + q(2) = 1 and γ(`, x) = q(`)π(`, x) for all `, x.

q(`) gives the fraction of time spent with chain `.
(Can choose any q we want by varying p.)

Since as if we have two parallel runs of each chain,
convergence is at rate n1/2 and CLT holds.

24 / 27

Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

q∗(`) =
σ(`)

σ(1) + σ(2)
,

where σ2(`) =
∑

x π(`, x)σ2(`, x).

Scaled asymptotic variance of this policy is (σ(1) + σ(2))2 (achievable with any
choice of xr).

Can similarly construct an asymptotically equivalent online algorithm.

Unboundedly suboptimal in general relative to MLE with Markov optimal policy:
There we had |S| degrees of freedom vs. only one degree of freedom here.

25 / 27

Optimal oracle regenerative policy

Easy to show that optimal oracle regenerative policy has:

q∗(`) =
σ(`)

σ(1) + σ(2)
,

where σ2(`) =
∑

x π(`, x)σ2(`, x).

Scaled asymptotic variance of this policy is (σ(1) + σ(2))2 (achievable with any
choice of xr).

Can similarly construct an asymptotically equivalent online algorithm.

Unboundedly suboptimal in general relative to MLE with Markov optimal policy:
There we had |S| degrees of freedom vs. only one degree of freedom here.

25 / 27

Concluding thoughts

26 / 27

Summary and looking ahead

We proposed a benchmark model with which to evaluate sampling efficiency of
consistent estimator-design pairs for switchback experimentation.

There are several considerations we have not addressed:

I Finite horizon analysis

I Multiple treatments

I Nonstationarity

I Heterogeneous treatment effects

27 / 27

	Preliminaries
	Maximum likelihood estimation
	Sample average estimation
	Concluding thoughts

