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Errors can occur at any stage
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Outline

Evolution of error rates under a
speed vs. accuracy tradeoff

Molecular errors pre-screen future variants,
and so promote evolvability

Genetic polymorphism
is not required for evolvability

Protein coding sequences can evolve de novo
from pre-screened noncoding sequences



Consequences of errors are either bad or
relatively harmless, rarely in between
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Distribution of fithess effects
of new mutations
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Stop codon readthrough:
case study of molecular errors
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Readthrough at error rate p

p p
N\ N\
1 locus 1 1 1



Mutation bias favors misfolding
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Selection for a stable fold
even after a readthrough error
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Readthrough errors happen at many loci.
Some are sensitive.
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Fithess

Costs and benefits of proofreading
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Fithess

Costs and benefits of proofreading
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Two attractors in large populations
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Two strategies are quite different

2 strategies:

@®: allowing deleterious sequences,
but hiding them
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. eliminating deleterious sequence
by expressing them
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Two attractors for a range of population sizes
(i.e. range of limits to weak selection)
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Model applies to many kinds of
molecular errors

Error Global solution Local solution
Stop codon Accurate ribosome & .
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Outline

Evolution of error rates under a
speed vs. accuracy tradeoff

Molecular errors pre-screen future variants,
and so promote evolvability

Genetic polymorphism
is not required for evolvability

Protein coding sequences can evolve de novo
from pre-screened noncoding sequences



Effect on quantitative trait
proportional to expression
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Point mutation in stop codon —
full expression of previously cryptic sequence

(that won’t misfold if error rate was high)
Co-option

Trait value
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Environmental change
in optimal trait value
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Populations with high error rates
evolve faster
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New mutations
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Cryptic variants
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Evolvability comes from
tapping into cryptic variants

e Molecular errors in the present
mimic mutations in the future

e Strongly deleterious sequences are
pre-purged in favor of benign ones

e Benign sequences are co-optable for adaptation



Benefits go to any “high error”
locally benign cryptic sequences

More examples
e Promiscuous enzyme activities

e Rare protein-protein interactions (PPls) that lose
crypticity when proteins see each other more often

Aside: “cryptic” PPlIs (deliberately bad Y2H data)
are biologically meaningful

They predict gene noise and plasticity better than
“real” PPIs (best practice affinity capture mass spec)

“Stickiness” trumps “hubness”
Brettner & Masel (2012)
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Let’s look at cryptic sequences
with and without genetic diversity



Consider only benign sequences,
with different phenotypic effect sizes
(i.e. in parameter regime where
misfolded cryptic sequences are purged)

Attenuated phenotypic effect



Relaxed selection —
cryptic genetic diversity




Co-opted variants can be
adaptive in a new environment
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Genotype space / neutral network




Multiple cryptic loci provide more adaptive
options, even in the absence of genetic
diversity across population




Two ways to access more novel phenotypes:
genetic polymorphism
or neighborhood richness
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Two ways to access more novel phenotypes:
genetic polymorphism
or neighborhood richness

Clonal population with a rich mutational neighborhood. The population
only has a single genotype — it occupies a single node in the genotype
network — but it can reach a diverse array of potentially adaptive
phenotypes through new mutations.
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Each cryptic sequence
affects multiple traits
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Effects are dampened while cryptic
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During co-option, crypticity is lost
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Multiple sequences define neighborhood

richness
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Multiple genotypes increase accessible
phenotypes still further
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Quantify phenotypic diversity
due to neighborhood richness

ds: mean distance between individuals
with the same initial genotype
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Compare to total phenotypic diversity

ds: mean distance between individuals  de: mean distance between two
with the same initial genotype Individuals in the population
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With one locus, all genetic diversity, no
neighborhood richness
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With 10 loci, more phenotypic diversity,
dominated by neighborhood richness
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Compensatory evolution
drives high neighborhood richness

Rajon & Masel 2013



“Spread” across a genotype space is not required
for the high evolvability of polygenic traits
in asexuals

Clonal population with a rich mutational neighborhood. The population
only has a single genotype — it occupies a single node in the genotype
network — but it can reach a diverse array of potentially adaptive
phenotypes through new mutations.
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What do we need for evolvability?

e A minimum level of selection on cryptic sequences,
to purge the misfolded options

e Selection as weak as possible above that minimum,
to allow maximum compensatory evolution

e This balance is exactly what we get in one attractor
of our speed vs. accuracy model!
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Evolution of error rates under a
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Molecular errors pre-screen future variants,
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Stop codon readthrough can be coopted for
de novo C-terminal pieces of genes

S. bayanus
S. mikatae

S. paradoxus
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S. cerevisiae

* Conversion of non-coding to coding confirmed by
homologous phylogenetic comparisons

+ 75 events in Saccharomyces

* 67 events in mouse/rat
Giacomelli, Hancock & Masel (2007)



Complete genes evolve de novo too.

How is this possible?

1. Accidental, low level transcription,
transcript rapidly degraded

2. Transcript escapes degradation

Transcript occasionally exported to cytoplasm, where it
associates with ribosomes and “accidental” ORFs may be
translated at low levels

4. New, functional coding gene

Errors at each stage give a “preview” of the next one,
allowing pre-adaptation to occur

We tested whether penultimate stage 3 is common



Ribosome Profiling
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Are “non-coding” transcripts associated
with ribosomes?

e Used ribosomal footprints that exactly mapped to
unigue genome site Ingolia et al. 2009

e 217/404 “non-coding” transcripts showed

ribosomal association
Wilson & Masel 2011
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Many individual “non-coding” transcripts have
ORF-like ribosome densities
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Ribosomal footprint locations
match a 28aa ORF
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Summary of ribosome profiling results

Looks like a new coding sequence, but we don’t
know if polypeptide is functional

Looks like de novo evolution

Proof of principle of powerful method
to annotate short de novo proteins

Penultimate stage of gene birth is widespread

Wilson & Masel (2011)



Conclusions

e Molecular errors are common and important (eg PPIs)

e 2 solutions to many molecular errors
— low error rate via a proofreading mechanism for all sites

— high error rate, but robustness to each separate error

e High error rates pre-screen future variants,
and so promote evolvability

e With multiple loci,
genetic diversity is not required for evolvability

e De novo genes may have been prescreened by
widespread ribosomal association to “non-coding”

sequences



Broader picture

e \Waste and mess and errors are not just a typical
biological nuisance

e Without waste and mess, creative evolutionary
innovations may not be possible

e Looking for a clean molecular machine can miss the
essence of biology
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