Molecular errors, cryptic sequences, and evolvability

Joanna Masel

Ecology & Evolutionary Biology, University of Arizona

Gene expression

Errors can occur at any stage

Outline

- 1. Evolution of error rates under a speed vs. accuracy tradeoff
- 2. Molecular errors pre-screen future variants, and so promote evolvability
- 3. Genetic polymorphism is not required for evolvability
- 4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences

Consequences of errors are either bad or relatively harmless, rarely in between

Distribution of fitness effects of new mutations

vesicular stomatic virus

yeast

Stop codon readthrough: case study of molecular errors

Readthrough at error rate ρ

Mutation bias favors misfolding

Selection for a stable fold even after a readthrough error

Readthrough errors happen at many loci. Some are sensitive.

Individual genotype

= error rate, #sensitive loci

Costs and benefits of proofreading

Costs and benefits of proofreading

Costs and benefits of proofreading

Coevolution of ρ and \textbf{L}_{del}

Coevolution of ρ and \textbf{L}_{del}

Coevolution of ρ and \textbf{L}_{del}

Two attractors in large populations

Two strategies are quite different

2 strategies:

- allowing deleterious sequences, but hiding them
- eliminating deleterious sequence by expressing them

or ●?

Two attractors for a range of population sizes (i.e. range of limits to weak selection)

Larger bistable range with more loci

Model applies to many kinds of molecular errors

Error	Global solution	Local solution
Stop codon readthrough	Accurate ribosome & release factors	Benign 3'UTR

Outline

- 1. Evolution of error rates under a speed vs. accuracy tradeoff
- 2. Molecular errors pre-screen future variants, and so promote evolvability
- 3. Genetic polymorphism is not required for evolvability
- 4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences

Effect on quantitative trait proportional to expression

Point mutation in stop codon → full expression of previously cryptic sequence (that won't misfold if error rate was high)

Environmental change in optimal trait value

Fitness

Trait value

Populations with high error rates evolve faster

New mutations

Eyre-Walker & Keightley 2007

Cryptic variants

vesicular stomatic virus

Pre-adapting selection

Masel 2006, Rajon & Masel 2011

Evolvability comes from tapping into cryptic variants

- Molecular errors in the present mimic mutations in the future
- Strongly deleterious sequences are pre-purged in favor of benign ones
- Benign sequences are co-optable for adaptation

Benefits go to any "high error" locally benign cryptic sequences

More examples

- Promiscuous enzyme activities
- Rare protein-protein interactions (PPIs) that lose crypticity when proteins see each other more often

Aside: "cryptic" PPIs (deliberately bad Y2H data) are biologically meaningful

They predict gene noise and plasticity better than "real" PPIs (best practice affinity capture mass spec)

"Stickiness" trumps "hubness"

Outline

- Evolution of error rates under a speed vs. accuracy tradeoff
- 2. Molecular errors pre-screen future variants, and so promote evolvability
- 3. Genetic polymorphism is not required for evolvability
- 4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences

Let's look at cryptic sequences with and without genetic diversity

Consider only benign sequences, with different phenotypic effect sizes (i.e. in parameter regime where misfolded cryptic sequences are purged)

Relaxed selection → cryptic genetic diversity

Co-opted variants can be adaptive in a new environment

Genotype space / neutral network

Multiple cryptic loci provide more adaptive options, even in the absence of genetic diversity across population

Two ways to access more novel phenotypes: genetic polymorphism or neighborhood richness

1 locus, 3 genotypes, each accessing one new phenotype

3 loci, 1 genotype can access 3 phenotypes

Two ways to access more novel phenotypes: genetic polymorphism or neighborhood richness

Each cryptic sequence affects multiple traits

*L*_{tot} sequences

Effects are dampened while cryptic

During co-option, crypticity is lost

Trait 2

Multiple sequences define neighborhood

Rajon & Masel 2013

Multiple genotypes increase accessible phenotypes still further

Quantify phenotypic diversity due to neighborhood richness

d_G: mean distance between individuals with the same initial genotype

Compare to total phenotypic diversity

d_G: mean distance between individuals with the same initial genotype

d_P: mean distance between two individuals in the population

With one locus, all genetic diversity, no neighborhood richness

With 10 loci, more phenotypic diversity, dominated by neighborhood richness

Compensatory evolution drives high neighborhood richness

"Spread" across a genotype space is not required for the high evolvability of polygenic traits in asexuals

Rajon & Masel 2013

What do we need for evolvability?

- A minimum level of selection on cryptic sequences, to purge the misfolded options
- Selection as weak as possible above that minimum, to allow maximum compensatory evolution

 This balance is exactly what we get in one attractor of our speed vs. accuracy model!

Outline

- Evolution of error rates under a speed vs. accuracy tradeoff
- 2. Molecular errors pre-screen future variants, and so promote evolvability
- 3. Genetic polymorphism is not required for evolvability
- 4. Protein coding sequences can evolve de novo from pre-screened noncoding sequences

Stop codon readthrough can be coopted for de novo C-terminal pieces of genes

- Conversion of non-coding to coding confirmed by homologous phylogenetic comparisons
 - 75 events in Saccharomyces
 - 67 events in mouse/rat

Complete genes evolve *de novo* too. How is this possible?

- 1. Accidental, low level transcription, transcript rapidly degraded
- 2. Transcript escapes degradation
- Transcript occasionally exported to cytoplasm, where it associates with ribosomes and "accidental" ORFs may be translated at low levels
- 4. New, functional coding gene

- Errors at each stage give a "preview" of the next one, allowing pre-adaptation to occur
- We tested whether penultimate stage 3 is common

Ribosome Profiling

Are "non-coding" transcripts associated with ribosomes?

- Used ribosomal footprints that exactly mapped to unique genome site
 Ingolia et al. 2009
- 217/404 "non-coding" transcripts showed ribosomal association

Wilson & Masel 2011

Many individual "non-coding" transcripts have ORF-like ribosome densities

Ribosomal footprint locations match a 28aa ORF

Summary of ribosome profiling results

- Looks like a new coding sequence, but we don't know if polypeptide is functional
- Looks like de novo evolution
- Proof of principle of powerful method to annotate short de novo proteins
- Penultimate stage of gene birth is widespread

Conclusions

- Molecular errors are common and important (eg PPIs)
- 2 solutions to many molecular errors
 - low error rate via a proofreading mechanism for all sites
 - high error rate, but robustness to each separate error
- High error rates pre-screen future variants, and so promote evolvability
- With multiple loci, genetic diversity is not required for evolvability
- De novo genes may have been prescreened by widespread ribosomal association to "non-coding" sequences

Broader picture

- Waste and mess and errors are not just a typical biological nuisance
- Without waste and mess, creative evolutionary innovations may not be possible
- Looking for a clean molecular machine can miss the essence of biology

Thanks!

NIH
Pew Charitable Trusts
John Templeton Foundation

Etienne Rajon Ben Wilson Mike Giacomelli Leandra Brettner

