Attribute-Efficient Evolvability of Linear Functions

Varun Kanade

University of California, Berkeley

March 17, 2014

Joint work with Elaine Angelino (Harvard University)

< 口 > < 団 > < 注 > < 注 > 、 注

Outline

Representation of Functions

- 3 Evolving Sparse Linear Functions
- 4 Conclusions and Future Work

< □ > < 同 > < 3 > <

Evolution as computational learning

Leslie Valiant (2006)

- Genotype: string representation (e.g., as encoded in DNA)
- Phenotype: function $X \rightarrow Y$
 - (x_1, \ldots, x_n) represents the environment
 - y desired output, e.g., expression level of protein

< ロ > < 同 > < 回 > < 回 >

Evolution as computational learning

Leslie Valiant (2006)

- Genotype: string representation (e.g., as encoded in DNA)
- Phenotype: function $X \rightarrow Y$
 - (x_1, \ldots, x_n) represents the environment
 - y desired output, e.g., expression level of protein

Ideal function: best behaviour in each possible setting

For what classes of ideal functions is evolution feasible?

Inside a Cell

From: Angus W. Thomson and Percy A. Kole, Nature Review Immunology 10, 753-766, 2010

- Snapshot of environment through sensors (e.g., transcription factors)
- These factors affect gene production through interactions with DNA

Last talk : From learning to evolution

- At a very high level (reductions of Feldman, P. Valiant)
 - representation encodes state of SQ learning algorithm, queries and their possible responses
 - selection "chooses" representation corresponding to correct query response

Last talk : From learning to evolution

- At a very high level (reductions of Feldman, P. Valiant)
 - representation encodes state of SQ learning algorithm, queries and their possible responses
 - selection "chooses" representation corresponding to correct query response
- These mechanisms indeed fit in Valiant's model
 - but the representations may be quite complex

Outline

3 Evolving Sparse Linear Functions

< □ > < 同 > < 3 > <

Representation

- Valiant's model : Arbitrary circuit of polynomial size

Gene Expression

- DNA is transcribed into mRNA, which is subsequently translated into protein
- Gene expression level is controlled by binding of RNA polymerase (RNAp)

 Transcription factors (TFs) bind to the promoter region to activate/repress expression (by affecting binding of RNAp)

ヘロン 人間 とくぼう くロン

Gene Expression Networks

- Transcription Networks in Prokaryotes:
 - The degree of networks is quite small, roughly 1 12 (short promoter region)
 - The depth of the network (cascade length) is also small (typically 1 4)
- Eukaryotic Regulation in more involved

- When viewed as circuits, small depth and fan-in
- Output depends only on a small number of input variables (juntas)

Outline

< □ > < 同 > < 3 > <

Sparse Linear Functions

- Sparse linear functions
 - (Ideal) $f(x_1, \ldots, x_n) = 5x_1 + 7x_{17} 3x_{45} + 100x_{100}$
 - Notion of performance (squared loss)

$$\operatorname{Perf}(\mathbf{r}) = -\mathbb{E}_{\mathbf{x} \sim D}[(f(\mathbf{x}) - \mathbf{r}(\mathbf{x}))^2]$$

・ロン ・日ン・ ・ ヨン

Sparse Linear Functions

- Sparse linear functions
 - (Ideal) $f(x_1, \ldots, x_n) = 5x_1 + 7x_{17} 3x_{45} + 100x_{100}$
 - Notion of performance (squared loss)

$$\operatorname{Perf}(\mathbf{r}) = -\mathbb{E}_{\mathbf{x}\sim D}[(f(\mathbf{x}) - \mathbf{r}(\mathbf{x}))^2]$$

- Evolutionary mechanism where each intermediate representation is a sparse linear function
 - sparse linear functions expressed as depth 1 weighted arithmetic circuit
 - representations may be less sparse than the ideal function

イロン イ理 とく ヨン イヨン

Aside: Learning sparse linear functions

- Sparse linear regression (Machine Learning)
- Sparse signal recovery (Compressed Sensing)
- Sparsest solution to an underdetermined linear system of equations
- In general the problem is NP-hard
- However, if the distributions are somewhat "nice" the hardness results are broken

Setting

Sparse Linear Functions:

$$\operatorname{Lin}_{l,u}^{k} = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \operatorname{sparsity}(\mathbf{w}) \leq k, \forall i, w_{i} = 0 \text{ or } l \leq |w_{i}| \leq u\}$$

DOG

<ロ> <合> <合> <合> <き> <き>

Setting

Sparse Linear Functions:

$$\operatorname{Lin}_{I,u}^{k} = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \operatorname{sparsity}(\mathbf{w}) \le k, \forall i, w_{i} = 0 \text{ or } I \le |w_{i}| \le u\}$$

Smooth Distributions:

- Let \tilde{D} be an arbitrary distribution over \mathbb{R}^n (bounded support)
- Draw $\tilde{\mathbf{x}} \sim \tilde{D}$
- For each *i*, $x_i = \tilde{x}_i + \eta_i$, where $\eta_i \in [-\Delta, \Delta]$ uniformly at random
- D is the smooth (noisy) distribution over x
- Further, let $\mathbb{E}[x_i^2] \leq 1$ and support of *D* is bounded

< 口 > < 同 > < 回 > < 回 > < 回 >

Smooth Distributions

Inspired by work of Spielman and Teng

Representations

Representations also <u>sparse linear functions</u>

 $\mathsf{Rep} = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \text{sparsity}(\mathbf{w}) \le K, |w_i| \le B\}$

• Here K, B depend on k, u, l, Δ , (but not on n)

イロン イボン イヨン イヨン

Representations

Representations also <u>sparse linear functions</u>

$$\mathsf{Rep} = \{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \text{sparsity}(\mathbf{w}) \le K, |w_i| \le B\}$$

Here K, B depend on k, u, l, Δ, (but not on n)

Notation:

•
$$NZ(w) = \{i \mid w_i \neq 0\}$$

• Denote
$$\langle \mathbf{w}, \mathbf{w}' \rangle = \mathbb{E}_{\mathbf{x} \sim D}[(\mathbf{w} \cdot \mathbf{x})(\mathbf{w}' \cdot \mathbf{x})]$$

• Denote $\|\mathbf{w} - \mathbf{w}'\| = \mathbb{E}_{x \sim D}[(\mathbf{w} \cdot \mathbf{x} - \mathbf{w}' \cdot \mathbf{x})^2]$

イロン イボン イヨン イヨン

Properties of Smooth Distributions

- Let *D* be a "smooth" (bounded) distribution over \mathbb{R}^n
- Let w be a vector representing function x → w · x
- Useful Properties:
 - For each *i*, $w_i^2 \leq \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{\Delta^2}$
 - **2** There exists an *i*, such that $w_i^2 \leq \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{|NZ(\mathbf{w})|\Delta^2}$
 - **(a)** \mathbf{e}^i represents the function x_i , $\|\mathbf{e}^i\| = \Theta(\Delta)$

(1日) (1) (1)

Mutation Algorithm

• Sparse representation: $r(x_1, \ldots, x_n) = \sum_i w_i x_i$

< (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) <

Mutation Algorithm

• Sparse representation: $r(x_1, \ldots, x_n) = \sum_i w_i x_i$

Adjustments: (improve within current set of variables)

Random rescaling:

 $\mathbf{w} \leftarrow \alpha \mathbf{w}$ for some $\alpha \in [-1, 1]$

Reset a random coordinate

$$\mathbf{w} \leftarrow \mathbf{w} - w_i \mathbf{e}^i + \beta_i \mathbf{e}^i$$
 for random $i \in NZ(\mathbf{w}), \beta_i \in [-B, B]$

イロン イボン イヨン イヨン

Mutation Algorithm

• Sparse representation: $r(x_1, \ldots, x_n) = \sum_i w_i x_i$

Adjustments: (improve within current set of variables)

Random rescaling:

 $\mathbf{w} \leftarrow \alpha \mathbf{w}$ for some $\alpha \in [-1, 1]$

Reset a random coordinate

$$\mathbf{w} \leftarrow \mathbf{w} - w_i \mathbf{e}^i + \beta_i \mathbf{e}^i$$
 for random $i \in NZ(\mathbf{w}), \beta_i \in [-B, B]$

Jump improvements: (add new variables into consideration)

Add a random coordinate

$$\mathbf{w} \leftarrow \mathbf{w} + \beta_i \mathbf{e}^i$$
 for random $i \in [n] \setminus NZ(\mathbf{w})$

Swap a random coordinate

 $\mathbf{w} \leftarrow \mathbf{w} - w_i \mathbf{e}^i + \beta_j \mathbf{e}^j$ for random $i \in \mathsf{NZ}(\mathbf{w}), j \in [n] \setminus \mathsf{NZ}(\mathbf{w})$

(日) (四) (日) (日) (日)

Adjustment Mutations

- Let $S = NZ(\mathbf{w})$ be the current set of non-zero variables in \mathbf{w} , $|S| \le K$
- Either w is "best" possible using S
- Or adjustment to some co-ordinate is an improvement

- f_S best using variables in S, r = f_S w
- $\langle \mathbf{r}, \mathbf{r} \rangle = \sum_{i \in S} r_i \langle \mathbf{e}^i, \mathbf{r} \rangle$
- Beneficial Mutations Exist!

Adding/Swapping a New Variable

- Let $S = NZ(\mathbf{w})$ be the current set of non-zero variables in \mathbf{w} , $|S| \le K$
- Suppose **w** is "best" possible using *S*

- $\mathbf{f}_{S} \approx \mathbf{w}$ best using variables in S, $\mathbf{r} = \mathbf{f} \mathbf{w}$
- $\langle \mathbf{r}, \mathbf{r} \rangle = \sum_{i \in \mathsf{NZ}(\mathbf{f}) \setminus S} r_i \langle \mathbf{e}^i, \mathbf{r} \rangle$
- Some variable from S can be discarded (has low influence)
- Beneficial Mutations Exist!

< 戸 > < ヨ >

Main result

Theorem (Informal)

The class of sparse functions is evolvable under <u>smooth</u> distributions. Furthermore, it has the following strong <u>attribute-efficient</u> properties:

- the representations are all sparse linear functions
- the number of generations depends only on the sparsity of the ideal function and the accuracy *ϵ* (independent of n)

The population (number of mutations) at each generation is polynomial in n and $1/\epsilon$.

Outline

Representation of Functions

・ロン ・ む ・ ・ ヨン

Conclusions and future work

Valiant's Framework and Computational Learning Theory provide a language to study several complexity measures for evolution

- This talk: sparsity inspired by transcription networks
- Other systems in biology: different constraints, similar analysis?
- Can richer classes of sparse functions be evolved?
 - sparse low-degree polynomials?
 - sparse linear functions with nonlinear filters?
 - $f(x) = NL(w \cdot x)$, where NL is a one-variable function *e.g.*, sigmoid, Hill, etc.
- Next Talk: What functions do gene expression levels represent?

(ロ) (理) (ヨ) (ヨ)