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@ Summary : Previous Talks
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Summary : Previo

Evolution as computational learning

Leslie Valiant (2006)
@ Genotype: string representation (e.g., as encoded in DNA)
@ Phenotype: function X — Y

@ (x1,...,Xn) — represents the environment
@ y — desired output, e.g., expression level of protein
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Summary : Previo

Evolution as computational learning

Leslie Valiant (2006)
@ Genotype: string representation (e.g., as encoded in DNA)
@ Phenotype: function X — Y

® (x1,...,xn) — represents the environment
@ y — desired output, e.g., expression level of protein

Ideal function: best behaviour in each possible setting

For what classes of ideal functions is evolution feasible?
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Summary : Previous Talks

Inside a Cell
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From: Angus W. Thomson and Percy A, Kole, Nature Review Immunalogy 10, 753-766, 2010

@ Snapshot of environment through sensors (e.g., transcription factors)
@ These factors affect gene production through interactions with DNA
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Summary : Previous Talks

Last talk : From learning to evolution

@ Ata very high level (reductions of Feldman, P. Valiant)
@ representation encodes state of SQ learning algorithm, queries and their
possible responses
@ selection "chooses” representation corresponding to correct query response
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Summary : Previous Talks

Last talk : From learning to evolution

@ Ata very high level (reductions of Feldman, P. Valiant)

@ representation encodes state of SQ learning algorithm, queries and their
possible responses
@ selection "chooses” representation corresponding to correct query response

@ These mechanisms indeed fit in Valiant'’s model
@ but the representations may be quite complex
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Reprasantation of Functions
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© Representation of Functions
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Representation of Functions

Representation

@ Representation is a string describing a function (description of circuit)
00011101011000110001100110000100011100001100000011110

@ Valiant’'s model : Arbitrary circuit of polynomial size
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Reprasantation of Functions

Gene Expression

@ DNA is tfranscribed into mRNA, which is subsequently ranslated into
protein

@ Gene expression level is controlled by binding of RNA polymerase
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@ Transcription factors (TFs) bind to the promoter region to activate/repress
expression (by affecting binding of RNAp)
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Reprasantation of Functions

Gene Expression Networks

@ Transcription Networks in Prokaryotes:

@ The degree of networks is quite small, roughly 1 — 12 (short promoter region)
@ The depth of the network (cascade length) is also small (typically 1 — 4)

@ Eukaryotic Regulation in more involved

@ When viewed as circuits, small depth and fan-in

@ Output depends only on a small number of input variables (juntas)
x. Y3 Xiy  Yq X3y
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@ Linear Functions

Outline

@ Evolving Sparse Linear Functions

Attribute-Efficient Evolvability of Linear Funclions March 17, 2014 10/22



Ewvalving Sparse Linear Functions

Sparse Linear Functions

@ Sparse linear functions
o (ldeal) f(xi,..., %)) = 5x1 + 7X17 — 3Xa5 + 100x109
@ Notion of performance (squared loss)

Petf(r) = —Expl(f(X) — r(x))’]

Varun Kanade {UC Berkelay) Attribute-Efficient Evolvability of Linear Funclions March 17, 2014

11722



Ewvalving Sparse Linear Functions

Sparse Linear Functions

@ Sparse linear functions
o (ldeal) f(xi,..., %)) = 5x1 + 7X17 — 3Xa5 + 100x109
@ Notion of performance (squared loss)

Petf(r) = —Expl(f(X) — r(x))’]

@ Evolutionary mechanism where each intermediate representation is a
sparse linear function
@ sparse linear functions expressed as depth 1 weighted arithmetic circuit
@ representations may be less sparse than the ideal function
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@ Linear Functions

Aside: Learning sparse linear functions

Sparse linear regression (Machine Learning)

Sparse signal recovery (Compressed Sensing)

Sparsest solution to an underdetermined linear system of equations
In general the problem is NP-hard

However, if the distributions are somewhat “nice” the hardness results are
broken
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@ Linear Functions

Setting

Sparse Linear Functions:

Liniu = {xr—w. X |sparsity(w) < k,Vi,w; =0or ! < |w]| < u}
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wolving Sparse Linear Functions

Setting

Sparse Linear Functions:
Linﬁ‘!u = {xr—w. X |sparsity(w) < k,Vi,w; =0or ! < |w]| < u}

Smooth Distributions:

@ Let D be an arbitrary distribution over R” (bounded support)

@ Draw X ~ D

@ For each i, x; = X; + n;, where r; € [-A, A] uniformly at random
@ D is the smooth (noisy) distribution over x

@ Further, let E[x?] < 1 and support of D is bounded
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Ewvalving Sparse Linear Functions

Smooth Distributions

Inspired by work of Spielman and Teng
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wolving Sparse Linear Functions

Representations

@ Representations also sparse linear functions

Rep = {x+— w - x| sparsity(w) < K, |w;| < B}

@ Here K, B depend on k,u,/, A, (but not on n)
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wolving Sparse Linear Functions

Representations

@ Representations also sparse linear functions

Rep = {x+— w - x| sparsity(w) < K, |w;| < B}

@ Here K, B depend on k,u,/, A, (but not on n)

Notation:
° F{epresem r(x) = w - x by vector w
o NZ(w) = {i| w; # 0}
o Denote (w,w') =E, _p[(w-x)(wx)]
@ Denote |w — W[ = E,_p[(w:x — W' - x)?]
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Ewvalving Sparse Linear Functions

Properties of Smooth Distributions

@ Let D be a “smooth” (bounded) distribution over R"
@ Let w be a vector representing function x — w - x
@ Useful PropertieS‘

@ Foreach i, w} < 3
(W, W)
@ There exists an i, such that w? < —|sz)|a2

© e represents the function x;, ||| = ©(A)
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Ewvalving Sparse Linear Functions

Mutation Algorithm

@ Sparse representation: r(xi,...,Xn) = >_; WiX;
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Ewvalving Sparse Linear Functions

Mutation Algorithm

@ Sparse representation: r(xi,...,Xn) = >_; WiX;

@ Adjustments: (improve within current set of variables)
@ Random rescaling:
W < aw for some a € [-1,1]

© Reset a random coordinate

w <« w — we' + ge' forrandomi € NZ(w), 5 € [-B, B]
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Ewvalving Sparse Linear Functions

Mutation Algorithm

@ Sparse representation: r(xi,...,Xn) = >_; WiX;

@ Adjustments: (improve within current set of variables)
@ Random rescaling:
W < aw for some a € [-1,1]

© Reset a random coordinate

w <« w — we' + ge' forrandomi € NZ(w), 5 € [-B, B]

@ Jump improvements: (add new variables into consideration)
@ Add a random coordinate

w « w + g;e' for random i € [n] \ NZ(w)
@ Swap a random coordinate

w «— w — we' + 5,€ forrandom i € NZ(w),j € [n] \ NZ(w)
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@ Linear Functions

Adjustment Mutations

@ Let S = NZ(w) be the current set of non-zero variables inw, [S| < K
@ Either w is “best” possible using S
@ Or adjustment to some co-ordinate is an improvement

S

@ fg best using variablesin S,r =fs —w

@ {I': I'} = Zf&S rj{Ej: I'}
@ Beneficial Mutations Exist!
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@ Linear Functions

Addmg/Swapplng a New Variable

@ Let S = NZ(w) be the current set of non-zero variables inw, [S| < K
@ Suppose W is “best” possible using S

pene o

i 7% <
~—

g /

@ fs =~ w best using variablesin S, r=f—-w

© (rr) =D icnzm s i€ r)

@ Some variable from S can be discarded (has low influence)
@ Beneficial Mutations Exist!

I
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wolving Sparse Linear Functions

Main result

Theorem (Informal)

The class of sparse functions is evolvable under smooth distributions.
Furthermore, it has the following strong attribute-efficient properties:

@ the representations are all sparse linear functions

@ the number of generations depends only on the sparsity of the ideal
function and the accuracy e (independent of n)

The population (number of mutations) at each generation is polynomial in n
and1/e.
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nd Future Wark

Outline

© Conclusions and Future Work
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Conclusions and Future Work

Conclusions and future work

Valiant’s Framework and Computational Learning Theory provide a language
to study several complexity measures for evolution

@ This talk: sparsity inspired by transcription networks
@ Other systems in biology: different constraints, similar analysis?
@ Can richer classes of sparse functions be evolved?
@ sparse low-degree polynomials?
@ sparse linear functions with nonlinear filters?
f(x) = NL(w - x), where NL is a one-variable function
e.g., sigmoid, Hill, etc.

@ Next Talk: What functions do gene expression levels represent?
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