Attribute-Efficient Evolvability of Linear Functions

Varun Kanade

University of California, Berkeley

March 17, 2014

Joint work with Elaine Angelino (Harvard University)
Outline

1. Summary: Previous Talks
2. Representation of Functions
3. Evolving Sparse Linear Functions
4. Conclusions and Future Work
Evolution as computational learning

Leslie Valiant (2006)

- **Genotype**: string representation (e.g., as encoded in DNA)
- **Phenotype**: function $X \rightarrow Y$
 - (x_1, \ldots, x_n) — represents the environment
 - y — desired output, e.g., expression level of protein
Evolution as computational learning

Leslie Valiant (2006)

- **Genotype**: string representation (e.g., as encoded in DNA)
- **Phenotype**: function $X \rightarrow Y$
 - (x_1, \ldots, x_n) — represents the environment
 - y — desired output, e.g., expression level of protein

Ideal function: best behaviour in each possible setting

For what classes of ideal functions is evolution feasible?
Inside a Cell

- Snapshot of environment through sensors (*e.g.*, transcription factors)
- These factors affect gene production through interactions with DNA

Last talk: From learning to evolution

- At a very high level (reductions of Feldman, P. Valiant)
 - representation encodes state of SQ learning algorithm, queries and their possible responses
 - selection “chooses” representation corresponding to correct query response
Last talk: From learning to evolution

- At a very high level (reductions of Feldman, P. Valiant)
 - representation encodes state of SQ learning algorithm, queries and their possible responses
 - selection “chooses” representation corresponding to correct query response

- These mechanisms indeed fit in Valiant’s model
 - but the representations may be quite complex
Outline

1. Summary: Previous Talks
2. Representation of Functions
3. Evolving Sparse Linear Functions
4. Conclusions and Future Work
Representation

- Representation is a string describing a function (description of circuit)
 00011101011000110001100110000100011100001100000011110

- Valiant’s model: Arbitrary circuit of polynomial size
Gene Expression

- DNA is transcribed into mRNA, which is subsequently translated into protein
- Gene expression level is controlled by binding of RNA polymerase (RNAP)

Transcription

- DNA
- TF
- RNAP
- gene
- mRNA

Translation

- mRNA
- ribosome
- incomplete amino acid chain
- folded protein

- Transcription factors (TFs) bind to the promoter region to activate/repress expression (by affecting binding of RNAP)
Gene Expression Networks

- Transcription Networks in Prokaryotes:
 - The degree of networks is quite small, roughly 1 – 12 (short promoter region)
 - The depth of the network (cascade length) is also small (typically 1 – 4)
- Eukaryotic Regulation in more involved

- When viewed as circuits, small depth and fan-in
- Output depends only on a small number of input variables (juntas)
Outline

1. Summary: Previous Talks
2. Representation of Functions
3. Evolving Sparse Linear Functions
4. Conclusions and Future Work
Sparse Linear Functions

- Sparse linear functions
 - (Ideal) \(f(x_1, \ldots, x_n) = 5x_1 + 7x_{17} - 3x_{45} + 100x_{100} \)
 - Notion of performance (squared loss)

\[
\text{Perf}(r) = -\mathbb{E}_{x \sim D}[(f(x) - r(x))^2]
\]
Sparse Linear Functions

- Sparse linear functions
 - (Ideal) \(f(x_1, \ldots, x_n) = 5x_1 + 7x_{17} - 3x_{45} + 100x_{100} \)
 - Notion of performance (squared loss)
 \[
 \text{Perf}(r) = -\mathbb{E}_{x \sim D}[(f(x) - r(x))^2]
 \]

- Evolutionary mechanism where each intermediate \textit{representation} is a sparse linear function
 - sparse linear functions expressed as depth 1 weighted arithmetic circuit
 - representations may be less sparse than the ideal function
Aside: Learning sparse linear functions

- Sparse linear regression (Machine Learning)
- Sparse signal recovery (Compressed Sensing)
- Sparsest solution to an underdetermined linear system of equations
- In general the problem is NP-hard
- However, if the distributions are somewhat “nice” the hardness results are broken
Setting

Sparse Linear Functions:

$$\text{Lin}^k_{i,u} = \{ \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \text{sparsity} (\mathbf{w}) \leq k, \forall i, w_i = 0 \text{ or } l \leq |w_i| \leq u \}$$
Setting

Sparse Linear Functions:

\[
\text{Lin}^k_{i,u} = \{ x \mapsto w \cdot x \mid \text{sparsity}(w) \leq k, \forall i, w_i = 0 \text{ or } l \leq |w_i| \leq u \}
\]

Smooth Distributions:

- Let \tilde{D} be an arbitrary distribution over \mathbb{R}^n (bounded support)
- Draw $\tilde{x} \sim \tilde{D}$
- For each i, $x_i = \tilde{x}_i + \eta_i$, where $\eta_i \in [-\Delta, \Delta]$ uniformly at random
- D is the smooth (noisy) distribution over x
- Further, let $\mathbb{E}[x_i^2] \leq 1$ and support of D is bounded
Smooth Distributions

Inspired by work of Spielman and Teng
Representations

- Representations also sparse linear functions

\[\text{Rep} = \{ \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \text{sparsity}(\mathbf{w}) \leq K, |w_i| \leq B \} \]

- Here \(K, B \) depend on \(k, u, l, \Delta \), (but not on \(n \))
Representations

- Representations also sparse linear functions
 \[
 \text{Rep} = \{ \mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} \mid \text{sparsity}(\mathbf{w}) \leq K, |w_i| \leq B \} \]
- Here K, B depend on k, u, l, Δ, (but not on n)

Notation:
- Represent $r(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$ by vector \mathbf{w}
- $\text{NZ}(\mathbf{w}) = \{ i \mid w_i \neq 0 \}$
- Denote $\langle \mathbf{w}, \mathbf{w}' \rangle = \mathbb{E}_{\mathbf{x} \sim D}[(\mathbf{w} \cdot \mathbf{x})(\mathbf{w}' \cdot \mathbf{x})]$
- Denote $\| \mathbf{w} - \mathbf{w}' \| = \mathbb{E}_{\mathbf{x} \sim D}[(\mathbf{w} \cdot \mathbf{x} - \mathbf{w}' \cdot \mathbf{x})^2]$
Properties of Smooth Distributions

- Let D be a “smooth” (bounded) distribution over \mathbb{R}^n.
- Let \mathbf{w} be a vector representing function $\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x}$.
- Useful Properties:
 1. For each i, $w_i^2 \leq \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{\Delta^2}$
 2. There exists an i, such that $w_i^2 \leq \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{|\text{NZ}(\mathbf{w})| \Delta^2}$
 3. \mathbf{e}^i represents the function x_i, $\|\mathbf{e}^i\| = \Theta(\Delta)$
Mutation Algorithm

- Sparse representation: \(r(x_1, \ldots, x_n) = \sum_i w_i x_i \)
Mutation Algorithm

- Sparse representation: \(r(x_1, \ldots, x_n) = \sum_i w_i x_i \)

- Adjustments: (improve within current set of variables)
 1. Random rescaling:
 \[w \leftarrow \alpha w \text{ for some } \alpha \in [-1, 1] \]
 2. Reset a random coordinate
 \[w \leftarrow w - w_i e^i + \beta_i e^i \text{ for random } i \in \text{NZ}(w), \beta_i \in [-B, B] \]
Mutation Algorithm

- **Sparse representation:** \(r(x_1, \ldots, x_n) = \sum_i w_i x_i \)

- **Adjustments:** (improve within current set of variables)
 1. Random rescaling:
 \[w \leftarrow \alpha w \text{ for some } \alpha \in [-1, 1] \]
 2. Reset a random coordinate
 \[w \leftarrow w - w_i e^i + \beta_i e^i \text{ for random } i \in \text{NZ}(w), \beta_i \in [-B, B] \]

- **Jump improvements:** (add new variables into consideration)
 1. Add a random coordinate
 \[w \leftarrow w + \beta e^i \text{ for random } i \in [n] \setminus \text{NZ}(w) \]
 2. Swap a random coordinate
 \[w \leftarrow w - w_i e^i + \beta_j e^j \text{ for random } i \in \text{NZ}(w), j \in [n] \setminus \text{NZ}(w) \]
Adjustment Mutations

- Let $S = \text{NZ}(\mathbf{w})$ be the current set of non-zero variables in \mathbf{w}, $|S| \leq K$
- Either \mathbf{w} is “best” possible using S
- Or adjustment to some co-ordinate is an improvement

- f_S best using variables in S, $\mathbf{r} = f_S - \mathbf{w}$
- $\langle \mathbf{r}, \mathbf{r} \rangle = \sum_{i \in S} r_i \langle \mathbf{e}_i, \mathbf{r} \rangle$
- Beneficial Mutations Exist!
Adding/Swapping a New Variable

Let $S = \text{NZ}(w)$ be the current set of non-zero variables in w, $|S| \leq K$

Suppose w is “best” possible using S

$f_s \approx w$ best using variables in S, $r = f - w$

$\langle r, r \rangle = \sum_{i \in \text{NZ}(f) \setminus S} r_i \langle e^i, r \rangle$

Some variable from S can be discarded (has low influence)

Beneficial Mutations Exist!
Main result

Theorem (Informal)

The class of sparse functions is evolvable under smooth distributions. Furthermore, it has the following strong attribute-efficient properties:

- the representations are all sparse linear functions
- the number of generations depends only on the sparsity of the ideal function and the accuracy ϵ (independent of n)

The population (number of mutations) at each generation is polynomial in n and $1/\epsilon$.
Outline

1. Summary: Previous Talks
2. Representation of Functions
3. Evolving Sparse Linear Functions
4. Conclusions and Future Work
Conclusions and future work

Valiant’s Framework and Computational Learning Theory provide a language to study several complexity measures for evolution.

- This talk: sparsity inspired by transcription networks
- Other systems in biology: different constraints, similar analysis?
- Can richer classes of sparse functions be evolved?
 - sparse low-degree polynomials?
 - sparse linear functions with nonlinear filters?
 \[f(x) = NL(w \cdot x), \text{ where } NL \text{ is a one-variable function} \]
 \[e.g., \text{ sigmoid, Hill, etc.} \]
- Next Talk: What functions do gene expression levels represent?