On the power and the
limits of evolvability

B TReeN AR Vitaly Feldman
g &= Almaden Research Center

F.earning from examples vs evolvability‘

rity functions

The core model: PAC

* Learner observes random examples: (x, f(x))

* Assumption: unknown Boolean function f: X - {—1,1}
labeling the examples comes from a known class of

functions C every distribution D]
 Distribution D over X (€.8. R" or {—1,1}")

For every f € C,e > 0, w.h.p. output h: X — [—1,1]
s.t. xED[f(x)h(x)] >1—¢

For Boolean h
Prif(0)=h@®]21-¢/2

Efficient: poly(l, |x]) time

€

Classical example

* (halfspaces/linear threshold functions
o sign(};w;x; —0) for wi,wy,...,w,, 0 €ER - a .
o equivalent to examples being linearly separable

* Perceptron algorithm

o Start with LTF h° defined by w® = (0,0, ...,0);0° = 0
o Get a random example (x,¢). If h'(x) = ¢ do nothing + +
o Else let ht*! be LTF defined by + + +

witl =wt +¢.x;0t =09t + ¢
* Gives PAC learning if f has significant
margin y on the observed data points

Evolution algorithm

* R - representation class of functions
over X

o E.g. all linear thresholds over R™ l

* M - randomized mutation algorithm | mutation
that given r € R outputs (a random algorithm

mutation) r’ € R /
o Efficient: poly in in
o E.g. choose a random i and adjust w; by ﬁ

0, +1 or -1 randomly

Selection

* Fitness Perfp(f,r) € [—1,1]
o Correlation: Ep[f(x)r(x)]

 For r € R sample M(r) p times:

Tl, TZ’ ---’Tp

» Estimate empirical performance of r
and each r; using s samples:

PerfD (f) Ti)
P—e\;fD (fl 1")
O
O p and s are “feasible”
OO o o (polynomial in n,1/¢)
O O
A e
1 TT ' Empirical

performance

Evolvability

« Class of functions C is evolvable over D if exists an evolution algorithm (R, M)
and a polynomial g(-,-) s.t.

For every f € C,r € R,e>0 and a sequence
rg=T1,T,Ty ... Where r,; « Select(R, M, ;)
it holds: PerfD(f,rg())2 1—¢ w.h.p.

1
n,—
€

- Evolvable (distribution-independently)
* Evolvable for all D by the same mutation algorithm (R, M)

Limits of evolvability

« Feedback is restricted to values of Perf,(f,r;) for some
polynomial number of samples s

£ Di « .
l h «

learning algorithm Vg

Perf,(s) oracle

v; = Perfy(f, h;) evaluated on s fresh examples

Evolvable € CSQ learnable

PAC learnable

Learnable with Perf
oracle = CSQ learnable

Correlational Statistical Query:
To query h CSQ oracle responds with any value v

v — Ep[f(0)h()]| < T for 1 = ——
poly(n)

Learning by Distances [Ben-David,Itai,Kushilevitz ‘90]
Restriction of SQ model by Kearns [93]

CSQ learnable < Evolvable [F. 08]

Proof outline

/ Replace queries for performance values \
with approximate comparisons

For hypothesis h: X - [—1,1], tolerance T > 0 and
threshold t > 7, CSQ- oracle returns:

1 if Ep[f(x)h(x)] =t+7

0 if Eplf(x)h(x)] <t—7
\ Oor 1 otherwise /
4)

Designh evolution algorithm with mutations
that simulate comparison queries

From comparisons to mutations

£ For hypothesis h: X — [—1,1], tolerance T > 0 and %
threshold t > t, CSQ- oracle returns:

1 if Ep[f(x)h(x)] =t+1
0 if Ep[f(x)h(x)]<t—1
_ Oor1 otherwise 4

Beneficial/neutral threshold = ¢
log((g)

Mutation pool size p = ()

Performance sample size s = (

With probability at least 1 — §, Select(r) =,
where b is valid response to comparison query

Simulating CSQ- algorithm

Need to answer g queries
¢; is the function obtained after answering i queries
Need to answer query h; with threshold t;

— 5
Beneficial/neutral threshold = ¢;
1

1
Mutation sample size p = 0 (08(5))
Leads to representations with values in [—q, q]!

1
Performance sample size s = (Og(s))
Rescale by 1/qg to get functions with values in[-1,1]

/ R
Given answers to queries can compute h such that
Perfy(f,h) = 1 — € and mutate into it

CSQ learnable = Evolvable [F.08; F. 09]

PAC learnable

CSQ learnable =
Evolvable

E.g. optimizing selection; recombination [Kanade 11]; changing thresholds;
number of mutations

How powerful is CSQ learning?

SQ learning [Kearns 93] : learner submits ¥ (x, £)
SQ oracle returns v such that |v — Ep[yY(x, f(x))]| < T

* Many known algorithms are essentially described in SQ
or can be easily translated to SQ
o Boolean conjunctions, decision lists, simple geometric concepts, AC"

 Several other were found with more effort
o Halfspaces with large margin
o General LTFs

* General ML techniques
o Nearest neighbor

o Gradient descent

o SVM

o Boosting
[

Perceptron in SQ

» Recall the Perceptron algorithm:
o Add false negatives, subtract false positive examples

False
positive

+ o+

« Use SQs to find the centroid of false positives

e Ep[x;- I(f(x) =—-1)- I(ht(x) = 1)] gives the first
coordinate of the centroid

e Use the centroid for the Perceptron update

If D is fixed then SQ=CSQ

 Decompose SQ into CSQ and a constant

Epl(z: S(@)] = Ep [d(a, ~1)= 2 + (e, 1)L
_w(l‘, 1) —w(IL‘,—l) ID(IL‘, 1)+w($:_1)

» Corollary: linear threshold functions are evolvable for
any fixed distribution D

Distribution-independent CSQ

* Single points are learnable [F. 09]

* Characterization of weak-learning [F. 08]

Better than random guessing:xED[f(x)h(x)] > polyl(1)

C is weakly CSQ learnable if and only if all functions
in C can be represented as linear threshold functions
with “significant” margin over a poly-size set of
\ Boolean features y

* General linear thresholds are not weakly CSQ learnable
[Goldmann,Hastad,Razborov 95] (but are SQ learnable)

* Conjunctions are not CSQ learnable [F. 11]

Further directions

« Characterize (strong) evolvability (CSQ learning)
o Strengthen the lower bound for conjunctions

 Are thresholds on a line evolvable distribution
independently

e Perfp(f,r) = —Ep |(f(x) —r(x))°| then all of 5Q is
evolvable [F. 09]

0

QUESTIONS

