On the power and the limits of evolvability

Vitaly Feldman

Almaden Research Center

Learning from examples vs evolvability

The core model: PAC [Valiant 84]

- Learner observes random examples: (x, f(x))
- Assumption: unknown Boolean function $f: X \to \{-1, 1\}$ labeling the examples comes from a known class of functions *C* every distribution *D*
- Distribution D over X (e.g. \mathbb{R}^n or $\{-1,1\}^n$)

For every $f \in C, \epsilon > 0$, w.h.p. output $h: X \to [-1,1]$ s.t. $\mathop{\mathrm{E}}_{x \sim D} [f(x)h(x)] \ge 1 - \epsilon$ For Boolean h $\Pr[f(x) = h(x)] \ge 1 - \epsilon/2$ Efficient: $\operatorname{poly}(\frac{1}{\epsilon}, |x|)$ time

Classical example

• *C* halfspaces/linear threshold functions • $sign(\sum_i w_i x_i - \theta)$ for $w_1, w_2, ..., w_n, \theta \in \mathbf{R}$

- equivalent to examples being linearly separable
- Perceptron algorithm

[Rosenblatt 57; Block 62; Novikoff 62]

- Start with LTF h^0 defined by $w^0 = (0,0,...,0); \theta^0 = 0$
- Get a random example (x, ℓ) . If $h^t(x) = \ell$ do nothing
- Else let h^{t+1} be LTF defined by $w^{t+1} = w^t + \ell \cdot x; \theta^{t+1} = \theta^t + \ell$
- Gives PAC learning if f has significant margin γ on the observed data points

Evolution algorithm

- *R* representation class of functions over *X*
 - \circ E.g. all linear thresholds over R^n
- *M* randomized mutation algorithm that given $r \in R$ outputs (a random mutation) $r' \in R$
 - Efficient: poly in $\frac{1}{\epsilon}$, n
 - E.g. choose a random i and adjust w_i by 0, +1 or -1 randomly

Selection

• Fitness $Perf_D(f,r) \in [-1,1]$ • Correlation: $E_D[f(x)r(x)]$

 $\widetilde{Perf}_D(f,r)$

- For $r \in R$ sample M(r) p times: r_1, r_2, \dots, r_p
- Estimate empirical performance of r and each r_i using s samples: *Perf_D(f,r_i)*

 \bigcirc

performance

Evolvability

• Class of functions C is evolvable over D if exists an evolution algorithm (R, M) and a polynomial $g(\cdot, \cdot)$ s.t.

For every $f \in C, r \in R, \varepsilon > 0$ and a sequence $r_0 = r, r_1, r_2, \dots$ where $r_{i+1} \leftarrow \text{Select}(R, M, r_i)$ it holds: $Perf_D(f, r_{g(n, \frac{1}{\epsilon})}) \ge 1 - \varepsilon$ w.h.p.

- Evolvable (distribution-independently)
 - Evolvable for all *D* by the same mutation algorithm (*R*, *M*)

Limits of evolvability

• Feedback is restricted to values of $\widetilde{Perf}_D(f,r_i)$ for some polynomial number of samples s

 $v_i = \widetilde{Perf_D}(f, h_i)$ evaluated on s fresh examples

Evolvable \subseteq CSQ learnable

Correlational Statistical Query: To query *h* CSQ oracle responds with any value v $|v - E_D[f(x)h(x)]| \le \tau$ for $\tau \ge \frac{1}{poly(n,\frac{1}{\epsilon})}$ Learning by Distances [Ben-David, Itai, Kushilevitz '90]

Restriction of SQ model by Kearns [93]

CSQ learnable \subseteq Evolvable [F. 08] PAC learnable Learnable with *Perf* oracle = CSQ learnable **Evolvable**

Proof outline

Replace queries for performance values with approximate comparisons

For hypothesis $h: X \to [-1,1]$, tolerance $\tau > 0$ and threshold $t \ge \tau$, CSQ> oracle returns: 1 if $E_D[f(x)h(x)] \ge t + \tau$ 0 if $E_D[f(x)h(x)] \le t - \tau$ 0 or 1 otherwise

Design evolution algorithm with mutations that simulate comparison queries

From comparisons to mutations

For hypothesis $h: X \to [-1,1]$, tolerance $\tau > 0$ and threshold $t \ge \tau$, $CSQ_>$ oracle returns: 1 if $E_D[f(x)h(x)] \ge t + \tau$ 0 if $E_D[f(x)h(x)] \le t - \tau$ 0 or 1 otherwise

Beneficial/neutral threshold = tMutation pool size $p = O\left(\frac{\log(\frac{1}{\delta})}{\delta}\right)$ Performance sample size $s = O\left(\frac{\log(\frac{1}{\delta})}{\tau^2}\right)$

With probability at least $1 - \delta$, Select $(r) = r_b$ where b is valid response to comparison query

Simulating CSQ> algorithm

Need to answer q queries ϕ_i is the function obtained after answering i queries Need to answer query h_i with threshold t_i

Beneficial/neutral threshold = t_i Mutation sample size $p = O\left(\frac{\log(\frac{1}{\delta})}{\delta}\right)$ Performance sample size $s = O\left(\frac{\log(\frac{1}{\delta})}{\tau^2}\right)$

Leads to representations with values in [-q,q]!Rescale by 1/q to get functions with values in [-1,1]

Given answers to queries can compute h such that $Perf_D(f,h) \ge 1 - \epsilon$ and mutate into it

CSQ learnable \equiv Evolvable [F.08; F. 09]

E.g. optimizing selection; recombination [Kanade 11]; changing thresholds; number of mutations

How powerful is CSQ learning?

SQ learning [Kearns 93] : learner submits $\psi(x, \ell)$ SQ oracle returns v such that $|v - E_D[\psi(x, f(x))]| \le \tau$

- Many known algorithms are essentially described in SQ or can be easily translated to SQ
 - Boolean conjunctions, decision lists, simple geometric concepts, AC⁰
 [Kearns 93]
- Several other were found with more effort
 - Halfspaces with large margin [Bylander 94]
 - o General LTFs [BlumFrie.Kann.Vemp. 96; Duna.Vemp. 04]
- General ML techniques
 - Nearest neighbor
 - Gradient descent
 - o SVM
 - Boosting

Perceptron in SQ

- Recall the Perceptron algorithm:
 - Add false negatives, subtract false positive examples

- Use SQs to find the centroid of false positives
- $E_D[x_1 \cdot I(f(x) = -1) \cdot I(h^t(x) = 1)]$ gives the first coordinate of the centroid
- Use the centroid for the Perceptron update

If D is fixed then $SQ \equiv CSQ$

Decompose SQ into CSQ and a constant

• Corollary: linear threshold functions are evolvable for any fixed distribution *D*

Distribution-independent CSQ

- Single points are learnable [F. 09]
- Characterization of weak-learning [F. 08]

Better than random guessing: $\mathop{\mathrm{E}}_{x \sim D}[f(x)h(x)] \ge \frac{1}{\operatorname{poly}(n,\frac{1}{\epsilon})}$

C is weakly CSQ learnable if and only if all functions in *C* can be represented as linear threshold functions with "significant" margin over a poly-size set of Boolean features

- General linear thresholds are not weakly CSQ learnable [Goldmann,Hastad,Razborov 95] (but are SQ learnable)
- Conjunctions are not CSQ learnable [F. 11]

Further directions

- Characterize (strong) evolvability (CSQ learning)
 - Strengthen the lower bound for conjunctions
- Are thresholds on a line evolvable distribution independently
- $Perf_D(f,r) = -E_D\left[\left(f(x) r(x)\right)^2\right]$ then all of SQ is evolvable [F. 09]

