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Learning from examples vs evolvability 

Learnable from examples 

 

 

 

 

 

 

 

Evolvable 
Parity functions 



The core model: PAC [Valiant 84] 

• Learner observes random examples: (𝑥, 𝑓(𝑥)) 

• Assumption: unknown Boolean function 𝑓: 𝑋 → {−1,1} 
labeling the examples comes from a known class of 

functions 𝐶 

• Distribution 𝐷 over 𝑋 (e.g. 𝑅𝑛 or −1,1 𝑛) 

 
For every 𝑓 ∈ 𝐶, 𝜖 > 0,  w.h.p. output ℎ: 𝑋 → [−1,1] 

s.t. E
𝑥∼𝐷
𝑓 𝑥 ℎ 𝑥 ≥ 1 − 𝜖 

For Boolean ℎ 
Pr
𝑥∼𝐷
𝑓 𝑥 = ℎ 𝑥 ≥ 1 − 𝜖/2 

Efficient: poly(
1

𝜖
, 𝑥 ) time 

every distribution 𝐷 



Classical example 

 

• 𝐶 halfspaces/linear threshold functions 
o 𝑠𝑖𝑔𝑛( 𝑤𝑖𝑥𝑖  − 𝜃) 𝑖 for 𝑤1, 𝑤2, … , 𝑤𝑛, 𝜃 ∈ 𝑹 

o equivalent to examples being linearly separable 

 

• Perceptron algorithm  
      [Rosenblatt 57; Block 62; Novikoff 62] 

o Start with LTF ℎ0 defined by 𝑤0 = 0,0,… , 0 ; 𝜃0 = 0 

o Get a random example (𝑥, ℓ). If  ℎ𝑡 𝑥 = ℓ  do nothing 

o Else let ℎ𝑡+1 be LTF defined by  

𝑤𝑡+1 = 𝑤𝑡 + ℓ ⋅ 𝑥 ; 𝜃𝑡+1 = 𝜃𝑡 + ℓ 

• Gives PAC learning if 𝑓 has significant 
margin 𝛾 on the observed data points 
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Evolution algorithm 

• 𝑅 - representation class of functions 

over 𝑋 
o E.g. all linear thresholds over 𝑹𝑛 

• 𝑀 - randomized mutation algorithm 

that given 𝑟 ∈ 𝑅 outputs (a random 

mutation) 𝑟′ ∈ 𝑅 

o Efficient: poly in 
1

𝜖
, 𝑛 

o E.g. choose a random 𝑖 and adjust 𝑤𝑖 by 

0, +1 or -1 randomly 

Hypothesis 

 

 

 Mutation  

 algorithm 



Selection 

• Fitness 𝑃𝑒𝑟𝑓𝐷(𝑓, 𝑟) ∈  [−1,1] 
o Correlation: 𝐸𝐷 𝑓 𝑥 𝑟 𝑥  

• For 𝑟 ∈ 𝑅 sample 𝑀(𝑟) 𝑝 times: 
𝑟1, 𝑟2, … , 𝑟𝑝 

• Estimate empirical performance of 𝑟 
and each 𝑟𝑖 using 𝑠 samples: 
𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟𝑖  

 𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟  

𝑡 𝑡 
-1 1 Empirical 

performance 

𝑝 and 𝑠 are “feasible” 

(polynomial in 𝑛, 1/𝜖) 

Natural selection 



Evolvability 
• Class of functions 𝐶 is evolvable over 𝐷 if exists an evolution algorithm (𝑅,𝑀) 

and a polynomial 𝑔(⋅,⋅) s.t. 

  

For every 𝑓 ∈ 𝐶,𝑟 ∈ 𝑅,>0 and a sequence 

𝑟0 = 𝑟, 𝑟1, 𝑟2, … where  𝑟𝑖+1 ← Select(𝑅,𝑀, 𝑟𝑖) 

it holds: 𝑃𝑒𝑟𝑓𝐷(𝑓,𝑟𝑔 𝑛,1
𝜖

)≥ 1 −   w.h.p. 

• Evolvable (distribution-independently) 

• Evolvable for all 𝐷 by the same mutation algorithm (𝑅,𝑀) 



Limits of evolvability 

• Feedback is restricted to values of 𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟𝑖  for some 

polynomial number of samples 𝑠  

𝑣𝑖 = 𝑃𝑒𝑟𝑓 𝐷 𝑓, ℎ𝑖  evaluated on 𝑠 fresh examples 

ℎ𝑞  

𝑣1 

ℎ2 

𝑣2 

𝑣𝑞 

ℎ1 

learning algorithm 
𝑃𝑒𝑟𝑓 𝐷(𝑠) oracle 

 



PAC learnable 

 

 

 

 

 

 

 

 

Learnable with 𝑃𝑒𝑟𝑓  

oracle = CSQ learnable 

 

 

 

 

 

Evolvable ⊆ CSQ learnable 

Correlational Statistical Query: 

To query ℎ CSQ oracle responds with any value 𝑣 

 𝑣 − 𝑬𝐷 𝑓 𝑥 ℎ(𝑥) ≤ τ for 𝜏 ≥
1

𝑝𝑜𝑙𝑦 𝑛,
1

𝜖

 

Learning by Distances [Ben-David,Itai,Kushilevitz ‘90] 

Restriction of SQ model by Kearns [93] 

 

Evolvable 



CSQ learnable ⊆ Evolvable [F. 08] 

PAC learnable 

 

 

 

 

 

 

 

 

Learnable with 𝑃𝑒𝑟𝑓  

oracle = CSQ learnable 

 

 

Evolvable 
 

 



Proof outline 

Replace queries for performance values 

with approximate comparisons 
 

For hypothesis ℎ: 𝑋 → −1,1 , tolerance 𝜏 > 0 and 

threshold 𝑡 ≥ 𝜏, CSQ> oracle returns: 

1          if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≥ 𝑡 + 𝜏 
0          if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≤ 𝑡 − 𝜏 
0 or 1                       otherwise 

Design evolution algorithm with mutations 

that simulate comparison queries 



From comparisons to mutations 

For hypothesis ℎ: 𝑋 → −1,1 , tolerance 𝜏 > 0 and 

threshold 𝑡 ≥ 𝜏, CSQ> oracle returns: 

1          if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≥ 𝑡 + 𝜏 
0          if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≤ 𝑡 − 𝜏 
0 or 1                       otherwise 

𝑟 ≡ 0 

𝑟0 ≡ 0 

𝑟1 ≡ ℎ 𝛿 

1 − 𝛿 
Beneficial/neutral threshold = 𝑡 

Mutation pool size 𝑝 = 𝑂
log (
1

𝛿
)

𝛿
 

Performance sample size 𝑠 = 𝑂
log (
1

𝛿
)

𝜏2
 

With probability at least 1 − 𝛿, Select 𝑟 = 𝑟𝑏  
where 𝑏 is valid response to comparison query 



Simulating 𝐶𝑆𝑄> algorithm 

𝑟 ≡ 𝜙𝑖 

𝑟0 ≡ 𝜙𝑖 

𝑟1 ≡ 𝜙𝑖 + ℎ𝑖 𝛿 

1 − 𝛿 
Beneficial/neutral threshold = 𝑡𝑖 

Mutation sample size 𝑝 = 𝑂
log (
1

𝛿
)

𝛿
 

Performance sample size 𝑠 = 𝑂
log (
1

𝛿
)

𝜏2
 

Need to answer 𝑞 queries  

𝜙𝑖 is the function obtained after answering 𝑖 queries 

Need to answer query ℎ𝑖 with threshold 𝑡𝑖  

Leads to representations with values in [−𝑞, 𝑞]! 
Rescale by 1/𝑞 to get functions with values in [-1,1]  

 

Given answers to queries can compute ℎ such that  

𝑃𝑒𝑟𝑓𝐷 𝑓, ℎ ≥ 1 − 𝜖 and mutate into it 



CSQ learnable ≡ Evolvable [F.08; F. 09] 

PAC learnable 

 

 

 

 

 

 

 

 

CSQ learnable ≡  
Evolvable 

 

E.g. optimizing selection; recombination [Kanade 11]; changing thresholds;  

number of mutations 



SQ learning [Kearns 93] : learner submits 𝜓(𝑥, ℓ)  

      SQ oracle returns 𝑣 such that 𝑣 − 𝑬𝐷 𝜓 𝑥, 𝑓(𝑥) ≤ τ 

How powerful is CSQ learning? 

• Many known algorithms are essentially described in SQ 

or can be easily translated to SQ 
o Boolean conjunctions, decision lists, simple geometric concepts, 𝐴𝐶0 

[Kearns 93] 

• Several other were found with more effort 
o Halfspaces with large margin [Bylander 94] 

o General LTFs [BlumFrie.Kann.Vemp. 96; Duna.Vemp. 04] 

• General ML techniques  
o Nearest neighbor 

o Gradient descent 

o SVM 

o Boosting 

 

 



Perceptron in SQ 
• Recall the Perceptron algorithm: 

o Add false negatives, subtract false positive examples 

 

 

 

 

 

 

 

 
• Use SQs to find the centroid of false positives 

• 𝑬𝐷[𝑥1 ⋅  𝐼 𝑓 𝑥 = −1 ⋅  𝐼(ℎ
𝑡(𝑥)  =  1)] gives the first 

coordinate of the centroid 

• Use the centroid for the Perceptron update 
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If 𝐷 is fixed then SQ≡CSQ 

• Decompose SQ into CSQ and a constant 

 

 

 

 

 

 

• Corollary: linear threshold functions are evolvable for 

any fixed distribution 𝐷 

 

 

CSQ 



Distribution-independent CSQ 

• Single points are learnable [F. 09] 

• Characterization of weak-learning [F. 08] 

Better than random guessing: E
𝑥∼𝐷
𝑓 𝑥 ℎ 𝑥 ≥

1

𝑝𝑜𝑙𝑦 𝑛,
1

𝜖

 

 

 

 

 

 

• General linear thresholds are not weakly CSQ learnable 

[Goldmann,Hastad,Razborov 95] (but are SQ learnable) 

• Conjunctions are not CSQ learnable [F. 11] 

 

 

 

𝐶 is weakly CSQ learnable if and only if all functions 

in 𝐶 can be represented as linear threshold functions 

with “significant” margin over a poly-size set of 

Boolean features 



Further directions 

• Characterize (strong) evolvability (CSQ learning) 
o Strengthen the lower bound for conjunctions 

• Are thresholds on a line evolvable distribution 

independently 

• 𝑃𝑒𝑟𝑓𝐷 𝑓, 𝑟 = −𝑬𝐷 𝑓 𝑥 − 𝑟 𝑥
2

 then all of SQ is 

evolvable [F. 09] 


