
On the power and the

limits of evolvability

Vitaly Feldman

Almaden Research Center

Learning from examples vs evolvability

Learnable from examples

Evolvable
Parity functions

The core model: PAC [Valiant 84]

• Learner observes random examples: (𝑥, 𝑓(𝑥))

• Assumption: unknown Boolean function 𝑓: 𝑋 → {−1,1}
labeling the examples comes from a known class of

functions 𝐶

• Distribution 𝐷 over 𝑋 (e.g. 𝑅𝑛 or −1,1 𝑛)

For every 𝑓 ∈ 𝐶, 𝜖 > 0, w.h.p. output ℎ: 𝑋 → [−1,1]

s.t. E
𝑥∼𝐷
𝑓 𝑥 ℎ 𝑥 ≥ 1 − 𝜖

For Boolean ℎ
Pr
𝑥∼𝐷
𝑓 𝑥 = ℎ 𝑥 ≥ 1 − 𝜖/2

Efficient: poly(
1

𝜖
, 𝑥) time

every distribution 𝐷

Classical example

• 𝐶 halfspaces/linear threshold functions
o 𝑠𝑖𝑔𝑛(𝑤𝑖𝑥𝑖 − 𝜃) 𝑖 for 𝑤1, 𝑤2, … , 𝑤𝑛, 𝜃 ∈ 𝑹

o equivalent to examples being linearly separable

• Perceptron algorithm
 [Rosenblatt 57; Block 62; Novikoff 62]

o Start with LTF ℎ0 defined by 𝑤0 = 0,0,… , 0 ; 𝜃0 = 0

o Get a random example (𝑥, ℓ). If ℎ𝑡 𝑥 = ℓ do nothing

o Else let ℎ𝑡+1 be LTF defined by

𝑤𝑡+1 = 𝑤𝑡 + ℓ ⋅ 𝑥 ; 𝜃𝑡+1 = 𝜃𝑡 + ℓ

• Gives PAC learning if 𝑓 has significant
margin 𝛾 on the observed data points

+

+

+ +

+ +

-

-

+

-

-

-
- -

- -

-

+

+ +

+

-

-

+

Evolution algorithm

• 𝑅 - representation class of functions

over 𝑋
o E.g. all linear thresholds over 𝑹𝑛

• 𝑀 - randomized mutation algorithm

that given 𝑟 ∈ 𝑅 outputs (a random

mutation) 𝑟′ ∈ 𝑅

o Efficient: poly in
1

𝜖
, 𝑛

o E.g. choose a random 𝑖 and adjust 𝑤𝑖 by

0, +1 or -1 randomly

Hypothesis

 Mutation

 algorithm

Selection

• Fitness 𝑃𝑒𝑟𝑓𝐷(𝑓, 𝑟) ∈ [−1,1]
o Correlation: 𝐸𝐷 𝑓 𝑥 𝑟 𝑥

• For 𝑟 ∈ 𝑅 sample 𝑀(𝑟) 𝑝 times:
𝑟1, 𝑟2, … , 𝑟𝑝

• Estimate empirical performance of 𝑟
and each 𝑟𝑖 using 𝑠 samples:
𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟𝑖

 𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟

𝑡 𝑡
-1 1 Empirical

performance

𝑝 and 𝑠 are “feasible”

(polynomial in 𝑛, 1/𝜖)

Natural selection

Evolvability
• Class of functions 𝐶 is evolvable over 𝐷 if exists an evolution algorithm (𝑅,𝑀)

and a polynomial 𝑔(⋅,⋅) s.t.

For every 𝑓 ∈ 𝐶,𝑟 ∈ 𝑅,>0 and a sequence

𝑟0 = 𝑟, 𝑟1, 𝑟2, … where 𝑟𝑖+1 ← Select(𝑅,𝑀, 𝑟𝑖)

it holds: 𝑃𝑒𝑟𝑓𝐷(𝑓,𝑟𝑔 𝑛,1
𝜖

)≥ 1 −  w.h.p.

• Evolvable (distribution-independently)

• Evolvable for all 𝐷 by the same mutation algorithm (𝑅,𝑀)

Limits of evolvability

• Feedback is restricted to values of 𝑃𝑒𝑟𝑓 𝐷 𝑓, 𝑟𝑖 for some

polynomial number of samples 𝑠

𝑣𝑖 = 𝑃𝑒𝑟𝑓 𝐷 𝑓, ℎ𝑖 evaluated on 𝑠 fresh examples

ℎ𝑞

𝑣1

ℎ2

𝑣2

𝑣𝑞

ℎ1

learning algorithm
𝑃𝑒𝑟𝑓 𝐷(𝑠) oracle

PAC learnable

Learnable with 𝑃𝑒𝑟𝑓

oracle = CSQ learnable

Evolvable ⊆ CSQ learnable

Correlational Statistical Query:

To query ℎ CSQ oracle responds with any value 𝑣

 𝑣 − 𝑬𝐷 𝑓 𝑥 ℎ(𝑥) ≤ τ for 𝜏 ≥
1

𝑝𝑜𝑙𝑦 𝑛,
1

𝜖

Learning by Distances [Ben-David,Itai,Kushilevitz ‘90]

Restriction of SQ model by Kearns [93]

Evolvable

CSQ learnable ⊆ Evolvable [F. 08]

PAC learnable

Learnable with 𝑃𝑒𝑟𝑓

oracle = CSQ learnable

Evolvable

Proof outline

Replace queries for performance values

with approximate comparisons

For hypothesis ℎ: 𝑋 → −1,1 , tolerance 𝜏 > 0 and

threshold 𝑡 ≥ 𝜏, CSQ> oracle returns:

1 if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≥ 𝑡 + 𝜏
0 if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≤ 𝑡 − 𝜏
0 or 1 otherwise

Design evolution algorithm with mutations

that simulate comparison queries

From comparisons to mutations

For hypothesis ℎ: 𝑋 → −1,1 , tolerance 𝜏 > 0 and

threshold 𝑡 ≥ 𝜏, CSQ> oracle returns:

1 if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≥ 𝑡 + 𝜏
0 if 𝑬𝐷 𝑓 𝑥 ℎ 𝑥 ≤ 𝑡 − 𝜏
0 or 1 otherwise

𝑟 ≡ 0

𝑟0 ≡ 0

𝑟1 ≡ ℎ 𝛿

1 − 𝛿
Beneficial/neutral threshold = 𝑡

Mutation pool size 𝑝 = 𝑂
log (
1

𝛿
)

𝛿

Performance sample size 𝑠 = 𝑂
log (
1

𝛿
)

𝜏2

With probability at least 1 − 𝛿, Select 𝑟 = 𝑟𝑏
where 𝑏 is valid response to comparison query

Simulating 𝐶𝑆𝑄> algorithm

𝑟 ≡ 𝜙𝑖

𝑟0 ≡ 𝜙𝑖

𝑟1 ≡ 𝜙𝑖 + ℎ𝑖 𝛿

1 − 𝛿
Beneficial/neutral threshold = 𝑡𝑖

Mutation sample size 𝑝 = 𝑂
log (
1

𝛿
)

𝛿

Performance sample size 𝑠 = 𝑂
log (
1

𝛿
)

𝜏2

Need to answer 𝑞 queries

𝜙𝑖 is the function obtained after answering 𝑖 queries

Need to answer query ℎ𝑖 with threshold 𝑡𝑖

Leads to representations with values in [−𝑞, 𝑞]!
Rescale by 1/𝑞 to get functions with values in [-1,1]

Given answers to queries can compute ℎ such that

𝑃𝑒𝑟𝑓𝐷 𝑓, ℎ ≥ 1 − 𝜖 and mutate into it

CSQ learnable ≡ Evolvable [F.08; F. 09]

PAC learnable

CSQ learnable ≡
Evolvable

E.g. optimizing selection; recombination [Kanade 11]; changing thresholds;

number of mutations

SQ learning [Kearns 93] : learner submits 𝜓(𝑥, ℓ)

 SQ oracle returns 𝑣 such that 𝑣 − 𝑬𝐷 𝜓 𝑥, 𝑓(𝑥) ≤ τ

How powerful is CSQ learning?

• Many known algorithms are essentially described in SQ

or can be easily translated to SQ
o Boolean conjunctions, decision lists, simple geometric concepts, 𝐴𝐶0

[Kearns 93]

• Several other were found with more effort
o Halfspaces with large margin [Bylander 94]

o General LTFs [BlumFrie.Kann.Vemp. 96; Duna.Vemp. 04]

• General ML techniques
o Nearest neighbor

o Gradient descent

o SVM

o Boosting

Perceptron in SQ
• Recall the Perceptron algorithm:

o Add false negatives, subtract false positive examples

• Use SQs to find the centroid of false positives

• 𝑬𝐷[𝑥1 ⋅ 𝐼 𝑓 𝑥 = −1 ⋅ 𝐼(ℎ
𝑡(𝑥) = 1)] gives the first

coordinate of the centroid

• Use the centroid for the Perceptron update

+

+

+
+

+ +

-

-

+

-

-

-
- -

- -

-

+

+ +

+

-

-

+

False

positive

𝑓

ℎ𝑡

If 𝐷 is fixed then SQ≡CSQ

• Decompose SQ into CSQ and a constant

• Corollary: linear threshold functions are evolvable for

any fixed distribution 𝐷

CSQ

Distribution-independent CSQ

• Single points are learnable [F. 09]

• Characterization of weak-learning [F. 08]

Better than random guessing: E
𝑥∼𝐷
𝑓 𝑥 ℎ 𝑥 ≥

1

𝑝𝑜𝑙𝑦 𝑛,
1

𝜖

• General linear thresholds are not weakly CSQ learnable

[Goldmann,Hastad,Razborov 95] (but are SQ learnable)

• Conjunctions are not CSQ learnable [F. 11]

𝐶 is weakly CSQ learnable if and only if all functions

in 𝐶 can be represented as linear threshold functions

with “significant” margin over a poly-size set of

Boolean features

Further directions

• Characterize (strong) evolvability (CSQ learning)
o Strengthen the lower bound for conjunctions

• Are thresholds on a line evolvable distribution

independently

• 𝑃𝑒𝑟𝑓𝐷 𝑓, 𝑟 = −𝑬𝐷 𝑓 𝑥 − 𝑟 𝑥
2

 then all of SQ is

evolvable [F. 09]

