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Two-party secure communications: QKD

Alice and Bob trust each other but not the channel
Primitive for message exchange: key distribution

BB84 QKD protocol: possibly the precursor of the entire field

Original Quantum Cryptographic Apparatus built in 1989
transmitted information secretly over a distance of about 50 cm.

Sender’s side produces Cluantum channel 15 an empty Calclte prism separates
very faint green light space about 30 cm long. There  polarzations.

pulses of 4 different Is no Eavesdropper, but if there  Photomultiplizr tabes
polarizations. were she would be detected. detect single photons.
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A QUANTUM KEY TD METWORK SECURITY

Jouguet, Kunz-Jacques, Leverrier,
Grangier, D, Nature Photon. 2013

Scarani et al, Rev. Mod. Phys. 2009



Two-party secure communications: QKD

Information-theoretic security is possible and feasible!

Theory adapted to experimental imperfections

2000: Using laser sources opens a disastrous security loophole in BB84

— photon number splitting attacks
Brassard, Litkenhaus, Mor, Sanders, Phys. Rev. Lett. 2000

Solution: Decoy state BB84 protocol, and other
Lo, Ma, Chen, Phys. Rev. Lett. 2004

2010: Quantum hacking: setup vulnerabilities not taken into account in

security proofs Lydersen et al, Nature Photon. 2010

Solution: Exhaustive search for side channels and updated security proofs?
Device independence? Measurement device independence?



Two-party secure communications: beyond QKD

Alice and Bob do not trust each other
Primitives for joint operations: bit commitment, coin flipping, oblivious transfer

Until recently relatively ignored by physicists

— perfect unconditionally secure protocols are impossible,
but imperfect protocols with information-theoretic security exist
ideal framework to demonstrate quantum advantage

— protocols require inaccessible resources, like quantum memories,
generation of quitrits, perfect single photons,...

— they are vulnerable to experimental imperfections (losses, noise,
imperfect detectors and sources)
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Experimental loss-tolerant quantum
coin flipping
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Experimental implementation of bit commitment in the noisy-storage model

Nature Commun. 2012

Experimental bit commitment based on quantum communication and special relativity

T. Lunghi,! J. Kaniewski,? F. Bussieres,! R. Houlmann,!
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Experimental unconditionally secure bit commitment
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An Experimental Implementation of Oblivious Transfer in the Noisy Storage Model
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Practical quantum coin flipping
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Experimental plug&play quantum coin flipping
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Adapting theory to implementation

Strong quantum coin flipping
Allows two spatially separated distrustful parties to agree on a random bit,
whose value should not be biased

For unbounded adversaries: ¢ > 0

: : 1 1
But better than classical protocols exist : lower bound ¢ = — — > ~ 0.21

2

Aharonov, Ta-Shma, Vazirani, Yao, STOC 2000
Spekkens and Rudolph 2001

Kitaev 2003, Ambainis 2004

Chailloux and Kerenidis, FOCS 2009



Ambainis protocol

Alice Bob
Step1l  Randomly picks ,ce {0.4 Prepares ‘q)a c>

@0, ) = (|0} + (<)1) V2

>

C (0o # p1)
,.) = (|0)+(-1)°[2)) 1 ¥2
Step 2 Bob stores quitrit in quantum memory
Optical fibers, Step 3 B Random bit b
components,
detectors, memories Step 4
have losses... b a.t 5
Step 5 Randomly picks 8 € {0,1}, measures on

the B, :{‘q)ﬂ,0>"q)ﬂ,1>"2_ﬁ>} basis
Bob checks if his measurement result is ¢
otherwise he aborts

Coinvalue X=a®Db



Vulnerabillity to losses

All possible strategies to take losses into account break the protocol
Bob must measure in Step 2, increases Alice’s bias a bit but still ok
— great!

But then Bob can discriminate p,, £, conclusively with positive probability
— protocol completely broken



First step: achieving loss tolerance

Alice Bob
Step 1l Randomly picks @,c€{01} popares @, ) X
@)=y [0)+(-1)" V1-y|1)
@) =y1-y|0)-(-1)" Jy 1)
) g Step 2 Randomly picks S €{0,1} , measures on
| m the B, = {‘cl)ﬂ,o>,‘cbﬂ,l>} basis; if no output

asks to start again, otherwise Step 3

| Step 3 Random bit b
o V""""r—-,l_,‘\_ I} | ( ]> <€
- |P1,0)
Step 4 a,C
\'\‘. |- >
[®o.) Step 5 If o =, Bob checks if his measurement

resultis c, otherwise he aborts
If a # B, he cannot verify and accepts

Berlin et al, Phys. Rev. A 2009 Coinvalue X=C@®Db



Vulnerability to noise and multi-photon pulses

Bob can ask to restart the protocol if he gets no detection — crucial for loss
tolerance (for any value of loss!)

Alice chooses a bit ¢ =0,1, for which P, # P, and there is no conclusive
discrimination measurement

Protocol fair for y = 0.9, for which ¢ =0.4
But what about practical imperfections other than loss?

Theoretical analysis does not take into account noise (errors, dark counts,...)
— probability for honest abort is always zero

Protocol becomes completely insecure in the presence of multi-photon pulses
— there is a conclusive measurement to distinguish between Py, 1 when two

identical states are in a pulse, Bob can measure in both bases B, B;
recall the photon number splitting attacks in QKD!



Second step: taking into account imperfections
Alice Bob
Step 1 Randomly picks a;,¢, €{0,1}, i=1,...,K

Pulse mean photon number follows |, =€ * ' /i!
‘CD“"O> =Y10)+ (1) A=y Prepares ‘q)a. c->
,,,) = 1= y[0)~(-1)" y[1) >

) g Step 2 Randomly picks S €{0,1} for every pulse;

if his detectors do not click he aborts,
otherwise | is first detected pulse

ety |StGP3 D]
f|q’1,0>
Step 4 @, C
\'\‘. |—) >
[Pos) Step 5 If «; = B;, Bob checks if his measurement

resultis c ;, otherwise he aborts
Ifae; # B; he cannot verify and accepts

Pappa et al, Phys. Rev. A 2011 Coinvalue X =C; ®D



Experimental implementation

Experiment based on a commercial plug&play QKD system
high-quality single-photon detectors
rotated BB84 states
very low mean photon number regime

new calibration routines

C: Circulator
BS: Beam Splitter
00, D1: APD detectors
PM: Phase Modulator
FM: Faraday Mirror
WVATT: Variable Attenuator
PBS: Polarization Beam Splitter

. DL: Delay Line



Security of the implementation

Our system has losses, single-photon detectors with dark counts and finite
guantum efficiency, multi-photon pulses, noise

— these all lead to a probability of honest abort

By setting a target honest abort probability, we can minimize the cheating
probability for a fair protocol by finding optimal values of u,K,y

Is this enough to claim security?

Are the basis and bit values chosen by Alice and Bob really independently and
randomly?

Might it be possible that Bob detects one state much more often than another?

Security proof does not hold if security assumptions are not satisfied in
practice!



Third step: satisfying the security assumptions

From analysis of experimental detection events and characteristics of
random number generators and phase modulators used for bit and basis

choices :
Alice’s state distribution probability away from uniform< ¢,

Bob’s basis and bit distribution probability (for pulse used for coin) away
from uniform < g,

Bob’s outcomes very biased due to significant detector efficiency
asymmetry — important security loophole!

Solution: symmetrization of losses
after this procedure, efficiency ratio away from 1 < &g

Optimal cheating strategies depend on security parameters €,,g:&p:



Showing quantum advantage In practice
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Comparison with classical bound: P, <1-vH/2, H<1/2
Hanggi and Wullschleger, TCC 2011

Maximum communication distance smaller than in QKD

Pappa et al, arXiv 1306.3368



Conclusions and open questions

Flipping a single coin with security guarantees better than in any classical
protocol is possible with present guantum technology

Quantum information can be used beyond key distribution to achieve in
practice cryptographic tasks in the distrustful model

Is it possible to systematically find explicit, efficient and implementable
protocols and adapt them to realistic conditions?

Can we use current methods and techniques to a wide range of quantum

games and protocols?
Pappa, Chailloux, Wehner, D, Kerenidis, Phys. Rev. Lett. 2012

Roadmap to truly useful quantum information technology, even before a
guantum computer becomes available

Demonstrating qguantum gap in practice is challenging,
rewarding, and of both fundamental and applied interest



