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Alice and Bob trust each other but not the channel
Primitive for message exchange: key distribution

Two-party secure communications: QKD

BB84 QKD protocol: possibly the precursor of the entire field
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Scarani et al, Rev. Mod. Phys. 2009

Jouguet, Kunz-Jacques, Leverrier, 
Grangier, D, Nature Photon. 2013



 2010: Quantum hacking: setup vulnerabilities not taken into account in 
security proofs 

 Solution: Exhaustive search for side channels and updated security proofs? 
Device independence? Measurement device independence? 

Two-party secure communications: QKD
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Information-theoretic security is possible and feasible!

Theory adapted to experimental imperfections
 2000: Using laser sources opens a disastrous security loophole in BB84

 photon number splitting attacks

 Solution: Decoy state BB84 protocol, and other

Brassard, Lütkenhaus, Mor, Sanders, Phys. Rev. Lett. 2000

Lo, Ma, Chen, Phys. Rev. Lett. 2004

Lydersen et al, Nature Photon. 2010
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Two-party secure communications: beyond QKD

Alice and Bob do not trust each other
Primitives for joint operations: bit commitment, coin flipping, oblivious transfer

 Until recently relatively ignored by physicists

 perfect unconditionally secure protocols are impossible, 
but imperfect protocols with information-theoretic security exist

ideal framework to demonstrate quantum advantage

 protocols require inaccessible resources, like quantum memories,
generation of qutrits, perfect single photons,…

 they are vulnerable to experimental imperfections (losses, noise, 
imperfect detectors and sources)
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Nature Commun. 2012
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Adapting theory to implementation
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Strong quantum coin flipping
Allows two spatially separated distrustful parties to agree on a random bit,
whose value should not be biased

For unbounded adversaries:
But better than classical protocols exist : lower bound
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Aharonov, Ta-Shma, Vazirani, Yao, STOC 2000
Spekkens and Rudolph 2001
Kitaev 2003, Ambainis 2004
Chailloux and Kerenidis, FOCS 2009
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Ambainis protocol

Randomly picks
,cStep 1
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otherwise he aborts
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Bob stores qutrit in quantum memory
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have losses…
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 All possible strategies to take losses into account break the protocol
 Bob must measure in Step 2, increases Alice’s bias a bit but still ok
 great!
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Vulnerability to losses

 But then Bob can discriminate             conclusively with positive probability
 protocol completely broken

0 1, 
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First step: achieving loss tolerance

Randomly picks
,c

Berlin et al, Phys. Rev. A 2009

Step 1
Alice Bob

 , 0,1c 

Step 2 Randomly picks               , measures on
the                                  basis; if no output
asks to start again, otherwise Step 3 
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 Bob can ask to restart the protocol if he gets no detection  crucial for loss 
tolerance (for any value of loss!)

 Alice chooses a bit            , for which               and there is no conclusive 
discrimination measurement

 Protocol fair for            , for which

But what about practical imperfections other than loss?

12

0,1c  0 1 

0.9y  0.4 

Vulnerability to noise and multi-photon pulses

 Theoretical analysis does not take into account noise (errors, dark counts,…)
 probability for honest abort is always zero

 Protocol becomes completely insecure in the presence of multi-photon pulses 
 there is a conclusive measurement to distinguish between           when two 

identical states are in a pulse, Bob can measure in both bases 
recall the photon number splitting attacks in QKD!

0 1, 

0 1,B B
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Randomly picks 
Pulse mean photon number follows 

Step 1
Alice Bob

Step 2 Randomly picks                 for every pulse;
if his detectors do not click he aborts,
otherwise j is first detected pulse

 0,1i 

Step 3 ,b j

Step 4 ,j jc

Step 5 If            , Bob checks if his measurement
result is     , otherwise he aborts
If           , he cannot verify and accepts

Coin value jx c b 

j j 

jc

j j 

Second step: taking into account imperfections

Pappa et al, Phys. Rev. A 2011
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Experimental implementation

Experiment based on a commercial plug&play QKD system
high-quality single-photon detectors
rotated BB84 states    
very low mean photon number regime    
new calibration routines    
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Security of the implementation

 Our system has losses, single-photon detectors with dark counts and finite 
quantum efficiency, multi-photon pulses, noise
 these all lead to a probability of honest abort

 By setting a target honest abort probability, we can minimize the cheating 
probability for a fair protocol by finding optimal values of  

Is this enough to claim security?

, ,K y

 Are the basis and bit values chosen by Alice and Bob really independently and 
randomly?

 Might it be possible that Bob detects one state much more often than another? 
 Security proof does not hold if security assumptions are not satisfied in 

practice! 
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Third step: satisfying the security assumptions

 From analysis of experimental detection events and characteristics of 
random number generators and phase modulators used for bit and basis 
choices :
 Alice’s state distribution probability away from uniform

 Bob’s basis and bit distribution probability (for pulse used for coin) away 
from uniform

 Bob’s outcomes very biased due to significant detector efficiency 
asymmetry  important security loophole! 
Solution: symmetrization of losses
after this procedure, efficiency ratio away from 1 

A

B

'B

 Optimal cheating strategies depend on security parameters ', ,A B B  
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Showing quantum advantage in practice

 Comparison with classical bound:

 Maximum communication distance smaller than in QKD

Pappa et al, arXiv 1306.3368

1 / 2,    1 / 2cp H H  
Hanggi and Wullschleger, TCC 2011
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Conclusions and open questions

 Flipping a single coin with security guarantees better than in any classical 
protocol is possible with present quantum technology

 Quantum information can be used beyond key distribution to achieve in 
practice cryptographic tasks in the distrustful model

 Is it possible to systematically find explicit, efficient and implementable 
protocols and adapt them to realistic conditions?

 Can we use current methods and techniques to a wide range of quantum 
games and protocols?

 Roadmap to truly useful quantum information technology, even before a 
quantum computer becomes available

Demonstrating quantum gap in practice is challenging, 
rewarding, and of both fundamental and applied interest

Pappa, Chailloux, Wehner, D, Kerenidis, Phys. Rev. Lett. 2012


