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Example: the 3SAT game

Given a 3SAT formula with variables X={x!1,...xln } and clauses ¢={C!1,..,Clm }
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Games and CSPs

Label Cover = the problem of finding the value of a given game
( this is a 2-local Constraint Satisfaction Problem - CSP )

Every CSP gives rise to a clause vs. variable game
(or to a multi-player game)

MIP = games
PCP = CSPs (fixed proof = assignment;
randomized verification = clauses)

(classically equivalent, but the guantum analogs are not)

COMPLEXITY OF LABEL-COVER
NP-hard to decide if val(6)=1 or val(¢)<1 (Cook-Levin)
NP-hard to decide if val(&)=1 or val(G)<1—¢ (PCP)

NP-hard to decide if val(¢)=1 or val(G)<e (strong PCP)



The PCP Theorem [AS, ALMSS '91]

strong PCP theorem: “gap-label-cover is NP-hard”
Proof: By reduction from tiny gap to constant gap,
aka amplification

Start with label-cover ¢ and end up with &, s.t.

If val(6) =1 then vak &) = 1 then val(6 1k )=1
It val(6) < 1then val(¢)<1—«¢ then val(GC TQk )<e&
Howe

« by algebraic encoding [AS, ALMSS 1991]; or
« By “derandomized parallel repetition” (D. 2007)



Repetition

Sequential repetition: run the game t rounds
Probability of not catching an error = exp(-t)

CSP perspective: Number of bits read from proof = O(f)
Not a 2-local CSP (label-cover) anymore*. 2t-local.

Remark: derandomizing this is easy (e.g. via “expander walks”)
So we can plug in t=log n and get the sequential analog of the
sliding scale conjecture

Want: A 2-local CSP with the same properties
Why<e Useful for inapprox, 2-local is simulateable by graph problems

Approach: Parallel Repetition



Parallel Repetition
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THIS IS A "PRODUCT"” OPERATION ON GAMES

Product of Games: GQH

Parallel Repetition: 6TQ%



Q1 If value ( 61 ) =wl ond value ( G2 ) =w?2

then whatis value ( G1Q62) ¢

Q2: It value ( ¢) =a, then what is value ( GTQk ) for £>1 ¢

One obvious candidate is the direct product strategy.

But it is noft, in general, the best strategy.



previous bounds

(long history, notoriety) ... Verbitsky'94, Feige-Kilian'94]
parallel repetition theorem  [Raz'95improved: Holenstein’07, Rao’08]
(for projection games)
value (6)<1—& = value(GTQk ))<(1—e132 /O ke

(tight even for games with XOR constraints) [Raz'08]

main application: hardness amplification for LABEL COVER
1 vs 6 approximation is NP-hard (basis of inapproximability results)



Parallel repetition for entangled value
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Parallel repetition for entangled value

[Holenstein ‘06] — parallel repetition for non-signalling strategies

[Cleve, Slofstra, Unger, Upadhya ‘08] — perfect parallel repetition for entangled
value of XOR games

[Kempe Regev Toner ‘08] - unique games

[Kempe-Vidick ‘11] : polynomially decaying bounds for parallel repetition of
entangled value

Extending the Feige-Kilian proof to the quantum setting

(adding consistency queries to force provers to play a direct product strategy)

[Chailloux, Scarpa ‘14] — parallel repetition for general games, bound depends
on size of game

[Jain, Pereszlényi, Yao ‘14] — product-distribution games

[D.-Steurer-Vidick, to appearin CCC'14]:
Let G be a projection-constraint game, then

If vall* (¢) < 1—ethen vallx (GTR k) < (1—poly(c) )Tk



» Projection game: for every pair of questions, _
any answer from B determines unique valid =~ @2 o4

answer from A
* Your favorite two-player game is a projection game!

Projection

° Magic
games

square

° 3SAT

° Hidden matching
game

game

« Exists universal fransformation ¢— &1 such that ¢T projection game

and w(G)=w(G)
« ...but could have wT* (GT )KwT* ()



Recent but earlier work with David Steurer, (to appear in STOC ‘14) :

analytical framework to analyze parallel repetition
for projection constraints
(conftrast to previous information-theoretic approach)

new bounds

low value: value(G)<p = value(CTQRQ4 )S(2p)Tk/2
(for projection constraints)

few repetitions: value(@)<l—& = value(GTQ4 )<(1-)1Vk

(for projection constraints, £<1/£72 )

optimal NP-hardness for SET COVER (and better Np-hardness for LABEL COVER)
(1—€)ln72 -approximation, via [Feige, Moshkovitz—Raz, Moshkovitz]

Raz's parallel-repetition counterexample tight even for small &
some G have value<1—e&nut value (0T®k)21—£\/k °

(answers question of O'Donnell)



Analytical framework of DS extends nicely to entangled value setup

Plan:

Describe the “analytical / linear-algebraic” proof of [DS], show how to
generalize to the entangled value setup



[DS%roof overview *

l. Analytical Setup View a projection game as a linear operator
acting on (Bob)-assignments

Il. Prelim Step: move to “collision value” ||-]] instead of value(G)

value (G)<||G)|€value (¢)T1 /2 for all ¢ (easy)

lll. Main Step: further relax ||| tO vald+ and prove

|. vall+ (GRQ H)=vall+ (¢)-vall+ (H) forall ¢, #  (multiplicativity)

2. vall+ (G)=value(¢) for all ¢ (approximation)

proof of parallel-repetition bound

I Il . 2.
value (¢TR L )< [|GCTR k [|T <vall+ (CTQR k )T =vall+T (G)Tk =value (¢)Tk



analytical setup

constraint graph

mu—v:2-X%
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XX V XX

constraint graph

mu—v:2-X%

}z




analytical setup

X
™M

U X%

label-extended graph
__constretrtgrdph

V

AN

mbu—v:X-X %



4 XX V XX
analytical setup

label-extended graph ¢ FVxZ-R

G:UXI->R

S VXZ-Ris an assignment mlu—v:L-% v

for all velV
. For assignment £,
linear operator GRTVXI >RTUXE Gf(ua) = prob. that randorr
= adjacency matrix of u-neighbor *demands”a

label-extended graph

success probability
for assignments f,g

bilinear form of G (Gf.g)=EduYal#EC(ua) g(ua)

= value (¢)=max{(Gf,g) over assignments f,g°
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Collision value

Il. Prelim Step: move to “collision value” instead of value(6)

value (G)=sup—+/,g (Cf,g9) =sup—f (Gf,Gf)T=: col—val(()

/'

Simple Cauchy-Schwarz

value 7 (G)T =sup+/,9¥ (G/,g)d¥ =sup—/,¥Y (Gf,G/)Y T=: col—vallx ((

/

Generalized Cauchy-Schwarz due to Haagerup



Vector relaxation — vall+ (6)

lll. Define wall+ (6) by replacing Axb) by a vector Av,b,w)

Why vector strategies ¢

A strategy for ¢Q A is automatically a vector strategy,
if viewed as a strategy for ¢ alone.
The normalization “eliminates” the effects of the game H

This facilitates proving  vall+ (CQ H)=vall+ (G) -vall+ (H)



Vector relaxation — vall+ (6)

lll. Define wall+ 1+ (6) by replacing Aw,b) by a vector Avb,w)

Why vector strategies ¢

A strategy for ¢Q A is automatically a vector strategy,
if viewed as a strategy for ¢ alone.
The normalization “eliminates” the effects of the game H

This facilitates proving  vall+ (CQ H)=vall+ (G) -vall+ (H)



Vector relaxation - vall+ (6)—-approximation

lll. Remaining goal: prove that veli+ (6)~val(G)

Given a vector strategy, derive a standard strategy that has
similar value

Naively: focus on one coordinate w and hope for the best

Generally: combine different coordinates through correlated sampling



[DSV] proof overview

l. Analytical Setup View a projection game as a linear operator
acting on (Bob)-assignments

Il. Prelim Step: move to “collision value” ||-]|* instead of value (G)

value 7 (G)<[|GJ|T+ <value(G¢)Tx 1,2 forall ¢ (easy)

lll. Main Step: further relax |||/ tO vali+ T+ and prove

|. vall+ T+ (CQ H)=vall+ T+ (G)-vall+ T+ (#) for all ¢, # (multiplicc

2. vall+ T+ (G)=valueTx (¢) for all ¢ (approxirn

proof of parallel-repetition bound

| Il I. 2.
value T (GCTQR k )S[ICTR k [T+ Svall+ T+ (GTRk )T =vall+ T+ (G)Tk =valueTx (G)Tk



Main source of trouble: non-product strategies that are too good

Why are they too goode
How good can they be ¢

How does this depend on the game ¢

Back to the basics — design a simple game in which this can be studied

THE CONFUSE & COMPARE GAME

*[Feige & Kilian]



The Confuse & Compare game, with parameters p, N

Alice Bob

AN > {01} B:[N] > {0,1}

P fraction of edges are equality edges (i,i) “compare”
(1-p) fraction of edges are free edges (i) ‘confuse”

If A =B then win with probability 1

k-fold parallel repetition: choose k independent edges i j;...I
Sendi...i, fo Alice and j,...j, to Bob



The Confuse & Compare* game, k-fold direct product

[N]* [N]*

Alice

A [NIK> {01} B: [Nk {0,1}

Clearly, a product strategy Ak obtains value 1
Question : can something be said about A if val > 0.99 ¢ val > 0.001 ¢



Direct Product Testing

The symmetrized version of this game is known as “direct product
testing”. Both players use a strategy

ANk > [M]K

and the goal is to prove

THM: If Confuse-Compare-value ( A ) > q,
then A is close to being direct-product

For some values of p, N, M this question is solved,
[Goldreich-Safra, D.-Reingold, D.-Goldenberg, Impagliazzo-Kabanets-Wigderson, D.-
Steurer]

but much is open

This is a clean question, can also be formulated in the entangled
setting, but little is known there...



Summary

Parallel repetition is good for amplification

Analytical approach useful for analyzing parallel
repeated projection games

Direct product testing



