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game 𝑮  

strategy 
𝑓:𝑉→Σ 

strategy 
𝑔:𝑈→Σ 

𝜋↓𝑢𝑣  
𝑢  

𝑣  

value(𝐺)≔ max┬𝑓,𝑔  ℙ↓𝑢𝑣 {  (  𝑔(𝑢),𝑓(𝑣)  )∈ 𝜋↓𝑢𝑣 }    

𝑈  𝑉  

bipartite 
regular  
(for simplicity) 

𝑢𝑣  

𝑣  𝑢  

𝛼  𝛽  
𝛼𝛽∈ 𝜋↓𝑢𝑣  

Alice Bob 

random: 

WIN: 

constraint  
graph 

no communication 
between A & B 



game 𝑮  

strategy 
𝑓:𝐶→{1,2,…,7} 

strategy 
𝑔:𝑋→{0,1} 

𝜋↓𝑖𝑗  
𝑥↓𝑖  

𝐶↓𝑗  

𝑋  𝐶  

𝑖𝑗  

𝐶↓𝑗 =¬ 𝑥↓𝑖 ∨𝑥↓𝑖↑′ ↑ ∨𝑥↓𝑖↑′′   𝑥↓𝑖  

0 010 

Alice Bob 

random: 

Clauses vs. variable 
constraint graph 

Example: the 3SAT game 

Given a 3SAT formula with variables 𝑋={𝑥↓1 ,…, 𝑥↓𝑛 } and clauses 𝐶={𝐶↓1 ,…, 𝐶↓𝑚 } 



Games and CSPs 

Label Cover = the problem of finding the value of a given game 
  ( this is a 2-local Constraint Satisfaction Problem - CSP ) 

Every CSP gives rise to a clause vs. variable game 
(or to a multi-player game) 

MIP = games 

PCP = CSPs (fixed proof = assignment;  
        randomized verification = clauses) 

NP-hard to decide if 𝑣𝑎𝑙(𝐺)=1  or 𝑣𝑎𝑙(𝐺)<1    (Cook-Levin) 

COMPLEXITY OF LABEL-COVER 

(classically equivalent, but the quantum analogs are not) 

NP-hard to decide if 𝑣𝑎𝑙(𝐺)=1  or 𝑣𝑎𝑙(𝐺)<1−𝜀    (PCP) 
 
NP-hard to decide if 𝑣𝑎𝑙(𝐺)=1  or 𝑣𝑎𝑙(𝐺)<𝜀    (strong PCP) 



PCP theorem: “gap-label-cover is NP-hard” 
Proof: By reduction from tiny gap to constant gap,  

    aka amplification	

Start with label-cover 𝐺 and end up with 𝐺’, s.t.  and end up with 𝐺’, s.t. 

If 𝑣𝑎𝑙(𝐺)  =  1  then 𝑣𝑎𝑙(𝐺’)  =  1 

How?  
•  by algebraic encoding [AS, ALMSS 1991]; or 
•  By “derandomized parallel repetition” (D. 2007) 

The PCP Theorem [AS, ALMSS ‘91] 

If 𝑣𝑎𝑙(𝐺)  <  1  then 𝑣𝑎𝑙(𝐺’)<1−𝜀    

then 𝑣𝑎𝑙(𝐺’↑⊗𝑘 )=1 

then 𝑣𝑎𝑙(𝐺’  ↑⊗𝑘 )<𝜀   

strong 



Sequential repetition: run the game t rounds 
Probability of not catching an error = exp(-t) 
CSP perspective: Number of bits read from proof = O(t) 
Not a 2-local CSP (label-cover) anymore*. 2t-local. 

Remark: derandomizing this is easy (e.g. via “expander walks”) 
So we can plug in t=log n and get the sequential analog of the 
sliding scale conjecture 

Approach: Parallel Repetition 

Repetition 

Want: A 2-local CSP with the same properties 
Why? Useful for inapprox, 2-local is simulateable by graph problems 



Playing 𝑮,𝑮′ in parallel 

strategy 
f:𝑉× 𝑉↑′ →Σ×Σ′ 

strategy 
𝑔:𝑈× 𝑈↑′ →Σ×Σ′ 

𝑢  
𝑣  

𝑈  𝑉  

𝑢𝑣,       𝑢↑′ 𝑣′ 

𝑣,𝑣′ 𝑢,𝑢′ 

𝛼,𝛼′ 𝛽, 𝛽↑′  
𝛼𝛽∈ 𝜋↓𝑢𝑣  
𝛼′𝛽′∈ 𝜋↓𝑢′𝑣′  

Alice Bob 

random: 

WIN: 

no communication 
between A & B 

𝑢′ 
𝑣′ 

𝑈′ 𝑉′ 

Parallel Repetition	

𝑮  𝑮′ 

&	



game 𝑮⊗𝑮′ 

strategy 
f:𝑉× 𝑉↑′ →Σ×Σ′ 

strategy 
g:𝑈× 𝑈↑′ →Σ×Σ′ 

𝑣,𝑣′ 𝑢,𝑢′ 

𝛼,𝛼′ 𝛽, 𝛽↑′  

Alice Bob 

random: 

WIN: 

no communication 
between A & B 

𝑮  𝑮′ 

𝑢𝑢′ 
𝑣𝑣′ 

𝑈×𝑈′ 𝑉×𝑉′ 

𝜋, 𝜋↑′  

        ⊗         

𝑢  
𝑣  

𝑈  𝑉  

𝑢′ 
𝑣′ 

𝑈′ 𝑉′ 

𝑢𝑣,       𝑢↑′ 𝑣′ 

𝛼𝛽∈ 𝜋↓𝑢𝑣  
𝛼′𝛽′∈ 𝜋↓𝑢′𝑣′  &	



𝑢↓1 …𝑢↓𝑘  

𝑈×…×𝑈  

𝜋↓1 ,…, 𝜋↓𝑘↑  

         𝑮↑⊗𝒌  

𝑉×…×𝑉  

𝑣↓1 …𝑣↓𝑘  

Parallel Repetition:	

        𝑮⊗𝑯  Product of Games:	

THIS IS A “PRODUCT” OPERATION ON GAMES 



Q1: If 𝑣𝑎𝑙𝑢𝑒  (  𝐺1  )  =𝜔1  and 𝑣𝑎𝑙𝑢𝑒  (  𝐺2  )  =𝜔2	

then what is 𝑣𝑎𝑙𝑢𝑒  (  𝐺1⊗𝐺2  )  ?	

Q2: If 𝑣𝑎𝑙𝑢𝑒  (  𝐺  )  =𝛼, then what is 𝑣𝑎𝑙𝑢𝑒  (   𝐺↑⊗𝑘   )    for  𝑘  >  1 ?	, then what is 𝑣𝑎𝑙𝑢𝑒  (   𝐺↑⊗𝑘   )    for  𝑘  >  1 ?	

One obvious candidate is the direct product strategy. 	

But it is not, in general, the best strategy.	



previous bounds 

parallel repetition theorem 

value(𝐺)≤1−𝜀  ⟹  value(𝐺↑⊗𝑘 )≤ (1− 𝜀↑32 /𝐶)↑𝑘    ⟹  value(𝐺↑⊗𝑘 )≤ (1− 𝜀↑32 /𝐶)↑𝑘  

[Raz’95, improved: Holenstein’07, Rao’08] 
(for projection games) 

(tight even for games with XOR constraints) [Raz’08] 

(long history, notoriety) 

main application: hardness amplification for LABEL COVER 
 1 vs δ approximation is NP-hard (basis of inapproximability results) 

[… Verbitsky’94, Feige-Kilian’94] 



game 𝑮  𝑢𝑣  𝑣  𝑢  

Alice Bob 

random: 

𝜋↓𝑢𝑣  
𝑢  

𝑣  

constraint  
graph 

Alice’s strategy: For each u, Alice has a set of measurements {𝐴↓𝑢↑𝑎 }   ↓𝑎  s.t. ∑𝑎↑▒𝐴↓𝑢↑𝑎 =𝐼𝑑   

Bob’s strategy: For each v, Bob has a set of measurements {𝐵↓𝑣↑𝑏 }𝑏 s.t. ∑𝑏↑▒𝐵↓𝑣↑𝑏 =𝐼𝑑    s.t. ∑𝑏↑▒𝐵↓𝑣↑𝑏 =𝐼𝑑   

A & B also share an entangled state |Ψ⟩ 

|Ψ⟩	
 

Parallel repetition for entangled value 
   



Parallel repetition for entangled value 

[Holenstein ‘06] – parallel repetition for non-signalling strategies 
 
[Cleve, Slofstra, Unger, Upadhya ‘08] – perfect parallel repetition for entangled 
value of XOR games 
 
[Kempe Regev Toner ‘08]  - unique games 
 
[Kempe-Vidick ‘11] : polynomially decaying bounds for parallel repetition of 
entangled value 
Extending the Feige-Kilian proof to the quantum setting 
(adding consistency queries to force provers to play a direct product strategy) 
 
[Chailloux, Scarpa ‘14] – parallel repetition for general games, bound depends 
on size of game 
 
[Jain, Pereszlényi, Yao ‘14] – product-distribution games 
 
[D.-Steurer-Vidick, to appear in CCC‘14]:  
Let G be a projection-constraint game, then 
If  𝑣𝑎𝑙↑∗ (𝐺)  <  1−𝜖  then 𝑣𝑎𝑙↑∗ ( 𝐺↑⊗𝑘 )  <   (  1−𝑝𝑜𝑙𝑦(𝜖)  )↑𝑘  
 
 



Games with projection constraints 

•  Projection game: for every pair of questions,  
any answer from B determines unique valid 
answer from A  

  
•  Your favorite two-player game is a projection game! 

  

•  Exists universal transformation 𝐺→ 𝐺↑′  such that 𝐺↑′   projection game 
and 𝜔(𝐺)≈𝜔(𝐺′)  

•            

•  …but could have 𝜔↑∗ (𝐺↑′ )≪𝜔↑∗ (𝐺) 
 

  
�


XOR 
games 

Unique 
games 

Magic  
square 

3SAT 
game 

Projection 
games 

Hidden matching 
game 

𝑢  

𝑣  

𝑎↓1  
𝑎↓2  

𝑏↓1  

𝑏↓5  



Recent but earlier work with David Steurer, (to appear in STOC ‘14) : 

analytical framework to analyze parallel repetition 
    for projection constraints  

(contrast to previous information-theoretic approach) 

low value:  value(𝐺)≤𝜌  ⟹  value(𝐺↑⊗𝑘 )≤ (2𝜌)↑𝑘∕2       ⟹  value(𝐺↑⊗𝑘 )≤ (2𝜌)↑𝑘∕2     
(for projection constraints) 

few repetitions: value(𝐺)≤1−𝜀  ⟹  value(𝐺↑⊗𝑘 )≤ (1−𝜀)↑√𝑘     ⟹  value(𝐺↑⊗𝑘 )≤ (1−𝜀)↑√𝑘   
(for projection constraints, 𝑘≪1/ 𝜀↑2 ) 

new bounds 

optimal NP-hardness for SET COVER (and better NP-hardness for LABEL COVER) 
 (1−𝜀)ln 𝑛 -approximation, via [Feige, Moshkovitz–Raz, Moshkovitz] 

Raz’s parallel-repetition counterexample tight even for small 𝑘  
 some 𝐺 have value≤1−𝜀 but value(𝐺↑⊗𝑘 )≥1−𝜀√𝑘   have value≤1−𝜀 but value(𝐺↑⊗𝑘 )≥1−𝜀√𝑘   but value(𝐺↑⊗𝑘 )≥1−𝜀√𝑘  
 (answers question of O’Donnell) 



Analytical framework of DS extends nicely to entangled value setup 

Plan: 
 
Describe the “analytical / linear-algebraic” proof of [DS], show how to  
generalize to the entangled value setup 



[DS] proof overview 

II. Prelim Step: move to “collision value” ||⋅|| instead of value(G)  

  value(G)≤‖𝐺‖≤value(𝐺)↑1⁄2   for all 𝐺   (easy)   (easy) 

1. 𝑣𝑎𝑙↓+ (𝐺⊗𝐻)=𝑣𝑎𝑙↓+ (𝐺)⋅𝑣𝑎𝑙↓+ (𝐻) for all 𝐺,  𝐻  (multiplicativity)   (multiplicativity) 

2. 𝑣𝑎𝑙↓+ (𝐺)≈value(𝐺) for all 𝐺    (approximation)     (approximation) 

proof of parallel-repetition bound 

value(𝐺↑⊗𝑘 )≤ ‖𝐺↑⊗𝑘 ‖↑ ≤𝑣𝑎𝑙↓+ (𝐺↑⊗𝑘 )↑ = 𝑣𝑎𝑙↓+↑ (𝐺)↑𝑘 ≈value(𝐺)↑𝑘  
1. II 

III. Main Step: further relax ||⋅|| to 𝑣𝑎𝑙↓+  and prove 

2. 

I.   Analytical Setup View a projection game as a linear operator 
acting on (Bob)-assignments 
 

III 

* 

V 



analytical setup 

constraint graph 

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  



analytical setup 

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  

×Σ ×Σ 

Σ 

constraint graph 



analytical setup 

label-extended graph 𝐺  

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  

×Σ ×Σ 

Σ 

constraint graph 



analytical setup 

linear operator 𝐺:ℝ↑𝑉×Σ →ℝ↑𝑈×Σ  

 𝐺𝑓(𝑢,𝛼)≔ 𝔼↓𝑣:𝑢←𝑣 ∑𝛽→𝛼↑▒𝑓(𝑣,𝛽)  

For assignment 𝑓, , 
𝐺𝑓(𝑢,𝛼) = prob. that random 
 𝑢-neighbor “demands”𝛼 -neighbor “demands”𝛼  

bilinear form of G  〈𝐺𝑓,𝑔〉≔ 𝔼↓𝑢 ∑𝛼↑▒𝐺𝑓(𝑢,𝛼)⋅𝑔(𝑢,𝛼)  

success probability  
for assignments 𝑓,𝑔  

value(𝐺)= max 〈𝐺𝑓,𝑔〉  over assignments 𝑓,𝑔  

𝑓:𝑉×Σ→ℝ is an assignment 
if 𝑓≥0 and ∑𝛽↑▒𝑓(𝑣,𝛽)=1   
for all 𝑣∈𝑉  

= adjacency matrix of  
    label-extended graph 

𝑓:𝑉×Σ→ℝ 

𝑔:𝑈×Σ→ℝ 

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  

×Σ ×Σ 

label-extended graph 𝐺  



analytical setup 

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  

×Σ ×Σ 

tensor product 

= parallel repetition 

𝐺⊗𝐻:ℝ↑𝑉× 𝑉↑′ ×Σ× Σ↑′  →ℝ↑𝑈× 𝑈↑′ ×Σ× Σ↑′   

𝐺:ℝ↑𝑉×Σ →ℝ↑𝑈×Σ  𝐻:ℝ↑𝑉↑′ × Σ↑′  →ℝ↑𝑈↑′ × Σ↑′   

(𝐺⊗𝐻)𝑓(𝑢, 𝑢↑′ ,𝛼, 𝛼↑′ )
  ≔ 𝔼↓█■𝑣←𝑢𝑣↑′ ←𝑢↑′   ∑█■𝛽→𝛼𝛽↑′ →𝛼′ 
↑▒𝑓(𝑣, 𝑣↑′ ,𝛽,𝛽′)  

𝑓:𝑉×Σ→ℝ 

𝑔:𝑈×Σ→ℝ 

label-extended graph 𝐺  



analytical setup 

𝜋↓𝑢←𝑣 :Σ→Σ 

𝑈  𝑉  

𝑣  

𝑢  

×Σ ×Σ 

𝑓:𝑉×Σ→ℝ 

𝑔:𝑈×Σ→ℝ 

label-extended graph 𝐺  
𝑓:𝑉×Σ→ℒ( ℂ↑𝑑 ) 

𝑔:𝑈×Σ→ℒ( ℂ↑𝑑 ) 

∑𝑏↑▒𝑓(𝑣,𝑏)=𝐼𝑑  

𝐺:ℒ( ℂ↑𝑑 )↑𝑉×Σ →ℒ( ℂ↑𝑑 )↑𝑈×Σ  

 𝐺𝑓(𝑢,𝛼)≔ 𝔼↓𝑣:𝑢←𝑣 ∑𝛽→𝛼↑▒𝑓(𝑣,𝛽)  

 〈𝑔,𝐺𝑓〉↓|Ψ⟩ ≔ 𝔼↓𝑢 ∑𝛼↑▒⟨Ψ|𝑔(𝑢,𝛼)⊗𝐺𝑓(𝑢,𝛼)|Ψ⟩  

≔ 𝔼↓𝑢∼𝑣 ∑𝛼∼𝛽↑▒⟨Ψ|𝑔(𝑢,𝛼)⊗𝑓(𝑣,𝛽)|Ψ⟩  

𝑣𝑎𝑙↑∗ (𝐺)= sup┬𝑓,𝑔,Ψ   

* 



Collision value 

II. Prelim Step: move to “collision value” instead of 𝑣𝑎𝑙𝑢𝑒(𝐺)   

  value(G)= sup┬𝑓,𝑔    ⟨𝐺𝑓,𝑔⟩ ≈sup┬𝑓     ⟨𝐺𝑓,𝐺𝑓⟩↑ =:   𝑐𝑜𝑙−𝑣𝑎𝑙(𝐺) 

   value↑∗ (G)↑ = sup┬𝑓,𝑔,Ψ     ⟨𝐺𝑓,𝑔⟩↓Ψ  ≈sup┬𝑓,Ψ     ⟨𝐺𝑓,𝐺𝑓⟩↓Ψ ↑ =:   𝑐𝑜𝑙−𝑣𝑎𝑙↑∗ (𝐺) 

Simple Cauchy-Schwarz 

Generalized Cauchy-Schwarz due to Haagerup 



Vector relaxation – 𝒗𝒂𝒍↓+ (𝑮)   

III. Define 𝒗𝒂𝒍↓+ (𝑮)  by replacing 𝑓(𝑣,𝑏)  by a vector 𝑓(𝑣,𝑏,𝜔) 

𝑣𝑎𝑙↓+ (𝐺)=   sup┬𝑓≥0     ⟨𝐺𝑓,𝐺𝑓⟩↑1/2  = sup┬𝑓  𝔼↓𝑢 ∑𝑎↑▒𝔼↓𝜔 𝐺𝑓(𝑢,𝑎,𝜔)↑2       

Where the sup is over vector strategies f, with proper normalization 

Why vector strategies ?  

A strategy for 𝐺⊗𝐻 is automatically a vector strategy,   is automatically a vector strategy,  
if viewed as a strategy for 𝐺  alone. 
The normalization “eliminates” the effects of the game H 

This facilitates proving 𝑣𝑎𝑙↓+ (𝐺⊗𝐻)=𝑣𝑎𝑙↓+ (𝐺)⋅𝑣𝑎𝑙↓+ (𝐻) 

∀  𝑣,||∑𝑏↑▒   𝑓 (𝑣,𝑏)| |↓2↑ ≤1    



Vector relaxation – 𝒗𝒂𝒍↓+ (𝑮)   

III. Define 𝒗𝒂𝒍↓+↑∗ (𝑮)  by replacing 𝑓(𝑣,𝑏)  by a vector 𝑓(𝑣,𝑏,𝜔) 

𝑣𝑎𝑙↓+↑∗ (𝐺)↑ =   sup┬𝑓,Ψ     ⟨𝐺𝑓,𝐺𝑓⟩↓Ψ ↑ = sup┬𝑓,Ψ  𝔼↓𝑢 ∑𝑎↑▒𝔼↓𝜔 ⟨Ψ|𝐺𝑓(𝑢,𝑎,𝜔)⊗𝐺𝑓(𝑢,𝑎,𝜔)|Ψ⟩  ↑       

Where the sup is over vector strategies f, with proper normalization 

Why vector strategies ?  

A strategy for 𝐺⊗𝐻 is automatically a vector strategy,   is automatically a vector strategy,  
if viewed as a strategy for 𝐺  alone. 
The normalization “eliminates” the effects of the game H 

This facilitates proving 𝑣𝑎𝑙↓+ (𝐺⊗𝐻)=𝑣𝑎𝑙↓+ (𝐺)⋅𝑣𝑎𝑙↓+ (𝐻) 

sup┬Ψ  ∑𝑏,𝑏′↑▒𝔼↓𝜔 ⟨Ψ|𝑓(𝑣,𝑏,𝜔)⊗𝑓(𝑣,𝑏′,𝜔)|Ψ⟩≤1↑    



Vector relaxation – 𝒗𝒂𝒍↓+ (𝑮)−𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏   

III. Remaining goal: prove that 𝒗𝒂𝒍↓+ (𝑮)≈𝒗𝒂𝒍(𝑮) 

Given a vector strategy, derive a standard strategy that has 
similar value 

Naïvely: focus on one coordinate 𝜔 and hope for the best  and hope for the best 

Generally: combine different coordinates through correlated sampling 



[DSV] proof overview 

II. Prelim Step: move to “collision value” ||⋅||* instead of value(G)  

   value↑∗ (G)≤ ‖𝐺‖↑∗ ≤value(𝐺)↑∗     1⁄2   for all 𝐺   (easy)   (easy) 

1. 𝑣𝑎𝑙↓+↑∗ (𝐺⊗𝐻)=𝑣𝑎𝑙↓+↑∗ (𝐺)⋅𝑣𝑎𝑙↓+↑∗ (𝐻) for all 𝐺,  𝐻  (multiplicativity)   (multiplicativity) 

2. 𝑣𝑎𝑙↓+↑∗ (𝐺)≈value↑∗ (𝐺) for all 𝐺    (approximation)     (approximation) 

proof of parallel-repetition bound 

value↑∗ (𝐺↑⊗𝑘 )≤ ‖𝐺↑⊗𝑘 ‖↑∗ ≤𝑣𝑎𝑙↓+↑∗ (𝐺↑⊗𝑘 )↑ = 𝑣𝑎𝑙↓+↑∗ (𝐺)↑𝑘 ≈value↑∗ (𝐺)↑𝑘  
1. II 

III. Main Step: further relax ||⋅| |↑∗  to 𝑣𝑎𝑙↓+↑∗  and prove 

2. 

I.   Analytical Setup View a projection game as a linear operator 
acting on (Bob)-assignments 
 

III 



Main source of trouble: non-product strategies that are too good	

Why are they too good?	

How good can they be ?	

How does this depend on the game ?	

Back to the basics – design a simple game in which this can be studied	

THE CONFUSE & COMPARE GAME 	

*[Feige & Kilian]	



The Confuse & Compare game, with parameters p, N	

[N] 

i 

j 

…

[N] 

i 

…

=	

=	

=	

p       fraction of edges are equality edges (i,i)  “compare” 
(1-p) fraction of edges are free edges (i,j)  “confuse”	

k-fold parallel repetition: choose k independent edges i1j1…ikjk 
Send i1…ik to Alice and j1…jk to Bob	

A : [N] à  {0,1} 

Alice Bob 

B : [N] à  {0,1} 

If A = B then win with probability 1 



The Confuse & Compare* game, k-fold direct product	

[N]k 

j1…jk 
…

[N]k 

i1…ik 

…
 

A : [N]k à  {0,1}k 

Alice Bob 

B : [N]k à  {0,1}k 

Question :  can something be said about A if val > 0.99 ? val > 0.001 ?  

Clearly, a product strategy Ak obtains value 1	



The symmetrized version of this game is known as “direct product 
testing”. Both players use a strategy  
 

 A:[N]k à [M]k  
 
and the goal is to prove	

Direct Product Testing	

THM: If Confuse-Compare-value ( A ) > a,  
   then A is close to being direct-product	

For some values of p, N, M this question is solved,  
[Goldreich-Safra, D.-Reingold, D.-Goldenberg, Impagliazzo-Kabanets-Wigderson, D.-
Steurer] 

 
but much is open 

This is a clean question, can also be formulated in the entangled 
setting, but little is known there… 
 



Summary 

•  Parallel repetition is good for amplification 
 
•  Analytical approach useful for analyzing parallel 

repeated projection games   

•  Direct product testing 


