A Short Tour of the Laws of Entanglement (And How to Evade Them)

Patrick Hayden
Stanford University

Simons Institute
UC Berkeley 2014
From the *Universal Compendium of Rock Solid Physico-Informational Facts*

- §1.0.1.
 - *Entanglement cannot be created without interaction*
 - Evasion strategy: embezzlement
 - Applications

- §1.0.2.
 - *Entanglement is monogamous*
 - One mathematical formulation
 - No applications
§1.0.0. Thou shalt not create *correlation* without a commensurate investment of interaction.
Embezzlement

Theft from a reservoir of wealth sufficiently large that the crime is not noticed.

(Until it is.)
Embezzling entanglement

The perfect crime: $|\phi\rangle_{AB} |00\rangle_{A'B'} \xrightarrow{U_{AA'} \otimes U_{BB'}} |\phi\rangle_{AB} |\psi\rangle_{A'B'}$

Extract the entangled state ψ from the entanglement bank ϕ without leaving behind a trace in the bank.

Trivial solution: the infinite reservoir

$|\phi\rangle_{AB} = (|\psi\rangle)^{\otimes \infty}$

Drawbacks:
* Not even the Federal Reserve has an infinite amount of entanglement
* Must keep a separate account for every possible Ψ
Embezzling states

\[|\phi_n\rangle = \frac{1}{\sqrt{C_n}} \sum_{j=1}^{n} \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B \]

Theorem: For every pure state \(|\psi\rangle_{A'B'} \) of Schmidt rank \(m \), there exist unitary transformations \(U_{AA'} \) and \(V_{BB'} \) such that

\[
AB \langle \phi_n |_{A'B'} \langle \psi | U_{AA'} \otimes V_{BB'} |\phi_n\rangle_{AB} |00\rangle_{A'B'} \geq 1 - \frac{\log m}{\log n}
\]

\#qubits(\(\phi_n \)) = \(O(\#\text{qubits}(\psi)/\varepsilon) \) for inner product 1-\(\varepsilon \) [H-van Dam 2003]
Embezzling Bell pairs

\[|\phi_n\rangle = \frac{1}{\sqrt{C_n}} \sum_{j=1}^{n} \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B \quad |\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \]

Schmidt coefficients:

\[
|\phi_n\rangle : \quad \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots, \frac{1}{\sqrt{n}} \right\}
\]

\[
|\phi_n\rangle |\psi\rangle : \quad \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{1 \cdot 2}}, \frac{1}{\sqrt{2 \cdot 2}}, \frac{1}{\sqrt{3 \cdot 2}}, \ldots, \frac{1}{\sqrt{n \cdot 2}} \right\}
\]
Embezzling Bell pairs

\[|\phi_n\rangle = \frac{1}{\sqrt{C_n}} \sum_{j=1}^{n} \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B \quad \quad |\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \]

Schmidt coefficients:

\[|\phi_n\rangle : \quad \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{4}} \ldots \frac{1}{\sqrt{n-1}}, \frac{1}{\sqrt{n}} \right\} \]

\[|\phi_n\rangle |\psi\rangle : \quad \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{4}}, \frac{1}{\sqrt{4}} \ldots \frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}} \right\} \]

Dot product

\[\geq \frac{1}{C_n} \times \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \cdots + \frac{1}{n} + \frac{1}{n} \right) \]

\[\geq \frac{\log(n/2)}{\log(n)} = 1 - \frac{\log 2}{\log n} \]
Further developments

- [Araki ~1967]:
 - Exploited (exact) embezzlement in the classification of von Neumann algebras
- [Leung+Toner+Watrous 2013*]:
 - Embezzlement for multiparty states
- [Dinur+Steurer+Vidick 2013]:
 - Robust embezzlement
 - Alice and Bob don’t quite agree on the target state ψ
 - a.k.a. *Quantum correlated sampling lemma*
 - Key step in proving parallel repetition for projection games
- [Leung+Wang 2013]:
 - Characteristics of universal embezzling states
- [Haagerup+Scholz+Werner 2014?]:
 - Universal embezzling algebra
 - Uniquenessness of universal embezzling “eigenvalue” scaling
 - *Every* state in free quantum field theory is embezzling!

* Really 2008, but who can be bothered to submit to journals in a timely fashion these days?
Application: Multiplayer quantum games

Open question: For 2-player games, blow-up in size of shared entangled state is polynomial. Best known multiparty universal embezzling states are doubly exponentially large. Is it possible to do better?

\[
\omega^* = \sup_{\dim = n} \sup_{E_{a,b}} \sum_{a,b,j,k} V(j, k | a, b) \text{tr} [\rho X_a^j \otimes Y_b^k]
\]

\[
= \sup_{\dim = n} \sup_{E_{a,b}} \sum_{a,b,j,k} V(j, k | a, b) \text{tr} [\rho_n X_a^j \otimes Y_b^k]
\]

Schmidt rank n embezzling state

[Oliveira 2010]
Application:
Games can require unbounded entanglement

2-player cooperative quantum game

Referee performs a projection to determine win/loss.

Generalizes usual model: quantum messages

Let’s play…

\[
|\rho\rangle_{RST} = \frac{1}{\sqrt{2}} (|0\rangle_R|00\rangle_{ST} + |1\rangle_R|\phi_{ebz}\rangle)\\
|\text{win}\rangle_{RAB} = \frac{1}{\sqrt{2}} (|000\rangle_{RAB} + |111\rangle_{RAB}).
\]

Winning probability approaches 1 as dimension of embezzling state goes to infinity.

Can prove that it is bounded away from 1 for all finite dimensional \(|\phi\rangle\).

Easy if Alice and Bob could apply unitaries to all of ST since \(|00\rangle\) and \(|\psi\rangle\) are orthogonal.

They can’t because they are separated…

But since they can coherently embezzle \(|\psi\rangle\) from \(|\phi_{ebz}\rangle\) they can also coherently unembezzle it!

[Leung-Toner-Watrous 2008/13]
This idea was originally used as part of the proof of the Quantum Reverse Shannon Theorem:

Asymptotically, every quantum channel can simulate every other using a rate of forward noiseless communication given by the ratio of their entanglement-assisted capacities plus shared entanglement.

[Embezzlement-assisted QRST in Schur Basis, for general source and channel]

Embezzlement-assisted QST in Schur Basis, for general source and channel

Purification of a general state ρ input to n instances of quantum channel N

Ψ_ρ τ_A V^N_n τ_E τ_B

Alice’s Lab

Transform to Schur Basis

Embezzling State

Random permutation to symmetrize input.

Alice’s part of embezzlement

Leftover embezzling state

Variable number of ebits embezzled. Environment never learns how many.

Bob’s part of embezzlement

Leftover embezzling state

Bob’s Lab

$\approx nQ_E + o(n)$ qubits transfer for state splitting

$\approx nQ_E + o(n)$ quantum message

Coherent Simulation of $(I \otimes N)^{*}$ acting on purified input Ψ_ρ

Ψ_ρ τ_A V^N_n τ_E τ_B

Alice’s part of embezzlement

State Splitting

Flat sub-channel encoding and Alice’s part of State Splitting

Small $O(\log n)$ quantum message

$\approx nQ_E + o(n)$ qubits transfer for state splitting

[Benett-Devetak-Harrow-Shor-Winter 2009*]
§1.0.1. Thou shalt not create *entanglement* without a commensurate investment of *quantum* interaction.

$$E(A; B)_{\sigma} \leq E(A; B)_{\rho}$$

LOCC = Local Operations and Classical Communication

$$\implies \mathcal{N}_{LOCC}(\rho_{AB}) = \sum_{j} X_{j} \otimes Y_{j} \rho_{AB} X_{j}^{\dagger} \otimes Y_{j}^{\dagger}$$
§1.0.2. Every person, human, physical or cryptographic shall be maximally entangled with at most one other person.

Monogamy: The more entangled Alice is with Bob, the less entangled she can be with Charlie.

In particular, if AB state is pure, then C must factorize:

$$ |\varphi\rangle_{AB} \Rightarrow |\varphi\rangle\langle\varphi|_{AB} \otimes \rho_C $$

Static version of the no-cloning theorem:

Cloning implies polygamy:

$$ |\varphi\rangle_{AB} \rightarrow $$

Polygamy implies cloning:

$$ |\Psi\rangle_{AB_1AB_2} \rightarrow $$
Entanglement measures extend the entanglement entropy to mixed states. For mixed state on AB measures cannot exceed $S(A)_\rho$.

$E_C(A;B)_\rho : \text{Entanglement of cost of the state } \rho_{AB}$. What is the minimal rate of Bell pairs required to make many copies of ρ_{AB} using only LOCC operations?

$$E_C(A;B)_\rho + E_C(A;C)_\rho \leq S(A)_\rho$$

Random pure state on ABC has both $E_C(A;B)$ and $E_C(A;C)$ almost maximal

$E_D(A;B)_\rho : \text{Entanglement of distillation of the state } \rho_{AB}$. What is the maximal rate at which Bell pairs can be extracted from many copies of ρ_{AB} using only LOCC operations?

$$E_C(A;B)_\rho + E_D(A;C)_\rho \leq S(A)_\rho$$
Look before you leap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>normalisation</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>faithfulness</td>
<td>y Cor. 1</td>
<td>n [14]</td>
<td>?</td>
<td>y [26]</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y [27]</td>
</tr>
<tr>
<td>LOCC monotonicitya</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y [28]</td>
</tr>
<tr>
<td>convexity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y [31]</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>strong superadditivity</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>?</td>
<td>n [32, 33]</td>
<td>n [34]</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>subadditivity</td>
<td>y</td>
<td>?</td>
<td>?</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>

$$\sum_{j=1}^{k} E_{sq}(A; B_j) \leq E_{sq}(A; B_1 B_2 \cdots B_k) \leq \log \dim A$$

$$\frac{1}{k} \sum_{j=1}^{k} E_{sq}(A; B_j)_{\sigma} \leq \frac{1}{k} \log \dim A$$

Monogamy: The more entangled Alice is with Bob, the less entangled she can be with Charlie.

[Brandao, Christandl, Yard 1010.1750]
Squashed entanglement

<table>
<thead>
<tr>
<th>Measure</th>
<th>E_{sq} [6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>normalisation</td>
<td>y</td>
</tr>
<tr>
<td>faithfulness</td>
<td>y Cor. 1</td>
</tr>
<tr>
<td>LOCC monotonicitya</td>
<td>y</td>
</tr>
<tr>
<td>asymptotic continuity</td>
<td>y [29]</td>
</tr>
<tr>
<td>convexity</td>
<td>y</td>
</tr>
<tr>
<td>strong superadditivity</td>
<td>y</td>
</tr>
<tr>
<td>subadditivity</td>
<td>y</td>
</tr>
<tr>
<td>monogamy</td>
<td>y [11]</td>
</tr>
</tbody>
</table>

\[\rho_{AB} \text{ unentangled (separable):} \quad \rho_{AB} = \sum_j p_j \phi_{j,A} \otimes \psi_{j,B} \]

Consider extension:

\[\rho_{ABC} = \sum_j p_j \phi_{j,A} \otimes \psi_{j,B} \otimes |j\rangle \langle j|_C \]

A and B are conditionally independent given C: $I(A;B|C)_\rho = 0$.

\[E_{sq}(A;B)_\rho = \frac{1}{2} \inf \{ I(A;B|C)_\sigma \ ; \ \text{tr}_C \sigma_{ABC} = \rho_{AB} \} \]

[Christandl-Winter 2004]
Squashed entanglement

Measure	E_{sq} [6]
normalisation | y
faithfulness | y Cor. 1
LOCC monotonicitya | y
asymptotic continuity | y [29]
convexity | y
strong superadditivity | y
subadditivity | y
monogamy | y [11]

Proof of monogamy:

$$E_{sq}(A; B_1 B_2)_{\rho} = \frac{1}{2} \inf_C I(A; B_1 B_2 | C)_{\sigma}$$

$$= \frac{1}{2} \inf_C [I(A; B_1 | C)_{\sigma} + I(A; B_2 | B_1 C)_{\sigma}]$$

$$\geq \frac{1}{2} \inf_C I(A; B_1 | C)_{\sigma} + \frac{1}{2} \inf_C I(A; B_2 | C)_{\sigma}$$

$$E_{sq}(A; B)_{\rho} = \frac{1}{2} \inf_{\{\mathbf{P}_A; \mathbf{B}_1; \mathbf{B}_2\}_C} \{ E_{sq}(A; B_1)_{\rho_{AB}} + E_{sq}(B; B_2)_{\rho_{AB}} \}$$

[Christandl-Winter 2004]
Conclusions

• If your result looks like a sneaky but useless trick, just wait ten years. You might be surprised.
• For applications of the monogamy of entanglement, consult a workshop talk at random:
 – Brandao: Limitations on quantum PCP
 – Miller: Untrusted device cryptography
 – Yuen: Infinite randomness expansion with constant number of devices
 – Parrilo: Testing entanglement using symmetric extensions
 – Reichardt: Delegated quantum computation
 • (super-monogamy?)
 – ...
