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1. Background

2. Proof Techniques

a. Forcing Trusted Measurements.

b. Verifying Randomness from an Unknown State.

3. Application: The work of Chung-Shi-Wu ‘14.

4. Further Directions.
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How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)
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Classical Alice dreams of generating true randomness.

If only I could 
measure a 
quantum state …



How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)
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Classical Alice dreams of generating true randomness.

Quantum Charlie supplies black boxes.



How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)

11011                      
1010010001011101010001011101101010001111111010100010 ….

Alice flips a coin a few times to generate a seed.

She plays a nonlocal game repeatedly with the boxes.  If they behave 
superclassically, she assumes their outputs are random.
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She then applies a classical randomness extractor.

Randomness expansion!

Can we prove that this works?
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How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)
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Randomness Expansion
There are multiple results [Pironio+.’10, Pironio-Massar’13, 
Fehr+’13, Coudron+’13] proving security against an 
unentangled adversary.  (Rates -> exponential.)
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Randomness Expansion
The only security result that is both fully secure and 
exponentially expanding is [Vazirani-Vidick ‘12].
The next frontier: Robustness!



The Results of Miller-Shi ‘14

An exponential randomness expansion

protocol with full quantum security, and

multiple new features:

Robustness.  (Tolerates constant noise.)

Cryptographic security.
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The Results of Miller-Shi ‘14

An exponential randomness expansion

protocol with full quantum security, and

multiple new features:

Robustness.  (Tolerates constant noise.)

Cryptographic security.
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To be cryptographically 
secure, i.e. usable for 
cryptographic applications, 
the error term must be O(N-k) 
for all k, where N is the number 
of rounds.

The significance of this feature 
was first pointed out by Chung 
& Wu.



The Results of Miller-Shi ‘14

An exponential randomness expansion

protocol with full quantum security, and

multiple new features:

Robustness.  (Tolerates constant noise.)

Cryptographic security.

Constant quantum memory. (1 qubit/component.)

Large class of games allowed.
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Applications of Miller-Shi ‘14

QKD with a poly-logarithmic seed.

With Chung-Shi-Wu ‘14:

A method for unbounded expansion from a 
constant number of devices. (The first such expansion 
was proved by Coudron & Yuen – next talk!)

Unbounded expansion from a single arbitrary min-
entropy source.
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Idea: It is too difficult to handle the variations in the state & 
measurements at the same time.  Therefore, we need to find a way 
to handle them separately.
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Reconsidering The Problem





Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure
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(From Coudron, Vidick, and Yuen 2013, variation of Vazirani-
Vidick 2012.)

On input “1” (“game round”) the classical controllers play the 
CHSH game.  (Uses 2 bits of randomness.)

On input “0” (“generation round”) they simply give inputs 
(0,0) to the devices and record the first device’s output.

After N iterations, if the average failure rate (over all game 
rounds) is above a certain threshold, the protocol aborts.
Otherwise it succeeds.

A Randomness Expansion Protocol
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Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure
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What happens in a single round?
Write the measurements performed by the two quantum 
devices as

(where i denotes input).
After an appropriate basis choice,

with | xj | = 1.  (Similar exp’s hold for Ni, w/ parameters yk.)
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A Closer Look
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11011                      
1010010001011101010001011101101010001111111010100010 ….

[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure
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This simulates the behavior of a one-part binary device …
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure
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This simulates the behavior of a one-part binary device …
whose measurements are

where A0, A1 consist of blocks of the form

A Closer Look
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Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure
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Theorem: The measurement A1 can always be decomposed 
as

where ||U||, ||T|| ≤ 1, T A0 = - A0 T, and l > 0 is a fixed constant.

In other words, this is a partially trusted measurement 
device.  On input 1, it does one of the following:

* Performs an anti-commuting measurement.  (Prob .)

* Performs an unknown measurement.  (Prob.                 .)
* Outputs a random coin flip.  (Prob.                   .)

(Question: What’s the largest possible constant    ?)

Simulation
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Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

Conclusion: Untrusted devices simulate partially trusted 
measurement devices!

Simulation

=





Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.

0/1+/-

This is just making 
measurements on 
a “0” state, right 
Charlie?

I did my best. 

(Heh heh…)



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.

0/1+/-

0
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.

0/1+/-

0, + 



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.

0/1+/-

0, +, 1 

Hm … looks like we 
need some help here.



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.
If the device ever produces a “1,” Alice flips a coin and adds the result 
(heads/tails) straight to the output.

0/1+/-

0, +, 1, H 



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

An Uncertainty Principle



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

Assume (for simplicity) that Charlie‘s reduced state is completely mixed.
Then the uncertainty principle implies that this protocol produces  ≥ (1+K) 
bits per round.
And it uses (1+F) bits per round, where F is the “failure rate.”
Provided F < K, we have randomness expansion!

0/1+/-

0, +, 1, H 



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

That’s linear expansion.  How can we get exponential?

0/1+/-



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

A Trusted-Measurement Protocol

That’s linear expansion.  How can we get exponential?
We can give Alice’s coins a biased (1-q,q) distribution, with q -> 0. (Following 
Coudron-Vidick-Yuen, Vazirani-Vidick.)
But then Tr [ r2] is no longer a good measure of randomness—the constant 
K will tend to zero as q -> 0.  

0/1+/-



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …

Linear
robust randomness expansion is possible with

trusted measurements
against

an adversary whose reduced state is completely mixed.
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …

Linear
robust randomness expansion is possible with
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an adversary whose reduced state is completely mixed.



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …
Based on the recent new 
definition of quantum Renyi
entropies (Jaksic+ ‘11, Mueller-
Lennert+ ‘13, Wilde+ ‘13)!

Exponential
robust randomness expansion is possible with

trusted measurements
against

an adversary whose reduced state is completely mixed.
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …

Exponential
robust randomness expansion is possible with

trusted measurements
against

an all-powerful adversary.
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …

Exponential
robust randomness expansion is possible with

trusted measurements
against

an all-powerful adversary.

Some further improvements …
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …

Exponential
robust randomness expansion is possible with

partially trusted measurements
against

an all-powerful adversary.

Some further improvements …
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …
Simulation of partially trusted measurements.

Exponential
robust randomness expansion is possible with

partially trusted measurements
against

an all-powerful adversary.
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …
Simulation of partially trusted measurements.

Exponential
robust randomness expansion is possible with

untrusted measurements
against

an all-powerful adversary.



Randomness Expansion
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[Several authors]: Security proof against an unentangled adversary.

Small resources, high rate

Not fully secure

The Ascent …
Simulation of partially trusted measurements.

Exponential
robust randomness expansion is possible with

untrusted measurements
against

an all-powerful adversary.

SUCCESS!!!





“Physical Randomness Extractors”
by Chung, Shi & Wu ’14: 

Random Numbers from any Min-Entropy Source
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A protocol that can 
generate random 
numbers from any min-
entropy source (     ). Uses 
a randomness certification 
protocol (such as Miller-
Shi) as a subroutine.

0 1 2 N

…

Miller-
Shi

Miller-
Shi

Miller-
Shi

Miller-
Shi

Bitwise XOR





A Challenge

How much noise does the Miller-Shi proof tolerate?

Calculate the trust coefficient for various games.

(Section I.3 in       

arXiv:1402.0489.)

This part of the paper  is very preliminary—improve it!



A Unifying Framework:

Untrusted Device Randomness Extraction
[Chung-Shi-Wu’14]

Goals:
1. Security: full quantum
2. Quality: small errors (completeness

and soundness)
3.    Output length: all randomness in   

Device
4.    Classical source: arbitrary min-entropy    

source
5. Robustness: tolerate a constant noise
6. Quantum memory: the smaller the better
7. Device-efficiency: use the least number of devices
8. Complexity: computational efficient




