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Background



How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)

Classical Alice dreams of generating true randomness.

If only I could
measure a
quantum state...




How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)

Classical Alice dreams of generating true randomness.
Quantum Charlie supplies black boxes.




How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)

Alice flips a coin a few times to generate a seed.

She plays a nonlocal game repeatedly with the boxes. If they behave
superclassically, she assumes their outputs are random.
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How to generate true random numbers
(following Colbeck 2006, Colbeck & Kent 2011)

She then applies a classical randomness extractor.
Randomness expansion!
Can we prove that this works?




Randomness Expansion

There are multiple results [Pironio+."10, Pironio-Massar'13,
Fehr+'13, Coudron+'13] proving security against an
unentangled adversary. (Rates -> exponential.)




Randomness Expansion

The only security result that is both fully secure and
exponentially expanding is [Vazirani-Vidick ‘12].
The next frontier: Robustness!




The Results of Miller-Shi ‘14

An exponential randomness expansion
protocol with full quantum security, and
multiple new features:
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v/ Robustness. (Tolerates constant noise.)

v Cryptographic security.




The Results  Tobe cryptographically

secure, i.e. usable for
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protocol with full quantum securi the error term must be O(N)
multiple new features: for all k, where N is the number

v/ Robustness. (Tolerates constc of rounds.

v Cryptographic security. =" S |
The significance of this feature

was first pointed out by Chung
& Wu.




The Results of Miller-Shi ‘14

An exponential randomness expansion
protocol with full quantum security, and
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multiple new features:
v/ Robustness. (Tolerates constant noise.)

v Cryptographic security.
v/ Constant quantum memory. (1 qubit/component.)
v Large class of games allowed.




Applications of Miller-Shi ‘14

v/ QKD with a poly-logarithmic seed.

With Chung-Shi-Wu ‘14:

v A method for unbounded expansion from a
constant number of devices. (The first such expansion
was proved by Coudron & Yuen — next talk!)
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v/ Unbounded expansion from a single arbitrary min-
entropy source.




Proof Techniques



Reconsidering The Problem

Idea: It is too difficult to handle the variations in the state &
measurements at the same time. Therefore, we need to find a way
to handle them separately.




Forcing Trusted Measurements



A Randomness Expansion Protocol

(From Coudron, Vidick, and Yuen 2013, variation of Vazirani-
Vidick 2012.)

On input "1” ("game round"”) the classical controllers play the
CHSH game. (Uses 2 bits of randomness.)

On input "0” ("generation round”) they simply give inputs
(0,0) to the devices and record the first device’s output.

After N iterations, if the average failure rate (over all game
rounds) is above a certain threshold, the protocol aborts.
Otherwise it succeeds.




A Closer Look

What happens in a single round?
Write the measurements performed by the two quantum

devices as
1+M;, 1— M, g [1ENi 1N
R
(where i denotes input).
After an appropriate basis choice,
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with | x| =1. (Similar exp’s hold for N;, w/ parameters y,.)




A Closer Look

This simulates the behavior of a one-part binary device ...




A Closer Look

This simulates the behavior of a one-part binary device ...
whose measurements are

{I—I—Ao I—AO} {I—|—A1 I—Al}
and

2 2 2 2
where A, A, consist of blocks of the form

0 0 IL+z5 +yr — iy
0 1+x; +yr — 2y
L+7Z; +yr — Tjyx 0
0




Simulation

Theorem: The measurement A, can a

o Ay = AT+ (Q)\\
)

ways be decomposed

U

where |[U][, [|T]|<2, TA,=-A,T, and A > 0 is a fixed constant.

In other words, this is a partially trusted measurement

device. Oninput 1, it does one of the

following:

* Performs an anti-commuting measurement. (Prob\.)

* Performs an unknown measurement. (Prob. v2/2 — )

* Qutputs a random coin flip. (Prob. 1 —v2/2.)
(Question: What's the largest possible constant )\?)




Simulation

Conclusion: Untrusted devices simulate partially trusted
measurement devices!




Randomness from an
Unknown State



A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.

This is just making |
measurementson | did my best.
a “0"” state, right

Charlie?




A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.




A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.




A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.

Hm ... looks like we
need some help here.




A Trusted-Measurement Protocol

Alice trusts her measurements (they anti-commute), but not her state.
Alice uses coin flips to choose inputs to the device.

If the device ever produces a "“1,” Alice flips a coin and adds the result
(heads/tails) straight to the output.




An Uncertainty Principle

Proposition. There is a constant K > 0 such that the following holds. Let
(A, E) be an entangled system, let p = pg, and let py, p1, o+, p— denote states
of E arising from anti-commuting measurements on A. Then,

Trlp? +p2 + 05+ (5) 03] _ 1k
Tefp?] =2




A Trusted-Measurement Protocol

Assume (for simplicity) that Charlie's reduced state is completely mixed.

Then the uncertainty principle implies that this protocol produces > (1+K)
bits per round.

And it uses (1+F) bits per round, where F is the “failure rate.”
Provided F < K, we have randomness expansion!




A Trusted-Measurement Protocol

That's linear expansion. How can we get exponential?




A Trusted-Measurement Protocol

That's linear expansion. How can we get exponential?
We can give Alice’s coins a biased (1-q,q) distribution, with g -> o. (Following
Coudron-Vidick-Yuen, Vazirani-Vidick.)

But then Tr [ p2] is no longer a good measure of randomness—the constant
K will tend to zero as g -> o.




The Ascent ...

Proposition. Let pg, p1, p+, p— denote states arising from anti-commuting
measurements. Then,

Tr[o% + 0% + 0§+ (3) pi]
Tr[p?]

< 91K,

where K > 0 is a constant.

Linear
robust randomness expansion is possible with
trusted measurements
against
an adversary whose reduced state is completely mixed.




The Ascent ...

Proposition. Let po, p1, o+, p— denote states arising from anti-commuting
measurements. Then,

Te[(1— ) "+ (1 —q)p™ " + qpy ™" + (q/2)p; 1)/
Telpt 4]/

< 2K,

where lim, ;0 K(q) > 0.

Linear
robust randomness expansion is possible with
trusted measurements
against
an adversary whose reduced state is completely mixed.




The

Based on the recent new

Proposition. Let oo, 1,0+, p- denote.  dafinjtion of quantum Renyi
entropies (Jaksic+ ‘11, Mueller-
Lennert+ ‘13, Wilde+ '13)!

measurements. Then, for any density op

Where r]r'* = Hz_lgﬁp*ﬂ-mjﬁf Hﬂd ljlnﬁi_?'[} K(Q)

Exponential
robust randomness expansion is possible with
trusted measurements
against
an adversary whose reduced state is completely mixed.




The Ascent ...

Proposition. Let py, p1, o+, p— denote states arising from anti-commuting
measurements. Then, for any density operator o,

Tr[(1— )7+ (1= q)7 "+ g7 + (q/2)1, )1
Tr[,-},l+q]l,fq

< 2~K@a),

where 7, = {I?_'gﬁp*crmqﬁ, and lim, 0 K(gq) > 0.

Exponential
robust randomness expansion is possible with
trusted measurements
against
an all-powerful adversary.




The Ascent ...

Some further improvements ...

Exponential
robust randomness expansion is possible with
trusted measurements
against
an all-powerful adversary.




The Ascent ...

Some further improvements ...

Exponential
robust randomness expansion is possible with
partially trusted measurements
against
an all-powerful adversary.




The Ascent ...

Simulation of partially trusted measurements.

Exponential
robust randomness expansion is possible with
partially trusted measurements
against
an all-powerful adversary.




The Ascent ...

Simulation of partially trusted measurements.

Exponential
robust randomness expansion is possible with
untrusted measurements

against
an all-powerful adversary.




The Ascent ...

Simulati

xponentia
robust randomness expansion is possible with
untrusted measurements
against
an all-powerful adversary.




Application: The Work of
Chung, Shi, and Wu '14.



“"Physical Randomness Extractors”
by Chung, Shi & Wu "14:
Random Numbers from any Min-Entropy Source

A protocol that can o £ 1% 2 ¥ N Z
generate random

numbers from any min- . . . .

entropy source (#). Uses

a randomness certification

protocol (such as Miller- ‘g/'h”i'er]
Shi) as a subroutine.




Further Directions



A Challenge

How much noise does the Miller-Shi proof tolerate?
Calculate the trust coefficient for various games.

1.3 Example: The GHZ game

Let H denote the 3-player binary XOR game whose polynomial Py is given by

o e 1 e - - 5
Py(C1,02,03) = 3(1—919—9:9—;193'-

(Section 1.3 1In
This is the Greenberger-Horne-Zeilinger (GHZ) game. n
Proposition 1.6. The trust coefficient for the GHZ game H is at least 0.14. a rX I v : 1 40 2 - O 4 8 9 - )

For the proof of this result we will need the following lemma (which the current authors also
used in [24]):

Lemma L.7. Let a, b, ¢ be unit-length complex numbers such that Im(a) > 0and Im(b), Im(c) < 0. Then,
1 —ab—bc—cal < 5 (1.24)

Proof. We have

This part of the paper is very preliminary—improve it!




A Unifying Framework:

Untrusted Device Randomness Extraction
[Chung-Shi-Wu'14]

Goals:
1. Security: full quantum
Quality: small errors (completeness
and soundness)
Output length: all randomness in
Device
Classical source: arbitrary min-entropy
source
Robustness: tolerate a constant noise
deterministic Quantum memory: the smaller the better

min-entropy almost perfect 7. Device-efficiency: use the least number of devices
source randomness . Complexity: computational efficient
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