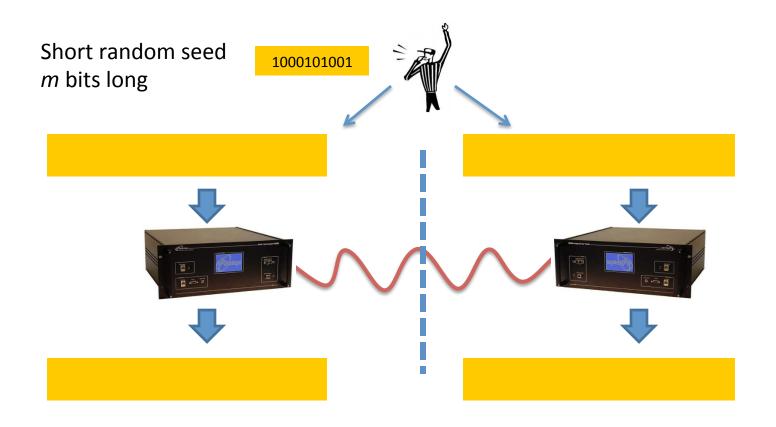
Infinite Randomness Expansion

with a constant number of devices

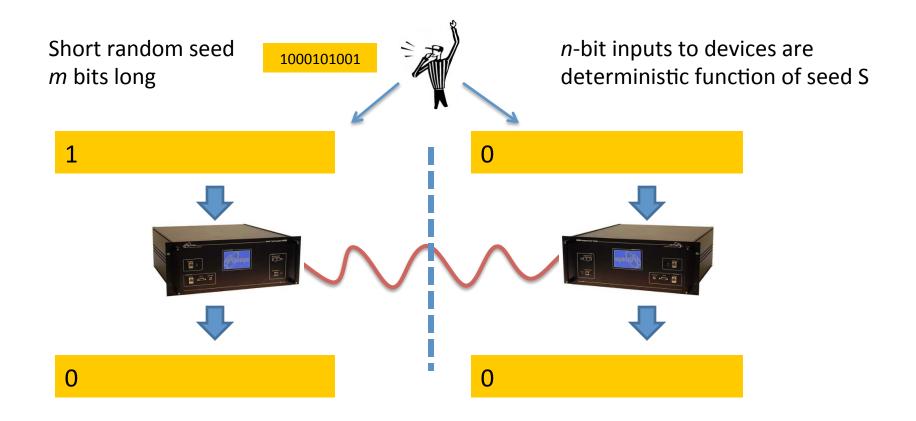
Matthew Coudron, Henry Yuen

MIT CSAIL

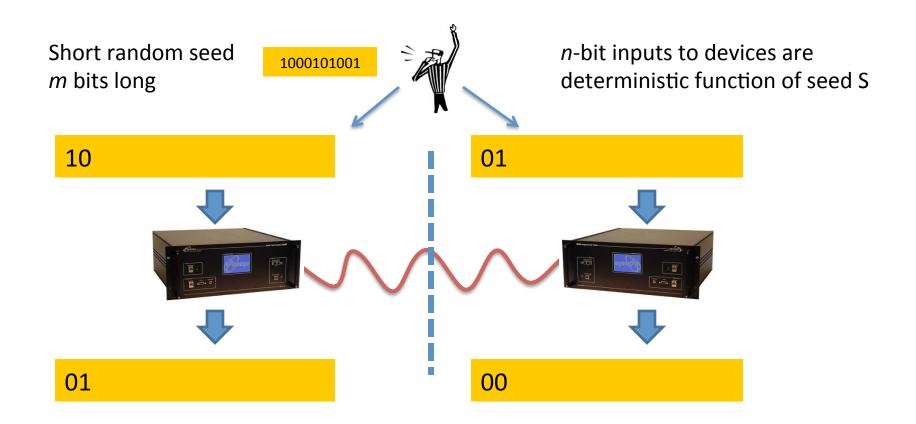
Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



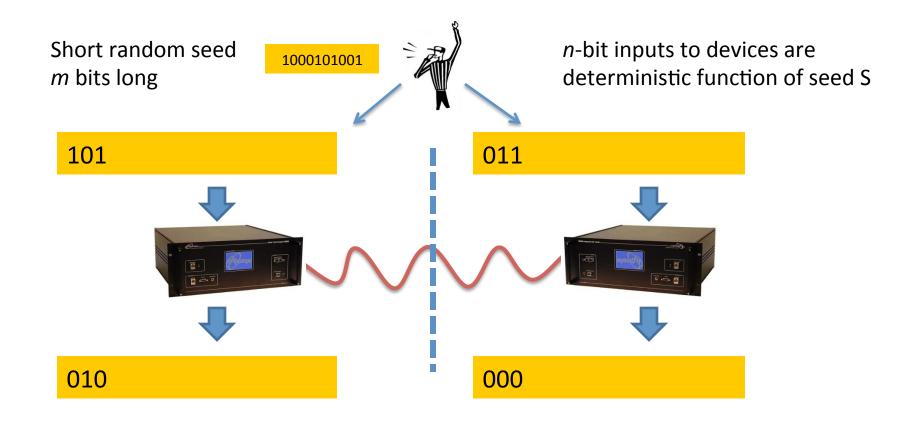
Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



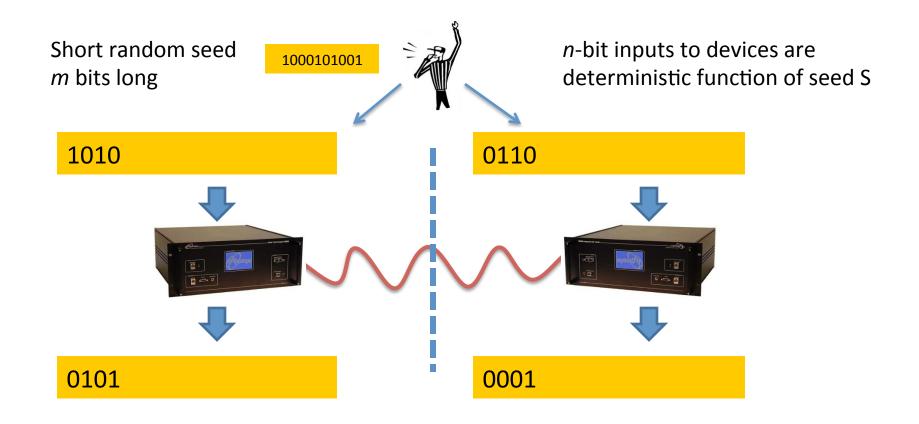
Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



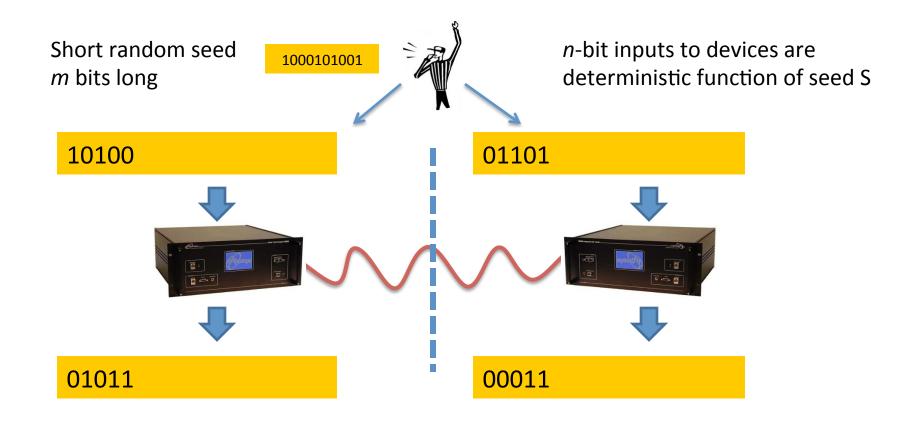
Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



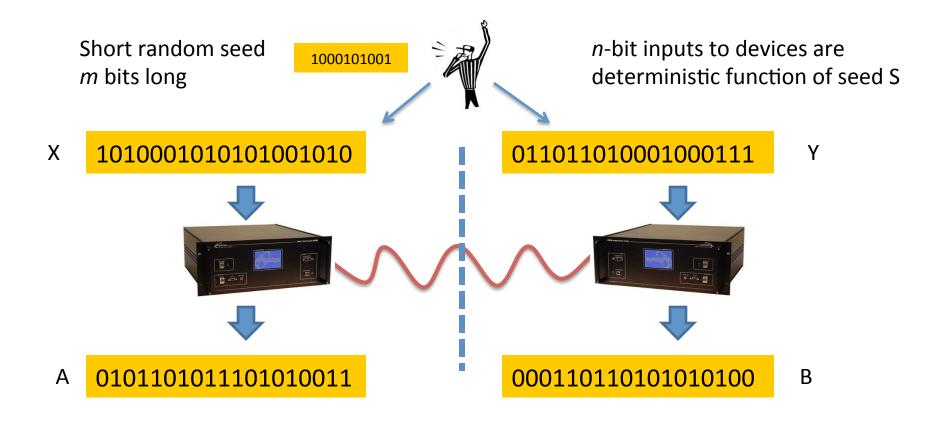
Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...

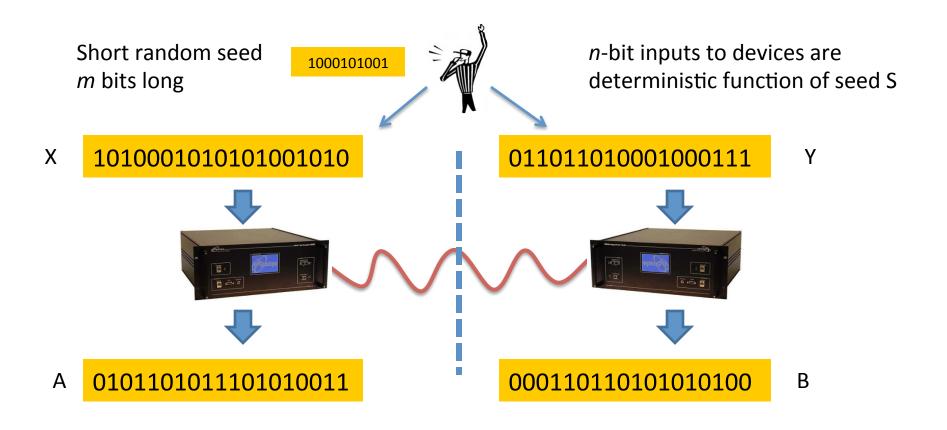


Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...

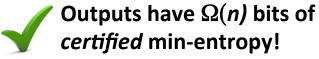


Referee tests inputs and outputs: T(X,Y,A,B) = 1? e.g. T(X,Y,A,B) = 1 iff ~85% of $A_i + B_i = X_i Y_i$

Model for protocols of [PAM+ '10][VV '12][CVY'13][MS'14]...



Referee tests inputs and outputs: T(X,Y,A,B) = 1? e.g. T(X,Y,A,B) = 1 iff ~85% of $A_i + B_i = X_i Y_i$



An expanding list of randomness expansion protocols

- Roger Colbeck obtained linear expansion (2006)
 - $-n=\theta(m)$
- Pironio, et al. achieved quadratic expansion (2010)
 - $-n=\theta (m^2)$
- Vazirani-Vidick was first to achieve (quantum-secure) exponential expansion (2012)
 - $-n=2^{\Omega(m)}$

Is there a limit?

An expanding list of randomness expansion protocols

- Roger Colbeck obtained linear expansion (2006)
 - $-n=\theta(m)$
- Pironio, et al. achieved quadratic expansion (2010)
 - $-n=\theta (m^2)$
- Vazirani-Vidick was first to achieve (quantum-secure) exponential expansion (2012)
 - $-n=2^{\Omega(m)}$

Is there a limit?

[CVY'13]: for a broad class of **non-adaptive** protocols, **exp(exp(m))** expansion is the limit! This is due to **cheating strategies.**

An expanding list of randomness expansion protocols

Roger Colbeck obtained linear expansion (2006)

$$-n=\theta$$
 (m)

Pironio et al achieved auadratic expansion (2010)

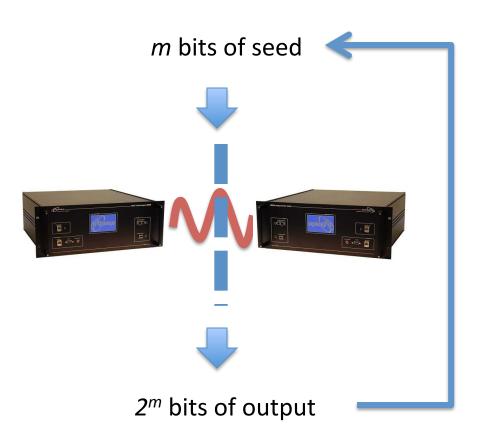
Okay, what about adaptive protocols?

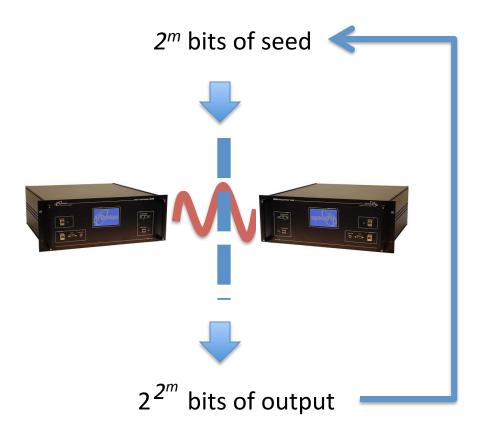
 Vazirani-Vidick was first to achieve (quantum-secure) exponential expansion (2012)

$$-n=2^{\Omega(m)}$$

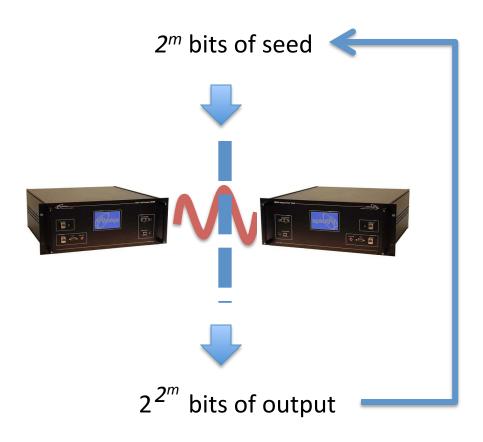
Is there a limit?

[CVY'13]: for a broad class of **non-adaptive** protocols, **exp(exp(m))** expansion is the limit! This is due to **cheating strategies.**



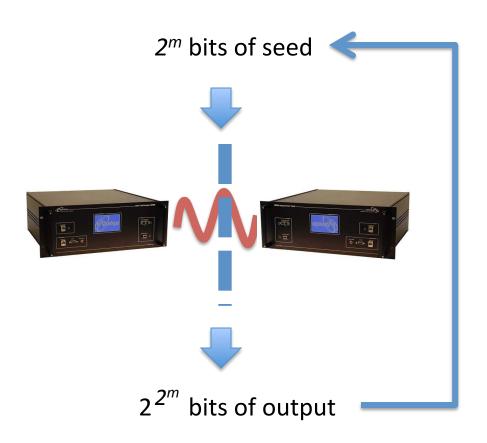


And so on....



The outputs are **not** uniform and independent of the devices: devices may take be able to predict future inputs!

And so on....



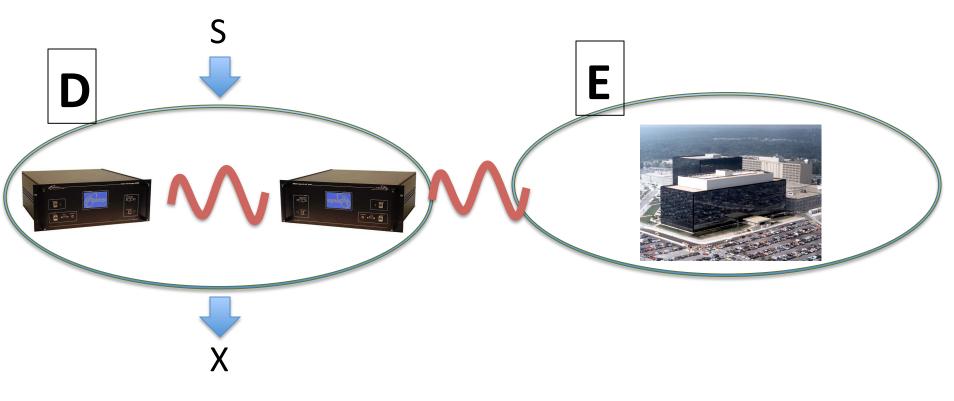
The outputs are **not** uniform and independent of the devices: devices may take be able to predict future inputs!

What about variants, such as XORing together Alice and Bob's outputs? Or applying more complicated post-processing?

I don't know how to analyze this...

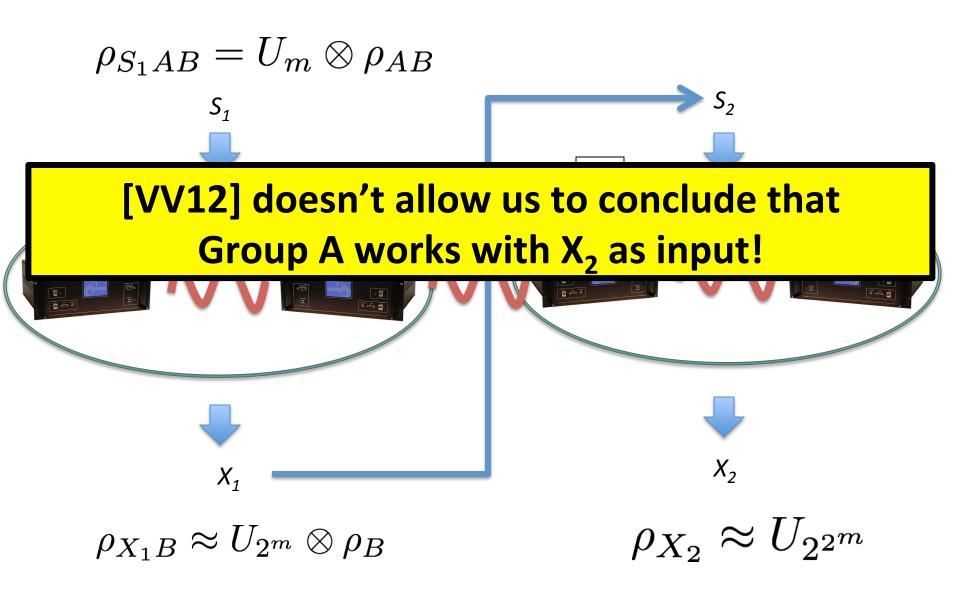
And so on....

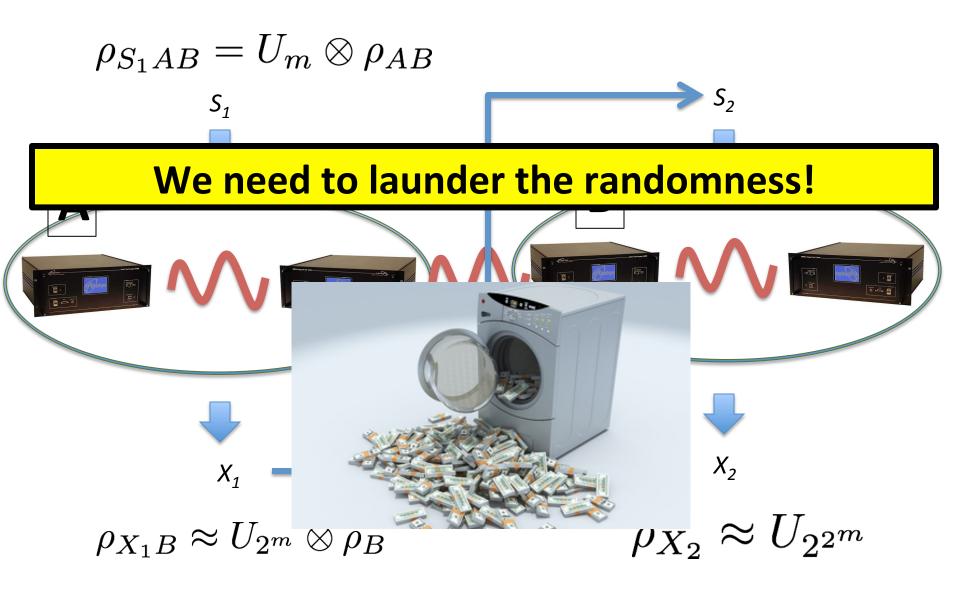
Use the fact that the [VV12] protocol is **quantum-secure**:



$$\rho_{SDE} = U_m \otimes \rho_{DE} \Rightarrow \rho_{XE} \approx U_n \otimes \rho_E$$

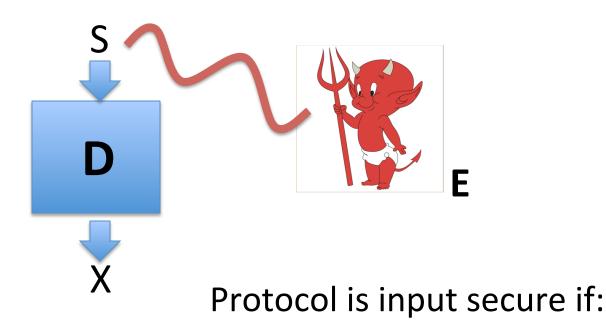
$$ho_{S_1AB} = U_m \otimes
ho_{AB}$$
 s_1
 s_2
 s_3
 s_4
 s_4
 s_4
 s_5
 s_7
 s_8
 s_8
 s_9
 s_9





Input Security

Input Secure Protocol: input to protocol can be correlated with eavesdropper, but output is not!



 $\rho_{SD} = U_m \otimes \rho_D \Rightarrow \rho_{XE} \approx U_n \otimes \rho_E$

Are there Input Secure protocols?

- Until recently, this was not clear.
- Note: extractors are not Input Secure.

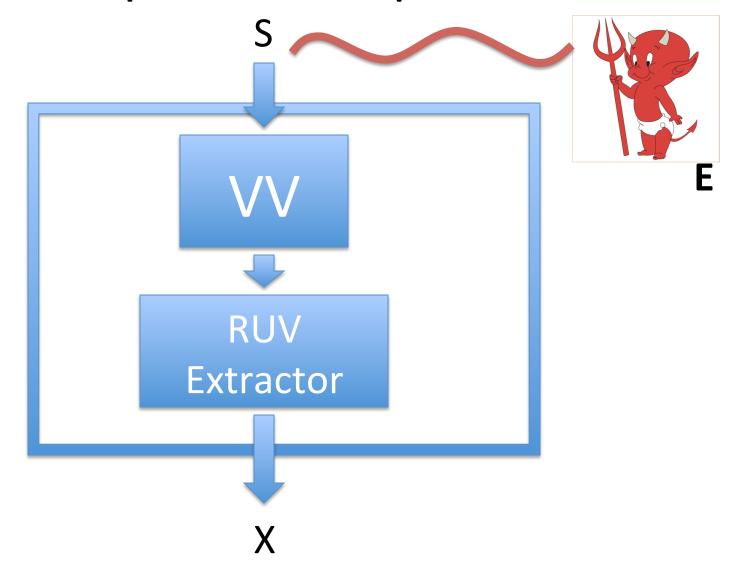
Quantum-Secure Extractor:
$$\operatorname{Ext}:\{0,1\}^m imes \{0,1\}^d o \{0,1\}^n$$
 $ho_{SDE} = U_d \otimes
ho_{DE} \qquad H_{\min}(D|E) \geq k$

$$\rho_{\mathrm{Ext}(D,S)SE} \approx U_n \otimes \rho_S \otimes \rho_E$$

- Used at the end of randomness expansion protocols to create near-uniform, private randomness (provided extractor seed is not known to the adversary)
- Counter-example:

$$E=(S,\operatorname{Ext}(D,S)_1)$$
 but $ho_{\operatorname{Ext}(D,S)E}
otlepsymbol{\not}{
otag} U_n\otimes
ho_E$

Our Input Secure protocol

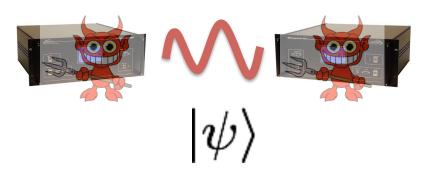


Rigidity of CHSH games

CHSH Rigidity

[Mayers, Yao '03][MKS12][YN13]

If two isolated devices win the CHSH game with ~85% probability, then they must be using a strategy that is very close to the *ideal*, *canonical* CHSH strategy.



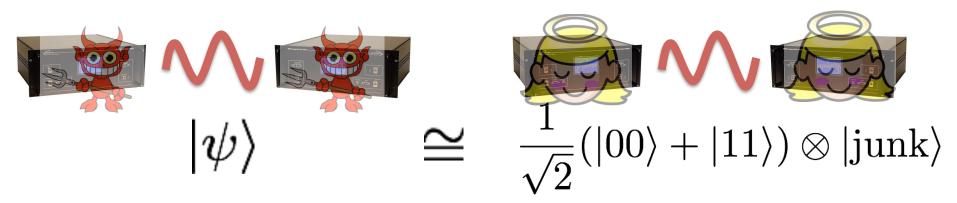
Devices win ~85% of the time!

Rigidity of CHSH games

CHSH Rigidity

[Mayers, Yao '03][MKS12][YN13]

If two isolated devices win the CHSH game with ~85% probability, then they must be using a strategy that is very close to the *ideal*, *canonical* CHSH strategy.



Devices win ~85% of the time!

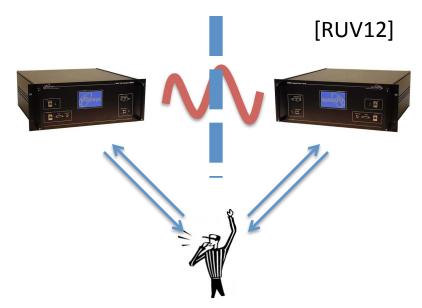
Multigame CHSH Rigidity

x	У	а	b
0	1	0	0
1	1	0	1
0	0	1	1
1	1	1	0
0	1	1	1
1	1	0	1
0	0	0	1
1	1	0	1

Random block of games

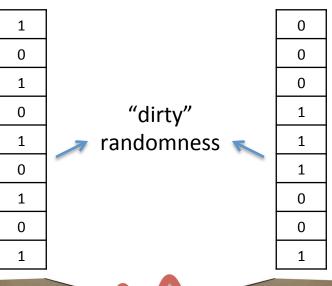
Multigame CHSH Rigidity

If two isolated devices play N sequential CHSH games, and consistently win ~85% of the games, then w.h.p. a random block of games (N^c for some 0 < c < 1) were played using a strategy approx. isomorphic to the ideal product strategy!



Ν

How to launder randomness

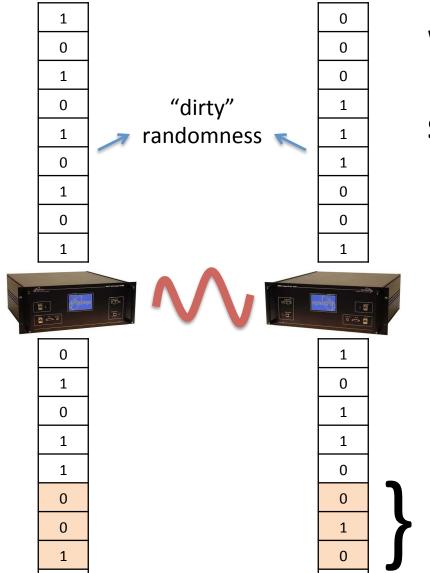


Win ~85% of games?

0	
1	
0	
1	
1	
0	
0	
1	

l	1	
	0	
	1	
	1	
	0	
	0	
	1	
	0	
I		

How to launder randomness



Win ~85% of games?

Select a random block of games

The block of bits are (approx.)

- Uniformly random
- Unentangled/uncorrelated with any eavesdropper

W.h.p., block of games was played using (approx.) the ideal CHSH strategy.

How to launder randomness

Win ~85% of games?

Select a random block of games

Voilà: Input Security!

The block of bits are (approx.)

- Uniformly random
- Unentangled/uncorrelated with any eavesdropper

W.h.p., block of games was played using (approx.) the ideal CHSH strategy.

- Technical concerns
 - 1. Conditioned on passing the RUV protocol, an ideal block may not be secure!

Worry: Conditioning on passing the protocol can introduce correlations, despite the use of an ideal strategy.

Example: Alice and Bob could use ideal strategy in Blocks 1, 2, and 3.

If XOR of Alice's output in Block 1 is 0, then Alice fails all games after Block 4.

Otherwise, Alice plays honestly.

Conditioned on passing ~85% of games, Alice's output in Block 1 is far from uniform!

- Technical concerns
 - 1. Conditioned on passing the RUV protocol, an ideal block may not be secure!

Worry: Conditioning on passing the protocol can introduce correlations, despite the use of an ideal strategy.

Resolution: If Pr(Pass RUV) is not too small, then conditioning cannot skew the distribution of too many blocks.

Before conditioning:
$$I(X:E) \approx 0$$

$$\Rightarrow I(X:EF) \lesssim 2H(F) \leq 2$$

Chain rule:
$$I(X:EF) = \sum_i I(X_i:EF|X_{< i})$$

$$\geq \sum_i I(X_i:EF)$$

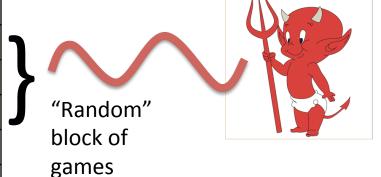
Most blocks are unaffected by conditioning!

$$\Rightarrow \mathbb{E}[I(X_i:EF)] \lesssim 2/B$$

- Technical concerns
 - 1. Conditioned on passing the RUV protocol, an ideal block may not be secure!
 - 2. Who chooses the random blocks?

x	у	а	b
0	1	0	0
1	1	0	1
0	0	1	1
1	1	1	0
0	1	1	1
1	1	0	1
0	0	0	1
1	1	0	1

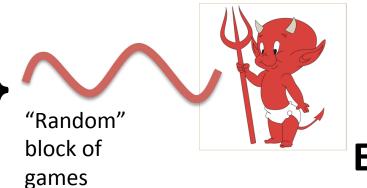
Worry: Adversary can select non-ideal blocks, or other bad blocks.



- Technical concerns
 - 1. Conditioned on passing the RUV protocol, an ideal block may not be secure!
 - 2. Who chooses the random blocks?

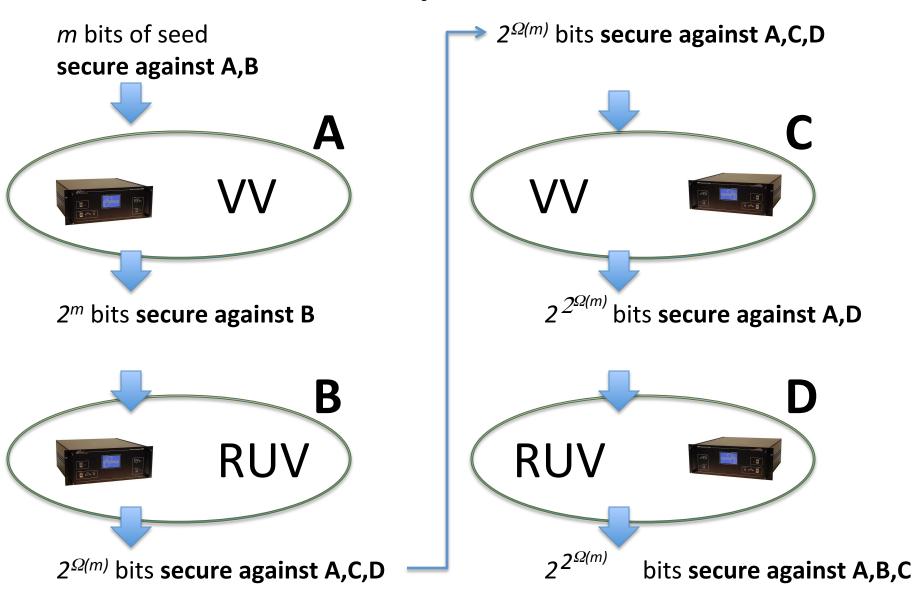
х	У	а	b
0	1	0	0
1	1	0	1
0	0	1	1
1	1	1	0
0	1	1	1
1	1	0	1
0	0	0	1
1	1	0	1

Worry: Adversary can select non-ideal blocks, or other bad blocks.

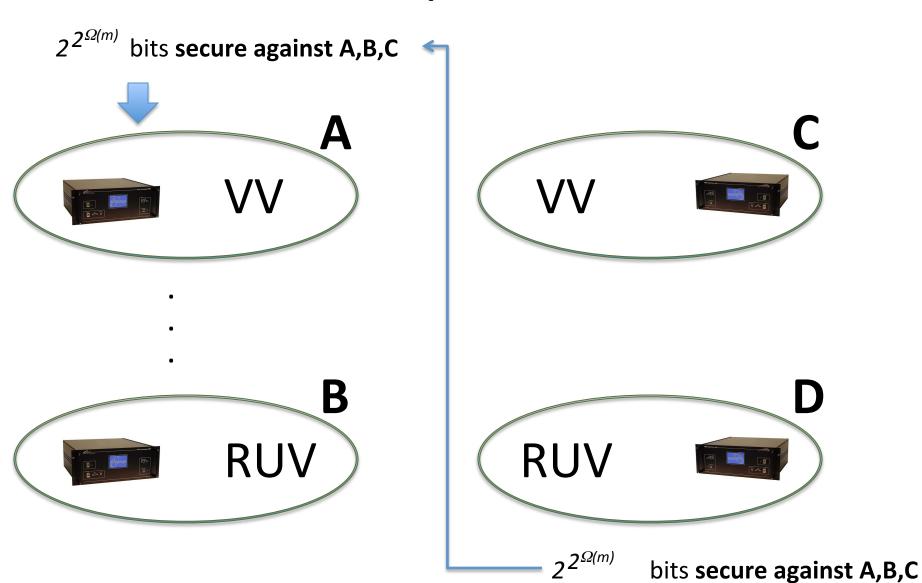


Resolution: Can't happen using a local simulation argument.

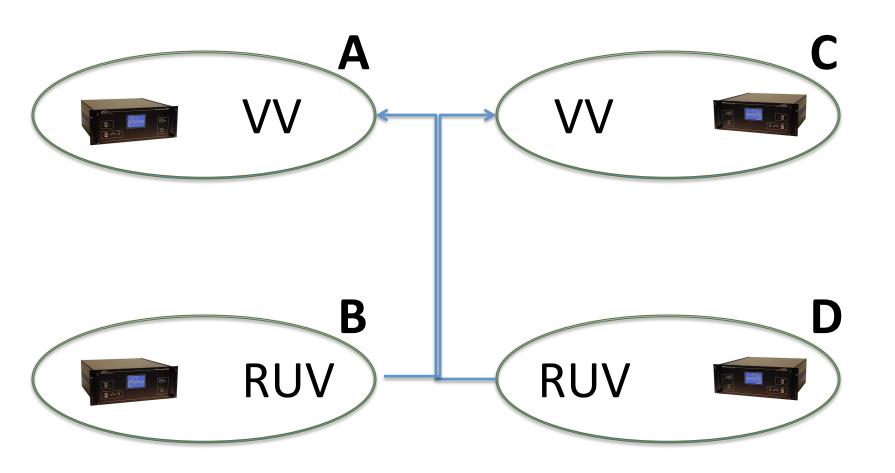
Final protocol



Final protocol



Final protocol



Equivalence Lemma

[Chung, Shi, Wu'14]

Expansion protocol requiring "globally secure" input:

$$\rho_{SDE} = U_m \otimes \rho_{DE} \Rightarrow \rho_{XSE} \approx U_n \otimes \rho_{SE}$$

...does not require input to be secure against eavesdropper (i.e. Input Secure)

$$\rho_{SD} = U_m \otimes \rho_D \Rightarrow \rho_{XSE} \approx U_n \otimes \rho_{SE}$$

So [VV'12] and [MS'14] protocols are also Input Secure!

Note: cannot be applied to randomness extractors!

Open Questions

For "Science advocates"

- Robust randomness expansion?
 - [CVY'13] [MS'14] made progress in this direction
- Quantum-secure randomness expansion with inefficient detectors
- What if we allow devices to leak k bits during protocol?
- Applications/Generalizations of Input Security?

For "Scientists"

Infinite expansion with 2 devices?

