the talk
1. strong promises and eigenvalue gaps

2. the history of the history state

3. running the clock: precise/faulty, qubit/qudit, sequential/parallel

4. on the qPCP road: questions & warnings
Hamiltonians and their eigenvalue gaps

\[\sum_{m=1}^{M} H_m \]

\[\sum_{m=1}^{M} G_m \]

\[\sum_{m=1}^{M} F_m \]
1 Hamiltonians and their ground states

Is the ground state energy of a small?
1 Hamiltonians and their ground states

Is the ground state energy of a high?
The QMA protocol

YES?
Accept a good proof with $p > a$.

NO?
Probability of accepting $p < b$.

Is there an acceptable witness for this circuit?
Is some local Hamiltonian (nearly) frustration-free?
The QMA protocol

YES?
Accept a good proof with $p > a$.

NO?
Probability of accepting $p < b$.

- Is there an acceptable witness for this circuit?
- Does some local Hamiltonian have a low ground energy?
The promise gap for a problem

\[\sum_{m=1}^{M} H_m \]

\[\sum_{m=1}^{M} G_m \]

YES little frustration

NO lots of frustration
The promise gap for a simpler problem?

\[
\sum_{m=1}^{M} H_m
\]

\[
\sum_{m=1}^{M} G_m
\]

YES little frustration

NO lots of frustration

the promise gap
\[\sum_{m=1}^{M} H_m \]

YES little frustration

NO lots of frustration
\[\sum_{m=1}^{M} H_m \quad \rightarrow \quad \sum_{m=1}^{M'} H'_m \]

YES little frustration NO lots of frustration
Increase the promise gap?

YES little frustration

NO lots of frustration
Increase the promise gap?

Using the usual circuit encoding clock construction based ideas? NO
Small eigenvalue gaps ... small promise gaps

\[H = A + B \]

- geometric lemma

\[\lambda_0 \geq \sin^2 \frac{\theta}{2} \times \min(\Delta_A, \Delta_B) \]

YES
- little frustration
- a very low ground energy

NO
- without much frustration
- a pretty low ground energy
1 Small or large eigenvalue gaps?

- Anything close to the ground state?

 \[
 \Delta \geq const.
 \]

1D: area law, an algorithm
2D: area law?

a Heisenberg XXX spin-1 chain (AKLT)

\[
\sum_{j=1}^{N-1} X_j X_{j+1} + Y_j Y_{j+1} + Z_j Z_{j+1}
\]

a biased walk in 1D

\[
\sum_{j=1}^{N-1} (|j\rangle - B|j+1\rangle) (\langle j| - B\langle j + 1|)
\]
1 Small or large eigenvalue gaps?

- Anything close to the ground state?

 constant gap? \[\Delta \geq \text{const.} \]
 1D: area law, an algorithm
 2D: area law?

 inverse-poly gap? \[\Delta \propto N^{-c} \rightarrow 0 \]
 clock constructions
 NP, QCMA hard
 qubits? 1D?

transverse-field Ising
\[\sum_{j=1}^{N-1} X_j - \sum_{j=1}^{N-1} Z_j Z_{j+1} \]

quantum walk on a line
\[\sum_{j=1}^{N-1} |j\rangle\langle j+1| + |j+1\rangle\langle j| \]
Small or large eigenvalue gaps?

- Anything close to the ground state?

 - Constant gap? \(\Delta \geq \text{const.} \)
 - 1D: area law, an algorithm
 - 2D: area law?

 - Inverse-poly gap? \(\Delta \propto N^{-c} \to 0 \)
 - Clock constructions
 - NP, QCMA hard
 - Qubits? 1D?

 - Exponential-small gap? \(\Delta \propto 2^{-cN} \to 0 \)

- Constant degree LH: at most constant gap.

- Degeneracy: help or trouble?
Snapshots of a computation
Locally comparing strings.
Locally comparing products.

SWAP test
Locally comparing entangled states?

UGH!
Labeling the data

Hard to compare directly (locally).

$U^\dagger \downarrow U$

a clock
2 Labeling the data

a clock
2 The data & the clock

\[U \otimes |1\rangle \langle 0| \]

\[\begin{array}{ccc}
+ & \begin{array}{ccc}
\text{Yellow} & \text{Yellow} & \text{Yellow} \\
\text{Red} & \text{Red} & \text{Red} \\
\end{array} \\
\end{array} \]

\[\begin{array}{ccc}
+ & \begin{array}{ccc}
\text{Yellow} & \text{Yellow} & \text{Red} \\
\text{Red} & \text{Red} & \text{Yellow} \\
\end{array} \\
\end{array} \]

\[|0\rangle \]

\[|1\rangle \]
The data & the clock

\[U^\dagger \otimes |0\rangle\langle 1| \]

\[|0\rangle \rightarrow |1\rangle \]
The data & the clock: locally comparing related states
The history state

\[|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle \]

\[\underbrace{U_t \cdots U_1|\varphi_0\rangle} \]
The history state: a ground state

\[\Pi_j = 0 \]

\[|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle \]

\[U_t \cdots U_1 |\varphi_0\rangle \]
\[\psi_{\text{hist}} = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\phi_t\rangle \otimes |t\rangle \]

\[\langle L | \otimes \langle I | \cdots | \text{output} \]

\[\cdots \]

\[\langle 0 | \otimes \langle 0 | \]

k-local

conditions

clock encoding

state progression

initialization
a clock workshop
Making a local clock

- dynamic: a system that ticks
 local ticks (transitions)

- static: a unique ground state
 the uniform tick superposition

- identifiable states

- checking for bad states
A quantum walk on a line is a clock

- transitions

\[T_{st} = |s\rangle \langle t| + |t\rangle \langle s| \]

Hamiltonian

\[H_w = \sum_{\langle s,t\rangle} T_{st} \]
A line is a clock

transitions \[T_{st} = |s\rangle \langle t| + |t\rangle \langle s| \]

projections \[P_{st} = \frac{1}{2} (|s\rangle - |t\rangle) (\langle s| - \langle t|) \]

Hamiltonian \[H = \sum_{\langle s,t\rangle} P_{st} \]

the ground state \[|1\rangle + |2\rangle + |3\rangle + \cdots \]
3 A line is a clock

Transitions

$$T_{st} = |s\rangle\langle t| + |t\rangle\langle s|$$

Projections

$$P_{st} = \frac{1}{2} (|s\rangle - |t\rangle) (\langle s| - \langle t|)$$

Hamiltonian

$$H = \sum_{\langle s,t\rangle} P_{st}$$

The ground state

$$|1\rangle + |2\rangle + |3\rangle + \cdots$$

Other eigenstates

$$|\varphi_p\rangle \propto \sum_{s=1}^{N} \cos(ps) |s\rangle \quad E_p = 2 \cos p$$

The gap

$$\Delta = \Theta \left(\frac{1}{N^2} \right) \quad p = \frac{k\pi}{N}$$
3. A pulse clock

- **transitions**
 - 2-local

 \[|10\rangle\langle01| + |01\rangle\langle10| \]

- **identification**

 \[|1\rangle\langle1| \]

- **projections**
 - get a superposition for the ground state

 \[|01 - 10\rangle\langle01 - 10| \]

- **invariant subspaces & tuning**
 - a given number of excitations

 tuning for a single excitation: prefer 1, hate 11

\[\begin{align*}
1000 \\
+0100 \\
+0010 \\
+0001
\end{align*} \]
A domain wall (unary) clock

- clock checking $|01\rangle\langle 01|$
- 2-local
- identification $|10\rangle\langle 10|$
A domain wall (unary) clock

- **clock checking** \(|01\rangle\langle 01|\)
 - 2-local
- **identification** \(|10\rangle\langle 10|\)
- **projections** \(|100 - 110\rangle\langle 100 - 110|\)
 - 3-local
- **a single domain wall: fix the ends**
 - a unique ground state

\[10000 + 11000 + 11100 + 11110 \]
3 The DW clock in Kitaev’s 5-local Hamiltonian

- clock checking
 2-local
 \[|01 \rangle \langle 01| \]

- identification
 \[|10 \rangle \langle 10| \]

- projections
 3-local
 \[|100 - 110 \rangle \langle 100 - 110| \]

- interacting with data
 5-local
 \[
 \frac{1}{2} \left(|t + 1 \rangle \langle t + 1| + |t \rangle \langle t| \right) - \frac{1}{2} \left(U_{t+1} \otimes |t + 1 \rangle \langle t| + U_{t+1}^\dagger \otimes |t \rangle \langle t + 1| \right)
 \]
Kitaev’s LH: the playground

Invarient subspaces with bad clock states labeled by the initial state

\[
|\varphi_1\rangle \otimes |0\rangle_c \\
U_1 |\varphi_1\rangle \otimes |1\rangle_c \\
U_2 U_1 |\varphi_1\rangle \otimes |2\rangle_c \\
U_3 U_2 U_1 |\varphi_1\rangle \otimes |3\rangle_c \\
U_4 U_3 U_2 U_1 |\varphi_1\rangle \otimes |4\rangle_c \\
U_1 |\varphi'_1\rangle \otimes |1\rangle_c \\
U_2 U_1 |\varphi'_1\rangle \otimes |2\rangle_c \\
U_3 U_2 U_1 |\varphi'_1\rangle \otimes |3\rangle_c \\
U_4 U_3 U_2 U_1 |\varphi'_1\rangle \otimes |4\rangle_c
\]}
The history state: a line of states

- a projector Hamiltonian kernel: the uniform superposition

\[|t + 1\rangle\langle t + 1| + |t\rangle\langle t| \]

\[- U_{t+1} \otimes |t + 1\rangle\langle t| \]

\[- U_{t+1}^\dagger \otimes |t\rangle\langle t + 1| \]

\[|\varphi_t\rangle \otimes |t\rangle \]

\[|\varphi_{t+1}\rangle \otimes |t + 1\rangle \]

\[|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle \]

- endpoints: ancilla initialization/final acceptance
ground state

YES
ground state

• NO
lower bound on the ground state energy
history states

non-uniform superpositions
history states

a polynomially small gap

\[\Delta = O(L^{-2}) \]
history states
initialized history states
$H_A + H_B$

$$\lambda_0 \geq \sin^2 \frac{\psi}{2} \times \min(\Delta_A, \Delta_B)$$

accepted states
3 - LH and QMA verification

\[H_{\text{clock}} + H_{\text{init}} + H_{\text{prop}} + H_{\text{out}} \]

\[V \]

\[|\psi\rangle \]
\[|0\rangle \]
\[0/1 \]

\[\text{NO} \]
\[V \text{ is unlikely to accept anything (} \epsilon \text{)} \]

\[\text{promise gap } L^{-2} \]

\[\text{YES} \]
\[\text{some proof is likely (} 1-\epsilon \text{) accepted} \]

\[\text{lowest eigenvalue} \]
\[\geq \frac{c (1 - \sqrt{\epsilon})}{L^2} \]

\[\text{(needs } \epsilon = L^{-1}) \]

\[\text{energy of the history} \]
\[\leq \frac{\epsilon}{L + 1} \]

[N, Mozes 07]
projections & gadgets
3 Lower locality for the price of bad transitions

- the domain wall

- projections
 now just 1-local

- clock checks
 2-local, STRONG

- the ground state is close to

\[|01\rangle \langle 01| \]
Lemma 1 Let $H = H_1 + H_2$ be the sum of two Hamiltonians operating on some Hilbert space $\mathcal{H} = S + S^\perp$. The Hamiltonian H_2 is such that S is a zero eigenspace and the eigenvectors in S^\perp have eigenvalue at least $J > 2\|H_1\|$. Then,

$$\lambda(H_1|S) - \frac{\|H_1\|^2}{J - 2\|H_1\|} \leq \lambda(H) \leq \lambda(H_1|S)$$
The projection lemma to estimate eigenvalues

\[H^+ H_1 |S \rangle \]

\[S \quad S' \quad H_2 \]

\[|01 \rangle \langle 01| \]
The projection lemma to estimate eigenvalues

$H_1 |_S$

$|1110000\rangle$
$|1111000\rangle$
$|1111100\rangle$

$|1 - 0\rangle \langle 1 - 0| + |01\rangle \langle 01|$
Lower locality (3-LH) for the price of bad transitions

- the domain wall

- non-projector 2-local terms

- clock checks

- from 5- to 3-local Hamiltonian [Kempe, Regev]

restricted to good clocks: qw on a line
Further decreasing locality: a “3 from 2” gadget

- strongly coupled ancillas (a new energy scale)
- perturbation theory

\[
G'(z) = (zI - H')^{-1}
\]

\[
H' = H + V
\]

\[
||H|| \gg ||V||
\]

\[
S' = \text{span} \{ |000\rangle, |111\rangle \}
\]

[Kempe, Kitaev, Regev '03]
Further decreasing locality: a “3 from 2” gadget

- strongly coupled ancillas (a new energy scale)
- perturbation theory gives us an effective Hamiltonian

\[
V \big|_S \quad V^2 \big|_S \quad V^3 \big|_S
\]

projection lemma \hspace{1cm} \text{unwanted (subtract)} \hspace{1cm} \text{the effective 3-local term}

\[
H' = H + V
\]

\[
\|H\| \gg \|V\|
\]

\[
S' = \text{span} \left\{ |000\rangle, |111\rangle \right\}
\]

[Kempe, Kitaev, Regev '03]
3 STRONG local fields, OK interactions

- strongly bound a single ancilla
- no superstrong interactions

- perturbation theory gives us an effective Hamiltonian

\[S = \{ |0\rangle \} \]

\[H' = H + V \]
\[||H|| \gg ||V|| \]

\[V \mid S \quad V^2 \mid S \quad V^3 \mid S \]

projection lemma unwanted (subtract) the effective 3-local term

special cases (Z-basis) exact gadgets!

[Cao et al., 1311.2555]

[Jacob Biamonte 0801.3800]
“Strengthening”, intermediary gadgets?

- classically easy: copy

- quantumly?

[N., Yudong Cao]
locality & dimensionality
clock/work registers

constant degree geometric locality

a geometric clock

[Mizel] [Janzing] [AvDKLLR] [BT13]

[AGIK07] moving data in 1D
Moving a special site: the qutrit surfer

- clock checking
 - 2-local + ends
 - $|10\rangle\langle 10|$, $|02\rangle\langle 02|$, $|22\rangle\langle 22|$
 - $|01\rangle\langle 01|$, $|21\rangle\langle 21|$
- identification
 - $|2\rangle\langle 2|$
- projections
 - 2-local
 - $|20-12\rangle\langle 20-12|$
3. Constructing local, geometric clocks: moving the data

- telling “time” by where the data is

- carrying/moving data? larger qudits (local dim.) larger locality

internal states ... dual-rail

[Childs Gosset Webb 13]
Making a good local clock

- identifiable states
 - domain-wall structure
- local transitions
- easily checkable states

- different geometry?
 - simpler terms?
 - locality/qudits?
 - beyond linear?
 - larger (promise) gaps?
Hamiltonian Quantum Cellular Automata in 1D

- moving the program instead of the data
 [N., Wocjan 07]

program particles diffuse above data
special states stand in their way
moving the program instead of the data

[N., Wocjan 07]

program particles diffuse above data
special states stand in their way
Hamiltonian Quantum Cellular Automata in 1D

- moving the program instead of the data [N., Wocjan 07]

program particles diffuse above data
special states stand in their way

- BQP in 1D with a trans. invariant, time independent LH computational basis programmable

- a nonlinear clock, polynomial expected runtime
A local, sequential geometric clock in 2D

2D “sequential” evaluation

[Aharonov van Dam Kempe Landau Lloyd Regev 04]

universality of adiabatic QC

2-local interactions, d=6 qudits
A local, sequential geometric clock in 2D

- 2D “sequential” evaluation
 [Aharonov van Dam Kempe Landau Lloyd Regev 04]

Universality of adiabatic QC
2-local interactions, d=6 qudits
A local, sequential geometric clock in 2D

- 2D “sequential” evaluation
 [Aharonov van Dam Kempe Landau Lloyd Regev 04]

universality of adiabatic QC
2-local interactions, d=6 qudits
Another geometric clock in 2D: a string on a torus

- 2D “parallelized” evaluation

[Mizel Lidar 06] [Janzing 07]
[Breuckmann Terhal 13]
Another geometric clock in 2D: a string on a torus

- 2D “parallelized” evaluation
 - [Mizel Lidar 06]
 - [Janzing 07]
 - [Breuckmann Terhal 13]

QMA-complete
4-local operations
b, b† fermions, spin
or d=4 (spin 3/2)

particle # tuning
(motivation: AQC)

- promise gap: proven $N^{-3}D^{-3}$, conjectured $N^{-2}D^{-2}=L^{-2}$
Constructing local, geometric clocks in 1D

- moving the data with 2-local interactions

\[
\begin{align*}
\langle|s\rangle - |t\rangle\rangle (\langle s | - \langle t |)
\end{align*}
\]

\[
|XY\rangle \langle XY|_{j, j+1} + |ZW\rangle \langle ZW|_{k, k+1}
\]

\[
- |PQ\rangle \langle NO|_{i, i+1} - |NO\rangle \langle PQ|_{i, i+1}
\]

- higher local dimension: qudits
 carry the data
 mark transitions
 detect bad states
we’ve been here the data undiscovered territory

moves

the power of quantum systems on a line

[Aharonov, Gottesman, Irani, Kempe]
U_{ab}

U_{bc}
1. LH in 1D (2-local) with qudits

- **unique state progression**
 every legal state goes to exactly 2 states

- **clairvoyance**
 allowed but illegal states evolve to forbidden ones

- **the promise gap:** L^{-3}

- **an entangled ground state**
 special case: NP-hard [Schuch]

QMA-complete

$d = 13$

[AGIK '06]
1 LH in 1D: more space = smaller qudits

- unique state progression
 every legal state goes
to exactly 2 states

\[d = 11 \]

[N. 08]

- bad but detectable transitions

\[d = 8 \]

[Hallgren, N., Narayanaswami '13]
2-local Hamiltonian is QMA-complete

[Oliveira, Terhal '05]

a global minimum

[Hallgren, N, Narayanaswami '13]
QMA$_1$-complete problems

11 - 11 - 11 - 11 - 11

[N. ‘08]

2 - 2 - 2 - 2

[Gosset, N. ‘13]

5 - 3 - 3 - 3 - 5

[Eldar, Regev ‘08]

unfrustrated

qSAT

[Bravyi]
linear

clock progression
com-pos-ite
clock progression
composite

clock progression
single - path
clock progression
double = path

clock progression
double = path
clock progression
double = path

clock progression
double = path
clock progression
2 clocks: 2D clock progression
Applying 2-qubit gates 3-locally

- the railroad switch

CNOT: 3-local needs initialization
2D clocks (with two registers)

- two clocks
2D clocks (with two registers)

- two clocks
2D clocks (with two registers)

- add non-commuting (data) operations
2D clocks (with two registers)

- like a railroad switch... with a single active site ensured
3 Can a clock be shorter than unary?

- a qutrit surfer on a cycle: 2C states
A smaller clock using two coupled cogs
A smaller clock using two coupled cogs
3. A smaller clock using two coupled cogs

- 2 cogs of length C give us $(2C)^2$ clock states
- transitions: 4-local, gates: 6-local (can be improved)
- the promise gap for a circuit with L gates: still L^{-2}
3 Questions about the qPCP conjecture

- equivalence of the two formulations? [AAV13]

LH with a fractional promise gap

- look at a few qubits of a proof

- locally checking the (expected) very entangled states? [D.Aharonov, L.Eldar]

translating the random small verification to a LH?
3 Questions about the qPCP conjecture

- clock constructions have a 1/poly promise gap consistent, effective interaction strengthening? error-correction/detection based quantum gadgets?

- direct Hamiltonian methods? beyond the history state? [Itai Arad]

\[
M := \mathbb{I} - \frac{H}{m}
\]

\[
\text{Tr}(M^\ell) \quad \Gamma = \frac{1}{\text{poly}(n)}
\]

\[
\ell = \Omega(mn/\Gamma)
\]

an interactive protocol to check the trace:

\[
\begin{align*}
\rho_1 \quad & \quad \rho_2, |\psi_1\rangle \\
|\psi_1\rangle \quad & \quad |\psi_1\rangle |\psi_2\rangle \\
\rho_3 \quad & \quad \rho_3, |\psi_1\rangle |\psi_2\rangle
\end{align*}
\]
1. strong promises and eigenvalue gaps

2. the history of the history state

3. running the clock precise/faulty, qubit/qudit, sequential/parallel

4. on the qPCP road questions & warnings