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Constraint Satisfaction Problems

(k, Z, n, m)-CSP :

® @)@ oty

2: alphabet
n: number of variables
m: number of constraints

e, N Constraints: C : 2 -> {0, 1}
Assignment: ¢ : [n] -> 2



Quantum Constraint Satisfaction
Problems

(k, d, n, m)-gCSP H

K: arity

d: local dimension

n: number of qudits

m: number of constraints

Constraints: P, k-local projection
Assignment: > guantum state

1
unsat(H) := min —
)

m

(k, 2, n, m)-CSP : C

K: arity

2: alphabet

n: number of variables
m: number of constraints

Constraints: C,; : yk->10, 1}
Assignment: o : [n] -> 2

=3 (IR 1)

g=1



Quantum Constraint Satisfaction

Problems
(k, d, n, m)-gCSP H (k, 2, n, m)-CSP : C
k: arity k: arity
d: local dimension >: alphabet
n: number of qudits n: number of variables
m: number of constraints m: number of constraints
Constraints: P; k-local projection Constraints: C; : 2*-> {0, 1}
Assignment: |)> quantum state Assignment: o : [n] -> 2

™m

unsat(H) := min % Z<¢\P ) = — Auin ZP-

K i1 /

min eigenvalue Hamiltonian



Quantum Constraint Satisfaction
Problems

Ex 1: (2, 2, n, n-1)-gCSP on a line d\ ®n
j 11 (C7)
/‘\
000000000000000000000000000000000
P
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Quantum Constraint Satisfaction

Problems
Ex 1: (2, 2, n, n-1)-gCSP on a line d\ ®n
j o1 (C7)
OOOOOOOOOOOOOOOOOOO:?O}OOOOOOOOOOOO
I:)j,j+1
H=7) Pj=) idi.j-1®Pjn®idjs. .n
j j

Ex 2: (2, 2, n, m)-qCSP with diagonal projectors:

Pj= Y Ci(mj, )|, x,) (), 1),

Lj1,Tjo

t P | = i o Tl PilTe, .. T
unsa (zj: J> iﬂﬂ%{o,l}n2<xl’ , T | Pjl 21 X >/m

{z1,..., gl}%{O,l}” ](le’gjﬂz)/m

= unsat(C)



PCP Theorem

PCP Theorem (Arora, Safra; Arora-Lund-Motwani-Sudan-Szegedy ’98)
Thereisa e > 0s.t. it's NP-hard to determine whether for a CSP,

unsat =0 or unsat > ¢

Compare with Cook-Levin thm:
It’s NP-hard to determine whether unsat = 0 or unsat > 1/m.

Equivalent to the existence of Probabilistically Checkable Proofs
for NP.

(Dinur ’07) Combinatorial proof.

Central tool in the theory of hardness of approximation.




Quantum Cook-Levin Thm

Local Hamiltonian Problem

Iocality\ - local dim

Given a (k, d, n, m)-gcsp H with constant k, d and m = poly(n),
decide if unsat(H)=0 or unsat(H)>A

Thm (Kitaev ‘99) The local Hamiltonian problem is
QMA-complete for A = 1/poly(n)

QMA is the quantum analogue
of NP, where the proof and the
computation are quantum.




Quantum PCP?

The Quantum PCP conjecture: There is € > 0 s.t. the following

problem is QMA-complete: Given (2, 2, n, m)-gcsp H determine
whether — N

locality local dim

(i) unsat(H)=0 or (ii) unsat(H) > €.

- (Brawyi, DiVincenzo, Loss, Terhal ‘08) Equivalent to conjecture for
(k, d, n, m)-gcsp for any constant k, d.

- At least NP-hard (by PCP Thm) and inside QMA

- Open even for commuting qCSP ([P;, P;] = 0)
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Motivation of the Problem

Hardness of approximation for QMA

Quantum-hardness of computing mean groundenergy:
no good ansatz for any low-energy state

(caveat: interaction graph expander; not very physical)
Sophisticated form of quantum error correction?

For more motivation see review (Aharonov, Arad, Vidick ‘13)
and Thomas recorded talk on bootcamp week
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History of the Problem

- (Aharonov, Naveh '02) First mention

- (Aaronson’ 06) “Quantum PCP manifesto”

1’ Shtetl- Optlmlzed

The Blog of Scott Aaronson

Quantum computers are not known to be able
to solve NP-complete problems in polynomial time,
and can be simulated classically with exponential slowdown.

« Quantum Computing Since Democritus Lecture 4: Minds
and Machines
The Quantum PCPstill fiddling on the roof »
Manifesto



History of the Problem

- (Aharonov, Naveh '02) First mention

- (Aaronson’ 06) “Quantum PCP manifesto”
;M I'm 99% sure that this theorem (alright, conjecture) or

v ré‘,v Shtetl- Opt'lm'IZEd \ something close to it is true. I'm 95% sure that the proof
’f The Blog of Scott Aaronson - Wl will require a difficult adaptation of classical PCP

-
Quantum computers are not known to be able

'% .,nd'é;:‘Z:i?#’;z%:%:zSzzﬁii”,t-ih’".,f:,’,’n";?éi’s?’:ﬁauwn. machinery (whether Iritean or pre-Iritean), in much the
: same way that the Quantum Fault-Tolerance Theorem

« Quantum Computing Since Democritus Lecture 4: Minds required a difficult adaptation of classical fault-tolerance

and Machines . ’ » » .

The Quantum PCPstil fiddiing on the roof» machinery. I’'m 85% sure that the proof is achievable in a
Manifesto year or so, should enough people make it a priority. I'm

75% sure that the proof, once achieved, will open up
heretofore undreamt-of vistas of understanding and
insight. I'm 0.01% sure that | can prove it. And that is
why | hereby bequeath the actual proving part to you, my
readers.



History of the Problem

- (Aharonov, Naveh '02) First mention

- (Aaronson 06) Quantum PCP manifesto”

I'm 99% sure that this theorem (alright, conjecture) or

v rév“ Shtetl- Opt'lm'IZEd \ something close to it is true. I'm 95% sure that the proof
’i The Blog of Scott Aaronson Wl will require a difficult adaptation of classical PCP

Quantum computers are not known to be able 0?
'u}g‘ and'é;:‘Z:i?#’;7;:"%22Szzﬁii”,t-ih’"..,f:é’n";ﬂiéi’s?’:ﬁaown. ! machinery (whether Iritean or pre-Iritean), in much the
: same way that the Quantum Fault-Tolerance Theorem
« Quantum Computing Since Democritus Lecture 4: Minds required a difficult adaptation of classical fault-tolerance
and Machines . ’ » » .
The Quantum PCPstil fiddiing on the roof» machinery. I’'m 85% sure that the proof is achievable in a
Manifesto year or so, should enough people make it a priority. I'm

75% sure that the proof, once achieved, will open up
heretofore undreamt-of vistas of understanding and
insight. I'm 0.01% sure that | can prove it. And that is
why | hereby bequeath the actual proving part to you, my
readers.

I'm quite certain that a Quantum PCP
Theorem will require significant new ideas. Recently | spent a
day or two studying Irit’s proof of the classical PCP theorem
(which | hadn’t done before), and | found about 20 violations of
the No-Cloning Theorem on every page.
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History of the Problem

(Aharonov, Naveh '02) First mention
(Aaronson’ 06) “Quantum PCP manifesto”

(Aharonov, Arad, Landau, Vazirani ‘08) Quantum version of gap
amplification by random walk on expanders (quantizing Dinur?)

(Arad ‘10) NP-approximation for 2-local (arity 2) almost commuting qCSP

(Hastings '12; Hastings, Freedman ‘13) “No low-energy trivial states”
conjecture and evidence for its validity

(Aharonov, Eldar ‘13) NP-approximation for k-local commuting
gCSP on small set expanders and study of quantum locally testable codes

this talk



“Blowing up” maps

prop For every t > 1 there is an efficient mapping from
(2,2, n, m)-csp Cto (2, z,, n, m,)-csp C,s.t.

(i) n,<nOW m, <mO

(ii) deg(C,) = deg(C)t (iv) unsat(C,) = unsat(C)
(iii) 1Z,]=|1Z]* (v) unsat(C,) = 0 if unsat(C) = 0




Example: Parallel Repetition
(for kidS) (see parallel repetition

session on Thursday)

1. write C as a cover label instance L _

L on G(V, W, E) with function I, : [N] -> [M]  / Xl\ I, o, ',’ C\l\\
Xz\ '
X3 \ 1

Labeling | : V -> [N], W -> [M] covers
edge (v, w)if 1, (I(w)) =1(v)

-——
- -

—

—-—

2. Define L, on graph G'(V’, W’, E’) with
V= VE W = W [N = [N, M) = (M)

Edgeset: (v = {v;,,...,v;, },w' ={w;,,....w,}) € FE
iff (v;,,w;;)) € B, Viec|n,0<5<+¢
Function: Hv’,w’(b17 ceey bt) = {Hvl’wl, N ,Hvt,wt}



Example: Parallel Repetition

fition
Easy to see: ay)
1. write C| (j) n, < O, MOt )
Lon Gl (ii) Deg(L,) > deg(C)", c\
Labelin (iii) unsat(L,) = unsat(C), C, \
" (iv) 1% l= 5] ?
edge (v, : ' |
(v) unsat(L,)=0if unsat(C)=0 c |
(vi) unsat(L,) = unsat(C) N2
2. Deﬁnte I In fact: (Raz ‘95) If unsat(C) 2 6, unsat(L,) > 1 —exp(-Q(63t)
V' =Vt
Edge set: (U, :M7 w' = {wilv e 'wtt}) SD
iff (vi,,w;;) € B, Vien,0<5<t
Function: TL,/ (b1, ..., b)) = {1y wyy- - o, a0,



Quantum “Blowing up” maps
+ Quantum PCP?



Quantum “Blowing up” maps
+ Quantum PCP?

thm If for every t > 1 there is an efficient mapping from

(2, d, n, m)-gcsp H to (2, d,, n, m,)-qcsp H,s.t.

(i) n <Ot m <mol

(i) Deg(H,) = deg(H)t (iv) unsat(H,) = unsat(H)

(iii) | d,|= |d|? (v) unsat(H,) = 0 if unsat(H) =0

then the quantum PCP conjecture is false.

Formalizes difficulty of “quantizing” proofs of the PCP theorem

(e.g. Dinur’s proof; see (Aharonov, Arad, Landau, Vazirani ‘08))

Obs: Apparently not related to parallel repetition for quantum games
(see session on Thursday)
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Entanglement Monogamy...

...is the main idea behind the result.

Entanglement cannot be freely shared
Ex. 1 pap = |07 ) {0 [an,  [67) = (10,0) +[1.1))/V2, papc = pap ® pc
Ex.2 |[CAT)a, 4, =(|0,...,0) +|1,..., 1)) /V2

paA; = tr\a,a; (|CAT)(CAT]) = (]0,0)0,0] + |1, 1)(1,1])/2

Monogamy vs cloning:

EPR teleportation
EPR —7 B, . B, > —
A B —> cloning ™ cloning
" B, } B,

A maximally entangled with B, and B,



Entanglement Monogamy...

...intuition: B, B,
8, L 7
« A can only be substantially 1@ ST @
entangled with a few of the Bs % ="
* How entangled it can be depends " . -

| RN
the size of A @ T
on e s/ize O )
EX'Q\@Q - QBk

A



Entanglement Monogamy...

...intuition: B, B,
| 8, 1 W
* A can only be substantially 1@ ‘o7 ®
entangled with a few of the Bs \ -
* How entangled it can be depends Q'/ b s -9
. \
on the size of A. § @ - B,
Ex.
A
How to make it quantitative?
1. Study behavior of entanglement measures (see Patrick’s talk)
(distillable entanglement, squashed entanglement, ...)
(e % (see sessions on MIP and
2. S:(Ein}l_S:E?ElfI_C_’Ea_SkS_SC}_KP_ MIP", ) device independent crypto)

(see also Aram’s talk)

——_——’ - = e



Quantum de Finetti Theorems

NN NN N N N W

Let p, |, be permutation-symmetric, i.e. I

Quantum de Finetti Thm:

~ E : &1
P1,....1 ~ PkPy
d2l/ k

—  (Christandl, Koenig,
. Mitchson, Renner ‘05)

Q?OQ’QOOO
|

swap

In complete analogy with de Finetti thm
for symmetric probability distributions

But much more remarkable:
entanglement is destroyed



Quantum de Finetti Theorems
Q00000 O0OO®TP

Let p, |, be permutation-symmetric, i.e. I

O?OOIOQQQ

Quantum de Finetti Thm: !
swap
/0 E kaO * In complete analogy with de Finetti thm
for symmetric probability distributions
d2 / k
(Christandl, Koenig, e But much more remarkable:
. Mitchson, Renner ‘05) .
entanglement is destroyed

* Final installment in a long sequence of works: (Hudson, Moody ’76), (Stormer ‘69),
(Raggio, Werner ‘89), (Caves, Fuchs, Schack ‘01), (Koenig, Renner ‘05), ...

 Can we improve on the error? (see Aram’s and Patrick’s talk)

-

-~ = -
== - — - - — o — —— — -
- O T T o o oo e omm e mm e e e e e e e wm mm E= B = el N e



General Quantum de Finetti

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with

n=|V|.Letp, ,bean-quditstate. Then there exists a globally
separable state o, , such that g
B <12 (d?ln(d)> /
Pi,j — 04 1
Gayes D

Globally separable (unentangled):
U:ZpkO'kl Q... R0k,

/ \

probability local states
distribution




General Quantum de Finetti

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with

n=|V|.Letp, ,bean-quditstate. Then there exists a globally
separable state o, , such that g
B <12 (d?ln(d)> /
Pi,j — 04 1
(B 7 D

Ex 1. “Local entanglement”:

For (i, j) red: ||p; ; — 03 5|1 > 1/4 Red edge: EPR pair
2N
EPR Separable

But for all other (i, j): Pi,5 — Pi Y P

o= p1 & ...& Ppn gives good approx.



General Quantum de Finetti

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with
n=|V|.Letp, ,bean-quditstate. Then there exists a globally

-----

separable state ;  such that 1
2 In(d)\ "*
E HIO’L,J oijll < 12 D

Ex 2. “Global entanglement”:

Let p = | p><@| be a Haar random state

| o> has a lot of entanglement (e.g. for every
region X, S(X) = number qubits in X)

1d ®1d

But: p;; ~ 7



General Quantum de Finetti

thm (B., Harrow ‘13) Let G = (V, E) be a D-regular graph with

n=|V|.Letp, ,bean-quditstate. Then there exists a globally
separable state o, , such that g
B <12 (d?ln(d)> /
Pi,j — 04 1
Gayes D

Ex 3.
Let p = | CAT><CAT| with |CAT>= (|0, ..., 0>+ |1, ..., 1>)/V2

1 1

1 1
= 10,000, 0] T T

gives a good approximation




Product-State Approximation

cor Let G = (V, E) be a D-regular graph with n = |V]|. Let

Then there exists |@) = |P1) @ ... ® |dy) such that

1/3
n%wrm@ < unsat(H) + 12 <d2 kl’)g(d)>

- The problem is in NP for € = O(d?log(d)/D)3 (¢ is a classical witness)
- Limits the range of parameters for which quantum PCPs can exist

- For any constants c, a, B > 0 it’s NP-hard to tell whether
unsat =0 or unsat >c |2|%/DB




Product-State Approximation

From thm to cor:
Let p be optimal assignment (aka groundstate) for H = Z P; ;

By thm: (i.7)€E
21 1/3
HUZZPkUkl X...Q00k, st. E |lpij—oijl <12 (d n(d))
e (i,j)eFE

Then

Ztr(oH) — —tr(pH) = E t(Pylo—p)< E | H
—LUr\o — ——UrI = 'r4 ,\0 — ~ i,'_Ui,'
. \nD " , (I)EE ! £ (i,4)€E P 7

|

unsat(H)



Product-State Approximation

From thm to cor:
Let p be optimal assignment (aka groundstate) for H = Z P; ;

By thm: (1.7)€E
2 1/3
Jdo= Zpkakl X...Q00k, st. E |lpij—oijl <12 (d hl(d))
e (i,j)eFE
Then
2 ti(oH) - —te(pH) = E ti(Pijc—p)< E | H
—LUr\o — ——UrI = 'r4 ,\0 — ~ 1.9 — 044
nD ‘nD P ’ (i,j)€EE X g (i) E Pi.j I
|
unsat(H)
So
2 2 2 1n(d)\ "/’
— = —— <
5 ;pktr(akl ®...Q0 H) nDtr(aH) < unsat(H) + 12 ( 5 >



Coming back to quantum “blowing
up” maps + qPCP

thm If for every t > 1 there is an efficient mapping from

(2, d, n)-qcsp Hto (2, d,, n,)-qcsp H,s.t.

(i) n <nol

(i) Deg(H,) = deg(H)" (iv) unsat(H,) = unsat(H)
(iii) | d,|= |d|? (v) unsat(H,) = 0 if unsat(H) =0

then the quantum PCP conjecture is false.

Suppose w.l.o.g. d’log(d)/D < % for C. Then there is a product state ¢ s.t.

2
¢ Dt

1/3 t/3
(61116} < wnsat (i) + 12 (BN T i) 412 (1080
Dt D



Proving de Finetti Approximation

For simplicity let’s consider a star graph QBZ QB_:,
: B, « ==
Want to show: there is a state ®--_. - Q
.é_ -~
OABy,...,Bp ZZPkUA,k®UBl,k®---®UBD,k A, -
” \ NSNS o
k V4 \ ~ -

L@\ @
5") :

st. Elpas, - oan i <12
1



Proving de Finetti Approximation

For simplicity let’s consider a star graph B, QB_,,
. s, 1.
Want to show: there is a state ®--_. ; Q
O-ABl,...,BD = ZpkO-A,k ® O-Bl,k ® ... ® O-BD,k A_I \\\\\~_/
2 // \‘ \_\:~__
Cin(@\Y? @
st. Ellpap —oapi =12 —F @ €3
1

Idea: Use information theory. Consider [ I(A TN Bip)

oot \ mutual info:
(i) I(A . B 1(X:Y) = H(X) + H(Y) = H(XY)

(i) I(A: B, ,..

, B, ) < 2log(d)
n) =1(A:B;)+...+1(A: B,

* 1D 1D

. Bil .. 'BiD—1>



Proving de Finetti Approximation

For simplicity let’s consider a star graph QBZ QB_:,
. Bl ~ - -
Want to show: there is a state ®--_. - Q
_Q. -~
OAB,,...Bp = E PkOAELXR0B k& ... 0By k A_l\\ —
- \ NSNS o
k / T

dQZg(d)>1/3 @ a0

st Bllpas, —oanli <12 (
7

Idea: Use information theory. Consider [ I(A TN Bip)

7'17 77'D .
\ mutual info:

1(X:Y) = H(X) + H(Y) = H(XY)

_—— e e o ey

— - = ——
-

Y T ¥ F e ___————————

- - . o o O Em EE = e e = = -




What small conditional mutual
info implies?

————
— — e mm =
- e - o e = o e = e EE = o =

— .
-—————____

_— e = o -

For X, Y, Zrandom variables

I[(X:Y|Z),=E.I(X:Y),.
pz(z,y) = p(z,y,2)/p(2)

No similar interpretation is known for
|(X:Y|Z) with quantum 7

Solution: Measure sites iy, ...., i, ;

—_mm=EE ==

——
L -
e e - -

-

-



Proof Sktech

Consider a measurement  A(X) := Z tr( M X)|k) (k|
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Consider a measurement  A(X) := Z tr( M X)|k) (k|
k \

and = ida4 ® A®P(p) POVM
. 2log(d)
Thereexistss<Dst. |E EI(A: B |Bi...Bi, ). < 7
2log(d)
So E E EI(A: B )x <
T1yevesls—1T1y-3Ts—1 1g D

with 1, the postselected state conditioned on outcomes (r, ..., r. ;).



Proof Sktech

Consider a measurement  A(X) := Z tr( M X)|k) (k|
k

. \
and = ida4 ® A®P(p) POVM
. 2log(d)
Thereexistss<Dst. |E EI(A: B |Bi...Bi, ). < 7
2log(d)
So E E EI(A: B )x <
T1yevesls—1T1y-3Ts—1 1g D

with 1, the postselected state conditioned on outcomes (r,, ..., r, ;). Thus:

(4 In(2) log(d) ) t/2

E E El(m)as;, — (mr)a® (m)5,, [l <

L1 yeees Ts—1 T1yeens Ts—11g

D

(by Pinsker inequality)



Proof Sktech

Again: (4 In(2) log(d) ) 1/2
1 < D

I E K H(WT)AB% — (WT)A Y (WT)BiS

’il,...,is_l r1,...,7s—1 15

But (7). B, =1ida ® Ap,(pr). Choosing A an

2 1/2
<12 (d log(d))
D

|

Conversion factor from info-complete meas.

informationally-complete measurement:

E E  Ell(pr)as, — (pr)a® (pr)s,,

il,...,’is_l T14...sT5s—1 15




Proof Sktech

Again: (4 In(2) log(d) ) 1/2
1 < D

I K K H(ﬂ-'l")ABis — (WT)A Y (WT)B’LS

’il ..... is—l T1,..., Trs—11g

But (7). B, =1ida ® Ap,(pr). Choosing A an

2 1/2
<12 (d log(d))
D

|

Conversion factor from info-complete meas.

informationally-complete measurement:

E E  Ell(pr)as, — (pr)a® (pr)s,,

Tl yeees 2s—1T1y-yTs—1 1s

Separable state: 5 = 1D E (pf 2)A® ® (PF{)Bk
il,...,iS_l r1ry...,Ts—1 ’ kE[D] ’

Finally:

Ellpas, —oapli < E E  Ell(ps)as;, — (pr)a® (pr)s,, |Ix

1 215000905—1T1y.--3Ts—1 15

1o (Flsi0)



Product-State Approximation:
General Theorem

thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction
graph G(V, E) and |E| local terms.

Let {X.} be a partition of the sites with each X. having m sites.
Then there are states @, in X s.t.

1y s GrymH D1, b)) < unsat(H) + 9 (

&2 1n(d)®c E;S(X;) ) 1/8
m

2|
nD D

O : average expansion
S(X;) :entropy of
groundstate in X,




Product-State Approximation:
General Theorem

thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction
graph G(V, E) and |E| local terms.

Let {X.} be a partition of the sites with each X. having m sites.
Then there are states ¢, in X s.t.
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Summary and Open Questions

Summary:

Entanglement monogamy puts limitations on quantum PCPs
and on approaches for proving them.

Open questions:

Can we combine (BH ‘13) with (Aharonov, Eldar ‘13)? |.e. approximation for
highly expanding non-commuting k-local models?
(Needs to go beyond both product-state approximations and Bravyi-Vyalyi)

Relate quantum “blowing up” maps to quantum games?

Improved clock-constructions for better gap? (Daniel’s talk)

Understand better power of tensor network states (product states 15t level)

(dis)prove quantum PCP conjecture!
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Entanglement monogamy puts limitations on quantum PCPs
and on approaches for proving them.

Open questions:

Can we combine (BH ‘13) with (Aharonov, Eldar ‘13)? |.e. approximation for
highly expanding non-commuting k-local models?
(Needs to go beyond both product-state approximations and Bravyi-Vyalyi )

Relate quantum “blowing up” maps to quantum games?

Improved clock-constructions for better gap? (Daniel’s talk)

Understand better power of tensor network states (product states 15t level)

(dis)prove quantum PCP conjecture!

Thanks!



