Limitations for Quantum PCPs

Fernando G.S.L. Brandão

University College London

Based on joint work arXiv:1310.0017 with

Aram Harrow

MIT

Simons Institute, Berkeley, February 2014

Constraint Satisfaction Problems


```
(k, \Sigma, n, m)-CSP:
```

k: arity

Σ: alphabet

n: number of variables

m: number of constraints

Constraints: $C_i : \Sigma^k \rightarrow \{0, 1\}$

Assignment: $\sigma : [n] \rightarrow \Sigma$

(k, d, n, m)-qCSP H

k: arity

d: local dimension

n: number of qudits

m: number of constraints

Constraints: P_i k-local projection

Assignment: $|\psi\rangle$ quantum state

 (k, Σ, n, m) -CSP : C

k: arity

Σ: alphabet

n: number of variables

m: number of constraints

Constraints: $C_i : \Sigma^k \rightarrow \{0, 1\}$

Assignment: $\sigma : [n] \rightarrow \Sigma$

$$\operatorname{unsat}(H) := \min_{|\psi\rangle} \frac{1}{m} \sum_{j=1}^{m} \langle \psi | P_j | \psi \rangle$$

(k, d, n, m)-qCSP H

k: arity

d: local dimension

n: number of qudits

m: number of constraints

Constraints: P_i k-local projection

Assignment: $|\psi\rangle$ quantum state

 (k, Σ, n, m) -CSP : C

k: arity

Σ: alphabet

n: number of variables

m: number of constraints

Constraints: $C_i : \Sigma^k \rightarrow \{0, 1\}$

Assignment: $\sigma : [n] \rightarrow \Sigma$

$$\operatorname{unsat}(H) := \min_{|\psi\rangle} \frac{1}{m} \sum_{j=1}^{m} \langle \psi | P_j | \psi \rangle = \frac{1}{m} \lambda_{\min} \left(\sum_{j} P_j \right)$$

min eigenvalue

Hamiltonian

$$H = \sum_{j} P_{j} = \sum_{j} \operatorname{id}_{1,\dots,j-1} \otimes P_{j,j+1} \otimes \operatorname{id}_{j+2,\dots,n}$$

Ex 1: (2, 2, n, n-1)-qCSP on a line

$$H = \sum_{j} P_{j} = \sum_{j} \operatorname{id}_{1,\dots,j-1} \otimes P_{j,j+1} \otimes \operatorname{id}_{j+2,\dots,n}$$

Ex 2: (2, 2, n, m)-qCSP with diagonal projectors:

$$P_{j} = \sum_{x_{j_{1}}, x_{j_{2}}} C_{j}(x_{j_{1}}, x_{j_{2}}) |x_{j_{1}}, x_{j_{2}}\rangle \langle x_{j_{1}}, x_{j_{2}}|$$

$$= \min_{\{x_{1}, \dots, x_{n}\} \in \{0, 1\}^{n}} \sum_{j} \langle x_{1}, \dots, x_{n} | P_{j} | x_{1}, \dots, x_{n} \rangle / m$$

$$= \min_{\{x_{1}, \dots, x_{n}\} \in \{0, 1\}^{n}} C_{j}(x_{j_{1}}, x_{j_{2}}) / m$$

$$= \operatorname{unsat}(C)$$

PCP Theorem

PCP Theorem (Arora, Safra; Arora-Lund-Motwani-Sudan-Szegedy '98) There is a $\varepsilon > 0$ s.t. it's NP-hard to determine whether for a CSP, unsat = 0 or unsat $> \varepsilon$

- Compare with Cook-Levin thm:
 It's NP-hard to determine whether unsat = 0 or unsat > 1/m.
- Equivalent to the existence of Probabilistically Checkable Proofs for NP.
- (Dinur '07) Combinatorial proof.
- Central tool in the theory of hardness of approximation.

Quantum Cook-Levin Thm

Local Hamiltonian Problem

locality local dim

Given a (k, d, n, m)-qcsp H with constant k, d and m = poly(n), decide if unsat(H)=0 or unsat(H)> Δ

Thm (Kitaev '99) The local Hamiltonian problem is QMA-complete for $\Delta = 1/poly(n)$

QMA is the quantum analogue of NP, where the proof and the computation are quantum.

Quantum PCP?

```
The Quantum PCP conjecture: There is \varepsilon > 0 s.t. the following problem is QMA-complete: Given (2, 2, n, m)-qcsp H determine whether

(i) unsat(H)=0 or (ii) unsat(H) > \varepsilon.
```

- (Bravyi, DiVincenzo, Loss, Terhal '08) Equivalent to conjecture for (k, d, n, m)-qcsp for any constant k, d.
- At least NP-hard (by PCP Thm) and inside QMA
- Open even for commuting qCSP ([P_i, P_i] = 0)

- Hardness of approximation for QMA

- Hardness of approximation for QMA
- Quantum-hardness of computing mean groundenergy:
 no good ansatz for any low-energy state

(caveat: interaction graph expander; not very physical)

- Hardness of approximation for QMA
- Quantum-hardness of computing mean groundenergy:
 no good ansatz for any low-energy state
 - (caveat: interaction graph expander; not very physical)
- Sophisticated form of quantum error correction?

- Hardness of approximation for QMA
- Quantum-hardness of computing mean groundenergy: no good ansatz for any low-energy state
 (caveat: interaction graph expander; not very physical)
- Sophisticated form of quantum error correction?
- For more motivation see review (Aharonov, Arad, Vidick '13)
 and Thomas recorded talk on bootcamp week

- (Aharonov, Naveh '02) First mention

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"

« Quantum Computing Since Democritus Lecture 4: Minds and Machines

The Quantum PCPStill fiddling on the roof »
Manifesto

I'm 99% sure that this theorem (alright, conjecture) or something close to it is true. I'm 95% sure that the proof will require a difficult adaptation of classical PCP machinery (whether Iritean or pre-Iritean), in much the same way that the Quantum Fault-Tolerance Theorem required a difficult adaptation of classical fault-tolerance machinery. I'm 85% sure that the proof is achievable in a year or so, should enough people make it a priority. I'm 75% sure that the proof, once achieved, will open up heretofore undreamt-of vistas of understanding and insight. I'm 0.01% sure that I can prove it. And that is why I hereby bequeath the actual proving part to you, my readers.

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"

« Quantum Computing Since Democritus Lecture 4: Minds and Machines

The Quantum PCPStill fiddling on the roof wanifesto

I'm 99% sure that this theorem (alright, conjecture) or something close to it is true. I'm 95% sure that the proof will require a difficult adaptation of classical PCP machinery (whether Iritean or pre-Iritean), in much the same way that the Quantum Fault-Tolerance Theorem required a difficult adaptation of classical fault-tolerance machinery. I'm 85% sure that the proof is achievable in a year or so, should enough people make it a priority. I'm 75% sure that the proof, once achieved, will open up heretofore undreamt-of vistas of understanding and insight. I'm 0.01% sure that I can prove it. And that is why I hereby bequeath the actual proving part to you, my readers.

I'm quite certain that a Quantum PCP Theorem will require significant new ideas. Recently I spent a day or two studying Irit's proof of the classical PCP theorem (which I hadn't done before), and I found about 20 violations of the No-Cloning Theorem on every page.

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"
- (Aharonov, Arad, Landau, Vazirani '08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"
- (Aharonov, Arad, Landau, Vazirani '08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)
- (Arad '10) NP-approximation for 2-local (arity 2) almost commuting qCSP

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"
- (Aharonov, Arad, Landau, Vazirani '08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)
- (Arad '10) NP-approximation for 2-local (arity 2) almost commuting qCSP
- (Hastings '12; Hastings, Freedman '13) "No low-energy trivial states" conjecture and evidence for its validity

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"
- (Aharonov, Arad, Landau, Vazirani '08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)
- (Arad '10) NP-approximation for 2-local (arity 2) almost commuting qCSP
- (Hastings '12; Hastings, Freedman '13) "No low-energy trivial states" conjecture and evidence for its validity
- (Aharonov, Eldar '13) NP-approximation for *k*-local commuting qCSP on small set expanders and study of quantum locally testable codes

- (Aharonov, Naveh '02) First mention
- (Aaronson' 06) "Quantum PCP manifesto"
- (Aharonov, Arad, Landau, Vazirani '08) Quantum version of gap amplification by random walk on expanders (quantizing Dinur?)
- (Arad '10) NP-approximation for 2-local (arity 2) almost commuting qCSP
- (Hastings '12; Hastings, Freedman '13) "No low-energy trivial states" conjecture and evidence for its validity
- (Aharonov, Eldar '13) NP-approximation for k-local commuting
 qCSP on small set expanders and study of quantum locally testable codes
- (B. Harrow '13) Approx. in NP for 2-local non-commuting qCSP

this talk

"Blowing up" maps

```
prop For every t \ge 1 there is an efficient mapping from (2, \Sigma, n, m)-csp C to (2, \Sigma_t, n_t, m_t)-csp C_t s.t. 

(i) n_t \le n^{O(t)}, m_t \le m^{O(t)} 

(ii) deg(C_t) \ge deg(C)^t (iv) unsat(C_t) \ge unsat(C) 

(iii) |\Sigma_t| = |\Sigma|^t (v) unsat(C_t) = 0 if unsat(C) = 0
```

Example: Parallel Repetition(for kids) (see parallel repe

1. write C as a cover label instance L on G(V, W, E) with function $\Pi_{V,W}$: [N] -> [M]

Labeling I : V -> [N], W -> [M] covers edge (v, w) if
$$\Pi_{v,w}(I(w)) = I(v)$$

(see parallel repetition session on Thursday)

2. Define L_t on graph G'(V', W', E') with $V' = V^t$, $W' = W^t$, $[N'] = [N]^t$, $[M'] = [M]^t$

Edge set:
$$(v' = \{v_{i_1}, \dots, v_{i_t}\}, w' = \{w_{i_1}, \dots, w_{t_t}\}) \in E$$
 iff $(v_{i_j}, w_{i_j}) \in E, \ \forall \ i \in [n], 0 \le j \le t$

Function:
$$\Pi_{v',w'}(b_1,\ldots,b_t) = \{\Pi_{v_1,w_1},\ldots,\Pi_{v_t,w_t}\}$$

Example: Parallel Repetition

```
(for kids)
                                                                                             tition
               Easy to see:
                                                                                              ay)
1. write C (i) n_t \le n^{O(t)}, m^{O(t)}
  L on G( (ii) Deg(L_t) \ge deg(C)^t,
  Labeling (iii) unsat(L_t) \geq unsat(C),
  edge (v, (iv) |\Sigma_t| = |\Sigma|^t, (v) unsat(L_t) = 0 if unsat(C) = 0
               (vi) unsat(L_t) \geq unsat(C)
2. Define
              In fact: (Raz '95) If unsat(C) \geq \delta, unsat(L<sub>t</sub>) \geq 1 - \exp(-\Omega(\delta^3 t))
   V' = V^t
Edge set: (v' = \{v_{i_1}, \dots, v_{i_t}\}, w' = \{w_{i_1}, \dots, w_{t_t}\}) \in E
```

Edge set:
$$(v' = \{v_{i_1}, \dots, v_{i_t}\}, w' = \{w_{i_1}, \dots, w_{t_t}\}) \in E$$
 iff $(v_{i_j}, w_{i_j}) \in E, \ \forall \ i \in [n], 0 \leq j \leq t$

Function:
$$\Pi_{v',w'}(b_1,\ldots,b_t) = \{\Pi_{v_1,w_1},\ldots,\Pi_{v_t,w_t}\}$$

Quantum "Blowing up" maps + Quantum PCP?

Quantum "Blowing up" maps + Quantum PCP?

```
thm If for every t \ge 1 there is an efficient mapping from (2, d, n, m)-qcsp H to (2, d<sub>t</sub>, n<sub>t</sub>, m<sub>t</sub>)-qcsp H_t s.t.
```

```
(i) n_t \le n^{O(t)}, m_t \le m^{O(t)}
```

(ii)
$$Deg(H_t) \ge deg(H)^t$$
 (iv) $unsat(H_t) \ge unsat(H)$

(iii)
$$|d_t| = |d|^t$$
 (v) unsat $(H_t) = 0$ if unsat $(H) = 0$

then the quantum PCP conjecture is false.

Formalizes difficulty of "quantizing" proofs of the PCP theorem (e.g. Dinur's proof; see (Aharonov, Arad, Landau, Vazirani '08))

Obs: Apparently *not* related to parallel repetition for quantum games (see session on Thursday)

...is the main idea behind the result.

Entanglement cannot be freely shared

Ex. 1
$$\rho_{AB} = |\phi^{+}\rangle\langle\phi^{+}|_{AB}, \quad |\phi^{+}\rangle = (|0,0\rangle + |1,1\rangle)/\sqrt{2}, \quad \rho_{ABC} = \rho_{AB} \otimes \rho_{C}$$

...is the main idea behind the result.

Entanglement cannot be freely shared

Ex. 1
$$\rho_{AB} = |\phi^+\rangle\langle\phi^+|_{AB}, \quad |\phi^+\rangle = (|0,0\rangle + |1,1\rangle)/\sqrt{2}, \quad \rho_{ABC} = \rho_{AB}\otimes\rho_C$$

Ex. 2
$$|\text{CAT}\rangle_{A_1,...,A_n} = (|0,...,0\rangle + |1,...,1\rangle)/\sqrt{2}$$

$$\rho_{A_i A_i} := \operatorname{tr}_{A_i A_i} (|\operatorname{CAT}\rangle \langle \operatorname{CAT}|) = (|0,0\rangle \langle 0,0| + |1,1\rangle \langle 1,1|)/2$$

...is the main idea behind the result.

Entanglement cannot be freely shared

Ex. 1
$$\rho_{AB} = |\phi^{+}\rangle\langle\phi^{+}|_{AB}, \quad |\phi^{+}\rangle = (|0,0\rangle + |1,1\rangle)/\sqrt{2}, \quad \rho_{ABC} = \rho_{AB} \otimes \rho_{C}$$

Ex. 2 $|\text{CAT}\rangle_{A_{1},...,A_{n}} = (|0,...,0\rangle + |1,...,1\rangle)/\sqrt{2}$
 $\rho_{A_{i}A_{j}} := \text{tr}_{A_{i}A_{j}} (|\text{CAT}\rangle\langle\text{CAT}|) = (|0,0\rangle\langle0,0| + |1,1\rangle\langle1,1|)/2$

Monogamy vs cloning:

A maximally entangled with B₁ and B₂

...intuition:

 A can only be substantially entangled with a few of the Bs

 How entangled it can be depends on the size of A.

Ex.

...intuition:

- A can only be substantially entangled with a few of the Bs
- How entangled it can be depends on the size of A.

How to make it quantitative?

- 1. Study behavior of entanglement measures (see Patrick's talk) (distillable entanglement, squashed entanglement, ...)
- 2. Study specific tasks (QKD, MIP*, ...)
- 3. /Quantum de Finetti Theorems

(see sessions on MIP and device independent crypto)

(see also Aram's talk)

Quantum de Finetti Theorems

Let $\rho_{1,\dots,n}$ be permutation-symmetric, i.e.

Quantum de Finetti Thm:

$$ho_{1,...,l} pprox \sum_{k} p_k
ho_k^{\otimes l} \ rac{d^2 l}{n} \ ext{ (Christandl, Koenig, Mitchson, Renner '05)}$$

- In complete analogy with de Finetti thm for symmetric probability distributions
- But much more remarkable: entanglement is destroyed

Quantum de Finetti Theorems

Let $\rho_{1,\dots,n}$ be permutation-symmetric, i.e.

Quantum de Finetti Thm:

$$ho_{1,...,l} pprox \sum_{k} p_k
ho_k^{\otimes l} \ rac{d^2 l}{n} \ ext{ (Christandl, Koenig, Mitchson, Renner '05)}$$

- In complete analogy with de Finetti thm for symmetric probability distributions
- But much more remarkable: entanglement is destroyed
- Final installment in a long sequence of works: (Hudson, Moody '76), (Stormer '69), (Raggio, Werner '89), (Caves, Fuchs, Schack '01), (Koenig, Renner '05), ...
- Can we improve on the error? (see Aram's and Patrick's talk)
- Can we find a more general result, beyond permutation-invariant states?

General Quantum de Finetti

thm (B., Harrow '13) Let G = (V, E) be a D-regular graph with n = |V|. Let $\rho_{1,...,n}$ be a n-qudit state. Then there exists a *globally separable* state $\sigma_{1,...,n}$ such that

$$\mathbb{E}_{(i,j)\in E} \|\rho_{i,j} - \sigma_{i,j}\|_{1} \le 12 \left(\frac{d^{2}\ln(d)}{D}\right)^{1/3}$$

Globally separable (unentangled):

$$\sigma = \sum_{k} p_k \sigma_{k_1} \otimes \ldots \otimes \sigma_{k_n}$$
 probability local states

distribution

General Quantum de Finetti

thm (B., Harrow '13) Let G = (V, E) be a D-regular graph with n = |V|. Let $\rho_{1,...,n}$ be a n-qudit state. Then there exists a globally separable state $\sigma_{1,\dots,n}$ such that

$$\mathbb{E}_{(i,j)\in E} \|\rho_{i,j} - \sigma_{i,j}\|_{1} \le 12 \left(\frac{d^{2}\ln(d)}{D}\right)^{1/3}$$

Ex 1. "Local entanglement":

For (i, j) red: $\|\rho_{i,j} - \sigma_{i,j}\|_1 \ge 1/4$

But for all other (i, j): $ho_{i,j} =
ho_i \otimes
ho_j$

$$\sigma=
ho_1\otimes\ldots\otimes
ho_n$$
 gives good approx.

Red edge: EPR pair

General Quantum de Finetti

thm (B., Harrow '13) Let G = (V, E) be a D-regular graph with n = |V|. Let $\rho_{1,...,n}$ be a n-qudit state. Then there exists a *globally separable* state $\sigma_{1,...,n}$ such that

$$\mathbb{E}_{(i,j)\in E} \|\rho_{i,j} - \sigma_{i,j}\|_{1} \le 12 \left(\frac{d^{2}\ln(d)}{D}\right)^{1/3}$$

Ex 2. "Global entanglement":

Let $\rho = |\phi\rangle\langle\phi|$ be a Haar random state

 $|\phi\rangle$ has a lot of entanglement (e.g. for every region X, $S(X) \approx$ number qubits in X)

But:
$$ho_{i,j} pprox rac{\mathrm{id} \otimes \mathrm{id}}{d^2}$$

General Quantum de Finetti

thm (B., Harrow '13) Let G = (V, E) be a D-regular graph with n = |V|. Let $\rho_{1,...,n}$ be a n-qudit state. Then there exists a *globally separable* state $\sigma_{1,...,n}$ such that

$$\mathbb{E}_{(i,j)\in E} \|\rho_{i,j} - \sigma_{i,j}\|_{1} \le 12 \left(\frac{d^{2}\ln(d)}{D}\right)^{1/3}$$

Ex 3.

Let $\rho = |CAT> < CAT|$ with $|CAT> = (|0, ..., 0> + |1, ..., 1>)/<math>\sqrt{2}$

$$\rho_{i,j} = \frac{1}{2} |0,0\rangle\langle 0,0| + \frac{1}{2} |1,1\rangle\langle 1,1|$$

$$\sigma = \frac{1}{2}|0,\ldots,0\rangle\langle 0,\ldots,0| + \frac{1}{2}|1,\ldots,1\rangle\langle 1,\ldots,1|$$

gives a good approximation

Product-State Approximation

cor Let G = (V, E) be a D-regular graph with n = |V|. Let

$$H = \sum_{(i,j)\in E} P_{i,j}$$

Then there exists $|\phi\rangle = |\phi_1\rangle \otimes \ldots \otimes |\phi_n\rangle$ such that

$$\frac{2}{nD}\langle\phi|H|\phi\rangle \le \operatorname{unsat}(H) + 12\left(\frac{d^2\log(d)}{D}\right)^{1/3}$$

- The problem is in NP for $\varepsilon = O(d^2 \log(d)/D)^{1/3}$ (φ is a classical witness)
- Limits the range of parameters for which quantum PCPs can exist
- For any constants c, α, β > 0 it's NP-hard to tell whether unsat = 0 or unsat ≥ c $|\Sigma|^{\alpha}/D^{\beta}$

Product-State Approximation

From thm to cor:

Let ρ be optimal assignment (aka groundstate) for $H = \sum_{(i,j) \in E} P_{i,j}$ By thm:

$$\exists \ \sigma = \sum_k p_k \sigma_{k_1} \otimes \ldots \otimes \sigma_{k_n} \quad \text{ s.t. } \quad \underset{(i,j) \in E}{\mathbb{E}} \| \rho_{i,j} - \sigma_{i,j} \|_1 \leq 12 \left(\frac{d^2 \ln(d)}{D} \right)^{1/3}$$

Then

$$\frac{2}{nD}\operatorname{tr}(\sigma H) - \underbrace{\frac{2}{nD}\operatorname{tr}(\rho H)}_{(i,j)\in E}\operatorname{tr}(P_{i,j}(\sigma-\rho)) \leq \underbrace{\mathbb{E}}_{(i,j)\in E}\|\rho_{i,j} - \sigma_{i,j}\|_{1}$$

$$\operatorname{unsat}(H)$$

Product-State Approximation

From thm to cor:

Let ho be optimal assignment (aka groundstate) for $H = \sum_{(i,j) \in E} P_{i,j}$ By thm:

$$\exists \ \sigma = \sum_k p_k \sigma_{k_1} \otimes \ldots \otimes \sigma_{k_n} \quad \text{ s.t. } \quad \underset{(i,j) \in E}{\mathbb{E}} \| \rho_{i,j} - \sigma_{i,j} \|_1 \leq 12 \left(\frac{d^2 \ln(d)}{D} \right)^{1/3}$$

Then

$$\frac{2}{nD}\operatorname{tr}(\sigma H) - \underbrace{\frac{2}{nD}\operatorname{tr}(\rho H)}_{(i,j)\in E}\operatorname{tr}(P_{i,j}(\sigma - \rho)) \leq \underbrace{\mathbb{E}}_{(i,j)\in E}\|\rho_{i,j} - \sigma_{i,j}\|_{1}$$

$$\operatorname{unsat}(H)$$

So

$$\frac{2}{nD} \sum_{k} p_k \operatorname{tr}(\sigma_{k_1} \otimes \ldots \otimes \sigma_{k_n} H) = \frac{2}{nD} \operatorname{tr}(\sigma H) \leq \operatorname{unsat}(H) + 12 \left(\frac{d^2 \ln(d)}{D}\right)^{1/3}$$

Coming back to quantum "blowing up" maps + qPCP

thm If for every $t \ge 1$ there is an efficient mapping from (2, d, n)-qcsp H to (2, d_t, n_t)-qcsp H_t s.t.

(i)
$$n_t \le n^{O(t)}$$

(ii)
$$Deg(H_t) \ge deg(H)^t$$
 (iv) $unsat(H_t) \ge unsat(H)$

(iii)
$$|d_t| = |d|^t$$
 (v) unsat $(H_t) = 0$ if unsat $(H) = 0$

then the quantum PCP conjecture is false.

Suppose w.l.o.g. $d^2\log(d)/D < \frac{1}{2}$ for C. Then there is a product state φ s.t.

$$\frac{2}{n_t D_t} \langle \phi | H_t | \phi \rangle \le \operatorname{unsat}(H_t) + 12 \left(\frac{d_t^2 \log(d_t)}{D_t} \right)^{1/3} \le \operatorname{unsat}(H_t) + 12 \left(\frac{d^2 \log(d)}{D} \right)^{t/3}$$

Proving de Finetti Approximation

For simplicity let's consider a *star* graph

Want to show: there is a state

$$\sigma_{AB_1,\ldots,B_D} = \sum_k p_k \sigma_{A,k} \otimes \sigma_{B_1,k} \otimes \ldots \otimes \sigma_{B_D,k}$$

$$\sigma_{AB_1,...,B_D} = \sum_k p_k \sigma_{A,k} \otimes \sigma_{B_1,k} \otimes \ldots \otimes \sigma_{B_D,k}$$
s.t.
$$\mathbb{E} \|\rho_{AB_i} - \sigma_{AB_i}\|_1 \le 12 \left(\frac{d^2 ln(d)}{D}\right)^{1/3}$$

Proving de Finetti Approximation

For simplicity let's consider a *star* graph

Want to show: there is a state

$$\sigma_{AB_1,\ldots,B_D} = \sum_k p_k \sigma_{A,k} \otimes \sigma_{B_1,k} \otimes \ldots \otimes \sigma_{B_D,k}$$

$$\sigma_{AB_1,...,B_D} = \sum_k p_k \sigma_{A,k} \otimes \sigma_{B_1,k} \otimes \ldots \otimes \sigma_{B_D,k}$$
s.t.
$$\mathbb{E} \|\rho_{AB_i} - \sigma_{AB_i}\|_1 \le 12 \left(\frac{d^2 ln(d)}{D}\right)^{1/3}$$

I(X:Y) = H(X) + H(Y) - H(XY)

Idea: Use information theory. Consider
$$\mathbb{E}_{i_1,...,i_D} I(A:B_{i_1},\dots,B_{i_D})$$
 mutual info:

(i) $I(A:B_{i_1},\ldots,B_{i_D}) \leq 2\log(d)$

(ii)
$$I(A:B_{i_1},\ldots,B_{i_D})=I(A:B_{i_1})+\ldots+I(A:B_{i_D}:B_{i_1}\ldots B_{i_{D-1}})$$

Proving de Finetti Approximation

For simplicity let's consider a *star* graph

Want to show: there is a state

$$\sigma_{AB_1,\ldots,B_D} = \sum_k p_k \sigma_{A,k} \otimes \sigma_{B_1,k} \otimes \ldots \otimes \sigma_{B_D,k}$$

s.t.
$$\mathbb{E}_{i} \| \rho_{AB_{i}} - \sigma_{AB_{i}} \|_{1} \leq 12 \left(\frac{d^{2} ln(d)}{D} \right)^{1/3}$$

Idea: Use information theory. Consider
$$\mathbb{E}_{i_1,...,i_D} I(A:B_{i_1},\ldots,B_{i_D})$$

(i)
$$I(A:B_{i_1},\ldots,B_{i_D}) \leq 2\log(d)$$

(ii)
$$I(A:B_{i_1},\ldots,B_{i_D})=I(A:B_{i_1})+\ldots+I(A:B_{i_D}:B_{i_1}\ldots B_{i_{D-1}})$$

$$\{\exists s \leq D : \underset{i_1,\dots,i_{s-1}}{\mathbb{E}} \underset{i_s}{\mathbb{E}} I(A : B_{i_s}|B_{i_1}\dots B_{i_{s-1}}) \leq \frac{2\log(d)}{D}\}$$

What small conditional mutual info implies?

$$\{\exists s \leq D : \underset{i_1,\dots,i_{s-1}}{\mathbb{E}} \underset{i_s}{\mathbb{E}} I(A : B_{i_s}|B_{i_1}\dots B_{i_{s-1}}) \leq \frac{2\log(d)}{D}\}$$

For X, Y, Z random variables

$$I(X:Y|Z)_p = \mathbb{E}_z I(X:Y)_{p_z}$$

$$p_z(x,y) = p(x,y,z)/p(z)$$

No similar interpretation is known for I(X:Y|Z) with *quantum* Z

Solution: Measure sites i_1 ,, i_{s-1}

Consider a measurement
$$\Lambda(X):=\sum_k \operatorname{tr}(M_k X)|k\rangle\langle k|$$
 and
$$\pi=\operatorname{id}_A\otimes \Lambda^{\otimes D}(\rho)$$
 POVM

Consider a measurement
$$\Lambda(X):=\sum_k \mathrm{tr}(M_kX)|k\rangle\langle k|$$
 and $\pi=\mathrm{id}_A\otimes\Lambda^{\otimes D}(\rho)$

There exists
$$s \le D$$
 s.t. $\mathbb{E}_{i_1,...,i_{s-1}} \mathbb{E}_{i_s} I(A:B_{i_s}|B_{i_1}...B_{i_{s-1}})_{\pi_r} \le \frac{2\log(d)}{D}$

So
$$\mathbb{E}_{i_1,\ldots,i_{s-1}} \mathbb{E}_{r_1,\ldots,r_{s-1}} \mathbb{E}_{i_s} I(A:B_{i_s})_{\pi_r} \leq \frac{2\log(d)}{D}$$

with π_r the postselected state conditioned on outcomes $(r_1, ..., r_{s-1})$.

Consider a measurement
$$\Lambda(X):=\sum_k \mathrm{tr}(M_kX)|k\rangle\langle k|$$
 and $\pi=\mathrm{id}_A\otimes\Lambda^{\otimes D}(\rho)$

There exists
$$s \le D$$
 s.t. $\mathbb{E}_{i_1,...,i_{s-1}} \mathbb{E}_{i_s} I(A:B_{i_s}|B_{i_1}...B_{i_{s-1}})_{\pi_r} \le \frac{2\log(d)}{D}$

So
$$\mathbb{E}_{i_1,\ldots,i_{s-1}} \mathbb{E}_{r_1,\ldots,r_{s-1}} \mathbb{E}_{i_s} I(A:B_{i_s})_{\pi_r} \leq \frac{2\log(d)}{D}$$

with π_r the postselected state conditioned on outcomes $(r_1, ..., r_{s-1})$. Thus:

$$\mathbb{E}_{i_1,\dots,i_{s-1}} \mathbb{E}_{r_1,\dots,r_{s-1}} \mathbb{E}_{i_s} \|(\pi_r)_{AB_{i_s}} - (\pi_r)_A \otimes (\pi_r)_{B_{i_s}} \|_1 \le \left(\frac{4\ln(2)\log(d)}{D}\right)^{1/2}$$

(by Pinsker inequality)

Again:

Again:
$$\mathbb{E}_{i_1,...,i_{s-1}} \mathbb{E}_{r_1,...,r_{s-1}} \mathbb{E}_{i_s} \| (\pi_r)_{AB_{i_s}} - (\pi_r)_A \otimes (\pi_r)_{B_{i_s}} \|_1 \le \left(\frac{4\ln(2)\log(d)}{D} \right)^{1/2}$$

But
$$(\pi_r)_{A,B_i}=\mathrm{id}_A\otimes\Lambda_{B_i}(\rho_r)$$
. Choosing Λ an

informationally-complete measurement:

$$\mathbb{E}_{i_1,\dots,i_{s-1}} \mathbb{E}_{r_1,\dots,r_{s-1}} \mathbb{E}_{i_s} \| (\rho_r)_{AB_{i_s}} - (\rho_r)_A \otimes (\rho_r)_{B_{i_s}} \|_1 \le 12 \left(\frac{d^2 \log(d)}{D} \right)^{1/2}$$

Conversion factor from info-complete meas.

Again:
$$\mathbb{E}_{i_1,...,i_{s-1}} \mathbb{E}_{r_1,...,r_{s-1}} \mathbb{E}_{i_s} \| (\pi_r)_{AB_{i_s}} - (\pi_r)_A \otimes (\pi_r)_{B_{i_s}} \|_1 \le \left(\frac{4 \ln(2) \log(d)}{D} \right)^{1/2}$$

But $(\pi_r)_{A,B_i}=\mathrm{id}_A\otimes\Lambda_{B_i}(\rho_r)$. Choosing Λ an

informationally-complete measurement:

$$\mathbb{E}_{i_1,\dots,i_{s-1}} \mathbb{E}_{r_1,\dots,r_{s-1}} \mathbb{E}_{i_s} \| (\rho_r)_{AB_{i_s}} - (\rho_r)_A \otimes (\rho_r)_{B_{i_s}} \|_1 \le 12 \left(\frac{d^2 \log(d)}{D} \right)^{1/2}$$

Conversion factor from info-complete meas.

Separable state:
$$\sigma = \mathbb{E}_{i_1,...,i_{s-1}} \mathbb{E}_{r_1,...,r_{s-1}} (\rho_{\vec{r},\vec{i}})_A \otimes \left(\bigotimes_{k \in [D]} (\rho_{\vec{r},\vec{i}})_{B_k}\right)$$

Finally:

$$\mathbb{E}_{i} \| \rho_{AB_{i}} - \sigma_{AB_{i}} \|_{1} \leq \mathbb{E}_{i_{1},...,i_{s-1}} \mathbb{E}_{r_{1},...,r_{s-1}} \mathbb{E}_{i_{s}} \| (\rho_{s})_{AB_{i_{s}}} - (\rho_{r})_{A} \otimes (\rho_{r})_{B_{i_{s}}} \|_{1} \\
\leq 12 \left(\frac{d^{2} \log(d)}{D} \right)$$

Product-State Approximation: General Theorem

thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction graph G(V, E) and |E| local terms.

Let $\{X_i\}$ be a partition of the sites with each X_i having m sites. Then there are states ϕ_i in X_i s.t.

$$\left| \frac{2}{nD} \langle \phi_1, \dots, \phi_{n/m} | H | \phi_1, \dots, \phi_{n/m} \rangle \le \operatorname{unsat}(H) + 9 \left(\frac{d^2 \ln(d) \Phi_G}{D} \frac{\mathbb{E}_i S(X_i)}{m} \right)^{1/6} \right|$$

 Φ_{G} : average expansion

S(X_i) : entropy of

groundstate in X_i

Product-State Approximation: General Theorem

thm Let H be a 2-local Hamiltonian on qudits with D-regular interaction graph G(V, E) and |E| local terms.

Let $\{X_i\}$ be a partition of the sites with each X_i having m sites. Then there are states ϕ_i in X_i s.t.

$$\frac{2}{nD}\langle\phi_1,\ldots,\phi_{n/m}|H|\phi_1,\ldots,\phi_{n/m}\rangle \leq \operatorname{unsat}(H) + 9\left(\frac{d^2\ln(d)\Phi_G}{D}\mathbb{E}_iS(X_i)\right)^{1/6}$$

S(X_i) : entropy of groundstate in X_i

1. Degree

2. Average Expansion

3. Average entanglement

ize **m**

Summary and Open Questions

Summary:

Entanglement monogamy puts limitations on quantum PCPs and on approaches for proving them.

Open questions:

- Can we combine (BH '13) with (Aharonov, Eldar '13)? I.e. approximation for highly expanding non-commuting k-local models?
 (Needs to go beyond both product-state approximations and Bravyi-Vyalyi)
- Relate quantum "blowing up" maps to quantum games?
- Improved clock-constructions for better gap? (Daniel's talk)
- Understand better power of tensor network states (product states 1st level)
- (dis)prove quantum PCP conjecture!

Summary and Open Questions

Summary:

Entanglement monogamy puts limitations on quantum PCPs and on approaches for proving them.

Open questions:

- Can we combine (BH '13) with (Aharonov, Eldar '13)? I.e. approximation for highly expanding non-commuting k-local models?
 (Needs to go beyond both product-state approximations and Bravyi-Vyalyi)
- Relate quantum "blowing up" maps to quantum games?
- Improved clock-constructions for better gap? (Daniel's talk)
- Understand better power of tensor network states (product states 1st level)
- (dis)prove quantum PCP conjecture!

Thanks!