Robust demographic inference from genomic and SNP data

Laurent Excoffier

Isabelle Duperret, Emilia Huerta-Sanchez, Matthieu Foll, Vitor Sousa, Isabel Alves

Computational and Molecular Population Genetics Lab (CMPG) Institute of Ecology and Evolution University of Berne Swiss Institute of Bioinformatics

Past demography affect genetic diversity

SiB Swiss Institu

b

Site Frequency Spectrum (SFS) depends on past demography

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Swiss Institute of Bioinformatics

Problems with estimation of demographic parameters from SFS

Can one learn history from the allelic spectrum?

Simon Myers^a, Charles Fefferman^b, Nick Patterson^{a,*}

^a Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge MA 02142, United States ^b Deptartment of Mathematics, Fine Hall, Washington Road, Princeton, NJ 08544, United States

> Received 17 March 2007 Available online 30 January 2008

and a service of the other open and the open

5 UNIVERSITÄT BERN

h

Estimation of demographic parameters from SFS with dadi

b UNIVERSITÄT BERN

PLOS GENETICS

h

OPEN OACCESS Freely available online

2009

Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

Ryan N. Gutenkunst^{1*}, Ryan D. Hernandez², Scott H. Williamson³, Carlos D. Bustamante³

Program $\partial a \partial i$: Diffusion Approximation for Demographic Inference <u>http://code.google.com/p/dadi/</u>

dadi estimates the site frequency spectrum based on a diffusion approximation

Advantages of SFS for parameter inference

- Accuracy of estimates increases with data size, but computing time does not
- Can be used to study complex scenarios (e.g. as complex as ABC)
- Very fast estimations (as compared to ABC, or full likelihoods)

1L^b

UNIVERSITÄT RERN

Potential problems

- Maximization of the CL is not trivial (precision of the approximation and convergence problems)
- Ignores (assumes no) LD
- Need to repeat estimations to find maximum CL
- Needs genomic data (several Mb)
 - difficult to have gene-specific estimates
- Next-generation sequencing data must have high coverage to correctly estimate SFS (likely to miss singletons or show errors).
- SFS needs to be estimated from the NGS reads (ML methods: Nielsen et al. 2013, Keightley and Halligan, 2011)

JNIVERSITÄT

Estimating the SFS with coalescent simulations

The probability of a SFS entry *i* can be estimated under a specific model θ from its expected coalescent tree as (Nielsen 2000) a **ratio of expected branch lengths**

$$p_i = E(t_i \mid \theta) / E(T \mid \theta)$$

t_i: total length of all branches directly leading to *i* terminal nodesT: total tree length.

This probability can then be estimated on the basis of Z

simulations as

$$\hat{p}_i = \sum_j^Z \sum_{k \in \Phi_i} b_{kj} \left/ \sum_j^Z T_j \right|$$

where b_{kj} is the length of the *k*-th compatible branch in simulation *j*.

b

UNIVERSITÄT

Likelihood

b UNIVERSITÄT BERN

The (composite) likelihood of a model θ is obtained as a multinomial sampling of sites (Adams and Hudson, 2004)

$$CL = \Pr(SFS_{obs} \mid \theta) \propto P_0^M (1 - P_0)^S \prod_{i=1}^{n-1} \hat{p}_i^{m_i}$$

- M: number of monomorphic sites
- S : number of polymorphic sites
- P_0 : probability of no mutation on the tree
- p_i : probability of the *i*-th SFS entry
- *m*_i: number of sites with derived frequency *i*

This can be generalized for the joint SFS of two or more populations

fastsimcoal2 program

- b UNIVERSITÄT BERN
- Uses coalescent simulations to estimate the SFS and approximate the likelihood
 - Large number of simulations per point (>50000)
- Uses a **conditional expectation maximization** (CEM) algorithm to find maxCL parameters
- Relatively fast and can explore wide and unbounded parameter ranges
- Can handle an arbitrary number of populations
- For more than 4 populations, we use a composite compositelikelihood

$$\mathsf{CL}_{1234\dots} = \mathsf{CL}_{12} \times \mathsf{CL}_{13} \times \mathsf{CL}_{14} \times \dots \times \mathsf{CL}_{23} \times \dots$$

Approximation of the SFS

Chen (2012) TPB Coalescent approach to infer the expected joint SFS numerically

 $T_{DIV}=10$ Е D T=0.001 - Relative Error 25 25 nsim 1000 nsim 10000 nsim 1e+05 20 20 nsim 1e+06 5 5 density density 9 5 S S 0 0 -0.15 0.00 0.10 0.15 -0.15 -0.10-0.050.05 Relative Error (fastsimcoal-exp)/exp Relative Error (fastsimcoal-exp)/exp

b

Bottleneck model

1, ^b

Swiss Institute of

 $u^{\scriptscriptstyle b}$

SIB Swiss Institute of Bioinformatics

© 2012 SIB

Swiss Institute of Bioinformatics

Herarchical island model

SIB

b

Application: Complete genomics data

UNIVERSITÄT BERN

Four sampled human populations:

4 Luhya from Kenya (LWK)
9 Europeans (CEU)
9 Yoruba (YRI)
5 African Americans (ASW)

(sequenced at 51-89x per genome)

Data:

Multidimensional SFS estimated from : 239, 120 SNPs in non-coding and non CpG regions Each SNP more than 5 Kb away from the other

Model of admixture in African Americans

UNIVERSITÄT Bern

b

IM model

Two models with different degrees of realism and complexity

3 populations 5 populations The estimation of each model were performed separately for the San (109,020 SNPs) and the Yoruba (81,383 SNPs) SNP panels

2 continent-island model

SiB Swiss Institute of Bioinformatics

IM model

А

16,000

Den

TEY

NANC

 N_{AFR}

asy

TDIV

N_{SAN}

2 continent-island model

SIB

NANC

В

© 2012 SIB

Model B

	Panel 4 (S	Panel 4 (San)		Panel 5 (Yoruba)	
Parameter	Point s estimation	95% Cl ^{ab}	Point estimation	n 95% Cl ^{ab}	
N _{ANC}	9612	8977–10424	9013	8384–10146	
N _{AFR}	23849	21634-44081	21762	15867-46813	
NCs	180,771	16598-411442	224,695	38694-446151	
NCY	96,071	2464-461785	251,150	67722-428360	
NDs	3,704	412–6996	5187	2,000-5,700	
N _{AY}	10251	2456-461785	5480	1730-15823	
NDY	644	85–4553	3654	517-4680	
2Nms	5.9	4.6-14	3.7	3.4–18	
2Nm _Y	37.4	5–77	36.8	25-88	
Ta	1,475 y	10-100	1,925 y	16–95	
a _{YS}	0.19	0.04-0.28	0.08	0.03-0.19	
a _{SY}	0.08	0.04-0.18	0.16	0.06-0.25	
m _{SY}	4.45E-05	2.3E-06-9.9E-04	2.56E-04	3.1E-06-1.0E-03	
m _{YS}	1.11E-04	1.2E-05-6.3E-04	1.53E-04	6.2E-06-2.4E-04	
T _{EY}	4,250 y	101–691	7,450 y	162–567	

2482-9710

258,250 y

5358-12561

 T_{DS}

138,250 y

Inference of archaic admixture in modern humans

Data set:

Non coding DNA and non CpG sites. Altai Neandertal (Prüfer et al. 2013), unfiltered vcf 271,994 regions of 100 bp in non-coding DNA Ancestral state deduced by 1000G for 26,466,040 bp (26.5Mb) All regions are at least 5 Kb apart from each other

น

UNIVERSITÄT

Inference of archaic admixture in modern humans

Very preliminary results

Archaic admixture - f = 0.125 in Altai Neandertal

(assuming u=2e-8)

 $\boldsymbol{u}^{\scriptscriptstyle b}$

UNIVERSITÄT

BERN

N_{ANH}

Possible extensions

6 UNIVERSITÄT BERN

h

- Multiprocessor version of fsc
- MCMC (Beaumont 2004, Garrigan 2009)
- Multilocus SFS
- Coalescent simulations through pedigrees

Thanks to:

Isabelle Duperret Emilia Huerta-Sanchez Isabel Alves Vitor Sousa Matthieu Foll

Rasmus Nielsen

CMPG lab

FNSNF SWISS NATIONAL SCIENCE FOUNDATION David Reich Nick Patterson

