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Talk Outline

* Part I: k-Nearest neighbors: Regression and

Classification

* Part ll: k-Nearest neighbors (and other non-

parametrics): Adversarial examples



Adversarial Examples
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Adversarial Examples

Slight strategic modification of test input
causes misclassification



Many Classifiers are Vulnerable to
Adversarial Examples
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State of the Art

- Many, many attacks
- Many defenses, to be broken again

- Some certifiable defenses

- Limited understanding on why these examples exist

Our Work: Adversarial examples for nearest neighbors



Talk Outline

» Adversarial Examples

» A Statistical Learning Framework for Robustness

» Adversarial Examples for Nearest Neighbors

+ Small and large k
+ A Robust Modified Nearest Neighbor

- Beyond Nearest Neighbors

* The r-Optimal Classifier

- Experiments



Statistical Learning Framework

Metric space (X, d)
Underlying measure 11 on X from which points are drawn

Label of x is a coin flip with bias n(x) = Pr(y = 1|x)

Accuracy of a classifier f is acc(f) = Pr(f(x) = y)

Goal: Find classifiers f with max accuracy



Definitions

Robustness Radius: of a classifier f at x is the distance
to the closest z such that f(x) # f(z)

Denoted by p(f, x)

Higher robustness radius
implies robust classifier at x




Robustnhess wrt Distribution

Robustness of a classifier f at radius r wrt
underlying distribution p:

High R implies high robustness on inputs from distribution



Robustness Definitions

* Classifier
A(Snh)

Distributional robustness of A at radius r is

lim E[R(A(Sy), T, )]

n— oo

a )

* Algorithm A

\ J

Training
Data Si

Finite sample robustness of A gives bounds on
CIR(A(S,), T, )] for finite n

[Wang, |ha, Chaudhuri’ | 8]



Astuteness: Combining
Robustness and Accuracy

The astuteness of classifier f at radius r is defined as:

ast(f,r) = Pr(f(z) =y, p(f,x) > 1)

Fraction of points
where f is robust and accurate

Goal of robust learning is
maximizing astuteness

Distributional and finite sample astuteness: similar

[Wang, |ha, Chaudhuri’ |8, Tsipras+19]



Prior Work - Parametric Methods

* [Schmidt+ 18] For linear classifiers, adversarial
robustness requires more data

* [Bubeck+18] Achieving robustness to adversarial
examples may be more computationally challenging

 Others - [Yin+18, Montesser+19] - bounds on
adversarial generalization



How to non-parametric methods respond
to adversarial examples?



Tutorial Outline

» Adversarial Examples

- A Statistical Learning Framework for Robustness

» Adversarial Examples for Nearest Neighbors

» Small and large k
+ A Robust Modified Nearest Neighbor

- Beyond Nearest Neighbors

« Generic Attacks
* The r-Optimal Classifier

- Experiments



When is nearest neighbors robust
to adversarial examples!?



| -Nearest Neighbors

Theorem: If 1 is continuous and if in a neighborhood

of X, we have 7 € (0, 1),then the robustness radius as x

converges to 0 with growing n

@
2 @ ®
Distributional robustness “x. ®e
° @ @ @

(and astuteness) is 0 s . ® o

@ @

: @

Accuracy may be high ® o



Proof Intuition

Theorem: If {4 is continuous and if in a neighborhood

of x, we have 77 € (0, 1),then the robustness radius as x

converges to 0 with growing n

@
As n grows, more points in B(x, r) ® \¢
If n € (0,1),at least one of themz g “
a different label than x ® s @
& @

. : @
This z is an adversarial example e o



Constant k

Theorem: If {4 is continuous and if in a neighborhood

of x, we have 77 € (0, 1),then the robustness radius as x

converges to 0 with growing n

@
® @
Similar argument also holds for &
constant k ® ®
@ e @
@ @



What about larger k?



Reminder: k-NN Accuracy

The risk of I-NN converges to Ex[2n(X)(1 —n(X))]
as n grows (more than Bayes Optimal risk)

Ik NN is also inconsistent for constant k

If k, — coand k,,/n — 0 then, the risk of kn.-NN
converges to the risk of the Bayes Optimal



kn-NIN Robustness

What can we expect! Robust where
Bayes Optimal is robust

Where is the Bayes Optimal robust!?



Some Notation

B(x, rp(x))

Probability-radius rp(x):
rp(x) = inf{r|u(B(z,r)) = p}



Robust Interiors

Positive: XJ,rp,A = {z|V2' € B(z,r),Va" € B(z',r,(2")),

[r‘l

n(z") > 1/2+ A}




Robust Interiors

Positive: Xip,A = {z|V2' € B(z,r),Y2" € B(2',r,(2")),
n(z") > 1/2+ A}

Negative: X, , » = {z[V2’ € B(z,r),Va" € B(a',rp(2")),
n(z'") <1/2 — A}




Robust Interiors

Positive: Xip,A = {z|V2' € B(z,r),Y2" € B(2',r,(2")),
n(z") > 1/2+ A}

Negative: X, , » = {z[V2’ € B(z,r),Va" € B(a',rp(2")),
n(z'") <1/2 — A}

(r,p, A) -Interiors =

Positive + Negative




Where is Bayes Optimal Robust!?

Bayes Optimal has robustness
. . _|_ —
radius rin X'y o U X,




Where is Bayes Optimal Robust!?

Bayes Optimal has robustness
. . _|_ —
radius rin X'y o U X,

Astuteness of Bayes Optimal
at radius r is

Lx [n(@)1(z € Al o)
+(1 = n(z))1(z € X))l




Robustness of k,-NN

Theorem: Let A, — O0.If k, > \/dn logn/A,, and

En
pn = —(1+0(1)) then w.h.p kn-nearest neighbors has

mn
. . + —
robustness radius at least rin X[ A UX A

sPn,



Robustness of k,-NN

Theorem: Let A, — O0.If k, > \/dn logn/A,, and

Pn = k—”(l + 0(1)) then w.h.p kn-nearest neighbors has

mn
. . + —
robustness radius at least rin X[ A UX A

sPn,

Growth of k, much faster than required for accuracy



Robustness of k,-NN

Theorem: Let A, — O0.If k, > \/dn logn/A,, and

Pn = %”(1 + 0(1)) then w.h.p kn-nearest neighbors has

robustness radius at least r in XfpmAn JAX. A

Growth of k, much faster than required for accuracy

If p, = k./n — 0, and A,, — 0, then
XE A UX " A =X UX g

TsPn TsPn,

(Robustness region
of Bayes Optimal)



Proof Intuition

For k,, > \/dnlogn/A,, by uniform convergence, for all x,

En (1~ o(1)) < (Bla, o — xE) < 214 0(1)
&
° o ¢
@
& : ‘X‘ o &
o ® o o



Proof Intuition

For k,, > \/dnlogn/A,, by uniform convergence, for all x,

B (1~ o(1)) < u(B(a, o — X)) < &

: (14 o(1))

If ' e X" A forall 2’ € B(z', X*) (")), n(z") > 1/2 + A,
@

o o ®

@ .“X‘ “

1 : 1
i — () (! -
By uniform convergence, i EZ YW(z") > ;



Can we get robustness for | NN?

Yes, through a modified algorithm....



When is Nearest Neighbors Robust!?

| -nearest neighbor is robust at x if:
- points with different labels are well-separated
- X is close to a point with the same label

7 \ O
/ ® * o
X ‘ ‘
\, ’ 4 ‘ ‘
~ .



Algorithm ldea

- Remove a subset of training data such that differently

labeled points are far apart

- Do I-nearest neighbors on remaining data



Algorithm ldea

- Remove a subset of training data such that differently
labeled points are far apart

- Do I-nearest neighbors on remaining data

Keep points with confident
Which points to remove? labels, and a2 maximal subset
of the rest



r-separation

A set of points {(xi, yi)} is r-separated if
i 7 Y = v — x| = 2r

&
® 2r

00‘/




Getting Confident Labels

Input: X, training data of size n, parameters 0, A

kn, = 3log(2n/5)/A?



Getting Confident Labels

Input: X, training data of size n, parameters 0, A
kn, = 3log(2n/5)/A?

k
1 - . .
_ (2)
Y = P ;:1 Y\ (x) / ° \



Getting Confident Labels

Input: X, training data of size n, parameters 0, A

kn, = 3log(2n/5)/A?

1 k. | ‘—-.
Y:k—ZY(’)(az) / o )
"i=1 _
If YE{E—AE—FA} then \ /
2 "9 o

return “‘Don’t Know”

Else return round(Y)



Full Algorithm

Input: x, training data S, radius r, parameters 9, A

Foralli: f(xi) = ConfidentLabel (x; S, 0, A)



Full Algorithm

Input: x, training data S, radius r, parameters 9, A

Foralli: f(x;) = ConfidentLabel (x;, S, 0, A)

T = emptyset

For all i: if f(x;) = yi and f(x;) = f(x;) for all x;j in B(xi, r) then
Add (xi,yi) toT



Full Algorithm

Input: x, training data S, radius r, parameters 9, A

Foralli: f(x;) = ConfidentLabel (x;, S, 0, A)

T = emptyset

For all i: if f(x;) = yi and f(x;) = f(x;) for all x;j in B(xi, r) then
Add (xi,yi) toT

Return the largest r-separated subset of S that contains T
as training data for nearest neighbor



When is this algorithm robust!?

Theorem: Fix 0,A, ,and let k, = 3log(n/2§)/A?, and
— @(1 + O(v/d/ky)). For a parameter t, define a set X;:

n

DPn
Xp = {:13\:1:’ € X,:Srt,pmAn UX i A k(B(z,t)) > Cdlog n/n}

Whp, algorithm has robustness radius at least r - 2t on Xr



When is this algorithm robust!?

Theorem: Fix 0,A, ,and let k, = 3log(n/2§)/A?, and
— @(1 + O(v/d/ky)). For a parameter t, define a set X;:

n

DPn
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When is this algorithm robust!?

Theorem: Fix 0,A, ,and let k, = 3log(n/2§)/A?, and

Dn = @(1 + ©(\/d/ky)). For a parameter t, define a set X::

n

Xp = {:13\:1:’ c X', oA, UX A (B, 1)) 2> Cdlogn/n}

Whp, algorithm has robustness radius at least r - 2t on Xr

XRr is a high density subset of X’ TH PN S SN

_|_ — —
As t,pn,An =0, X, A, VX A, = X0 U oo

(robust region of Bayes Opt)



Proof Intuition

Let z; € X" A UX_ . and y; = 1(n(z) > 1/2)

T,pn, ’rapna

From property of kn, (i, yi) gets added to T

If x is in Xg, by uniform convergence, there is an (x;, yi) in S
and B(x, t). This (xi, yi) will get added to the final training set

X X .
Since T is r-separated, MX’
Xj ‘

any x; with a different y;

will be at least 2r away ® o o
from x;. Triangle inequality ®

gives radius r - 2t.




How does it work?



Experiments: Details

Baselines:
» StandardNN: Standard |-NN using full training set

e RobustNN: Our method

 ATNN: Adversarially-trained |-NN, dataset augmented using
corresponding attack

 ATNNe-all: Adversarially-trained |-NN, dataset augmented
using all attack methods

Datasets: Half-moon, MNIST v/, UCI Abalone



White-box Attacks

Direct Attack [ABEFI16]:

Find closest X’ in training set ;, Xa
with different label

Move a distance r towards x’

Substitute Attack [PMGI 6]:

Find kernel classifier (soft nearest neighbors)

Attack with standard gradient-based methods



©c © ¥
o

o
~

Classification Accuracy
o
o

o

S

=

o
©

o
~

Classification Accuracy
o
[«

o
()

White-Box Attack Results

O

o

ot
o

Halfmoon
000000000000004."_’
~#- StandardNN
- RoObustNN
07 —e~ ATNN
—o— ATNN-ALL
0.00 0.05 0.10 0.15 0.20
Max /> Norm of Adv. Perturbation
YUY
| w
~@— StandardNN
4 RobustNN
1 —— ATNN
o ATNN-ALL
0.00 0.05 0.10 0.15 0.20

Max /; Norm of Adv. Perturbation

e ©
2 o

Classification Accuracy
o
N

=
=

o
FN

Classification Accuracy
o
N

=
=)

o
(o]

| —®— StandardNN

1 —e— ATNN-ALL

MNIST 1V7

4 RODUStNN
—a- ATNN

o
()

o
o

0 1 2 3
Max /> Norm of Adv. Perturbation

4

1 —&— StandardNN

4 RobustNN
—ea— ATNN

1 —e— ATNN-ALL

0 1 2 3
Max I, Norm of Adv. Perturbation

4

Classification Accuracy

© o o 0o o ©
= N W Aa o

Classification Accuracy
© © © © © ©

«2 | —m— StandardNN

-

4 —®— StandardNN

4{ —e-~ ATNN

Abalone

~#— RobustNN

—eo— ATNN-ALL

N W s O

0.00 0.01 0.02 0.03 0.04
Max /; Norm of Adv. Perturbation

4 RobustNN \'\.\.
1 —e— ATNN
—o— ATNN-ALL
0.00 0.01 0.02 0.03 0.04

Max I, Norm of Adv. Perturbation

Top: Direct attacks, Bottom: Kernel substitute



Black-box Attacks

Attack Method [PMGJ+17]:

Train substitute classifier by making queries to
nearest neighbor

Return adversarial examples for substitute classifier



Black-Box Attack Results
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Conclusion

- Proved robustness properties of nearest neighbors to

adversarial examples

* New robust NN algorithm

- Experimental results



Tutorial Outline

» Adversarial Examples

- A Statistical Learning Framework for Robustness

» Adversarial Examples for Nearest Neighbors

» Small and large k
+ A Robust Modified Nearest Neighbor

- Beyond Nearest Neighbors

« Generic Attacks
* The r-Optimal Classifier

- Experiments



Beyond Nearest Neighbors...

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?



Adversarial Examples for
Parametric Methods

Model 0*obtained by minimizing a loss function L

0" = m@in L0, x,y)

(Most) Attacks: Gradient-based: Starting at x, do gradient
ascent on the loss until label changes




Adversarial Examples for
Parametric Methods

(Most) Defenses: Adversarial training (training with
data augmented with adversarial examples).

[Goodfellow+ 14, Madry+17, many others..]



What about non-parametrics!?

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?

Prior Work: Specific classifiers
- Nearest neighbors [Amsaleg+|7,Wang+ 18]
- Decision trees [Kantchelian+16, Cheng+19]



What about non-parametrics!?

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?

Challenges for generics:
- Gradient-based attacks do not apply
- Adversarial training does not work well



Talk Outline

« Generic Attacks

- A Limit Object

* A Generic Defense



Generic Attacks

Many non-parametrics are piece-wise

Key Observation: constant on polyhedra
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Example: | NN on Voronoi cells, decision trees on leaf nodes



Region-Based Attack

Many non-parametrics are piece-wise

Key Observation:
constant on polyhedra
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Region-Based Attack

Many non-parametrics are piece-wise

Key Observation: constant on polyhedra

Let the polyhedra be Py, ..., Pm Now: A e
with predicted labels y|, ..., ym e K% F
(5 .."_,____ -.;"I' \ A : 7
. _-( | ‘"'\.._\\\ o / : \\ \
. ®



Region-Based Attack

Many non-parametrics are piece-wise

Key Observation: constant on polyhedra

Let the polyhedra be P, ..., Pr o
with predicted labels yy, ..., ym o KX A
oo -*"-‘-,___ \ P : ;

Given X, find e

min min |[x — z||. b LG
i f(x)#y; z€P; R gl W



Region-Based Attack

Many non-parametrics are piece-wise

Key Observation:
constant on polyhedra

Let the polyhedra be Py, ..., Pm B A e
with predicted labels yy, ..., ym oL T
e -«f"" >N
Given x, find e el N
. . --""--—-_,-_; | o | % -\\,:"‘!‘ _.-_, _--\:-‘-
- min  min ||x —z|. S
i:f(x)#y; ZzE€EP; S gl s

Convex program - solution gives optimal attack



Approx Region Based Attack

Let the polyhedra be Py, ..., Pn R T
with predicted labels yi, ..., ym L
b 5 S 4\_
Given x, find Proale o
- min  min |[[x — z|. i g
i f(x)#y; z2EP; *\.T,_-_-- =

Convex program!

Challenge: Too many polyhedra (about n* for k-NN)



Approx Region Based Attack

Let the polyhedra be Py, ..., Pn S R R
with predicted labels yy, ..., ym S
s ..".___.- _J.' \r_’__,-l < : ,
. \ :jk\ o
Given x, find W a9 .
- min  min |[[x — z|. i WY
i:f(x)#y; z€EPR; STy

Convex program!

Challenge: Too many polyhedra (about n* for k-NN)

Solution: Search over P; with L training points closest to x

(lose optimality, but still valid)



What about defenses?



Beyond the Bayes Optimal...

Bayes Optimal maximizes accuracy
but not robustness

Is there a robustness analogue
to the Bayes Optimal?



Recall: Astuteness

The astuteness of classifier f at radius r is defined as:

ast(f,r) = Pr(f(z) =y, p(f,x) > 1)

Fraction of points
where f is robust and accurate

Goal of robust learning is
maximizing astuteness




Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts
label j in §j and is robust




Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts
label j in §j and is robust

Then: d(S;,S;) > 2r,j # i




Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts
label j in §j and is robust

Then: d(S;,S;) > 2r,j # i

Astuteness of f is:

ZL (v = jlo)u(z)dz >



...suggests the classifier

Given robustness radius r

Mmaxs; Z/ES y = jlo)u(z)dx

subject to:

Prediction Rule:
Predict j if d(x,S;) <r



How to get a finite-sample
approximation?



A finite sample approximation...

Given robustness radius r

maxs; Z/ (y = Jjlz)p ' '
_1 JxES;

subject to:

S3

Idea: Represent each §; by a set of training samples...



A finite sample approximation...

Given robustness radius r

maxs; Z[CES y =jlz)p(z)de = maxs > > yi=1)

j=1z;€S;

subject to: subject to:

d(S;,S;) > 2r,j # i d(S;, ;) > 2r, 5 # 1



A finite sample approximation...

Given robustness radius r

maxs; Z/ES y =jlz)p(z)de = maxs > > yi=1)
—1 X

j=1x;E€S;
subject to: subject to: o
A(S;, S;) > 21,5 # i S, 55) 2 2§ 71

Solution: Maximal subset of training samples where
points with different labels are 2r or more apart



How to solve this?

How to solve this?

Binary - reduces to maximum bipartite matching

K-ary - reduces to independent set, greedy algorithm

Note: Different from [Wang+ 18] - no confident points



Algorithm: Adversarial Pruning

|. Find maximal subset of training samples where
points with different labels are 2r or more apart

2. Build classifier (NN, decision tree, RF) on it




Evaluation

- How good is the Region-Based Attack?

- How effective is Adversarial Pruning as a defense!?

* Does Adversarial Pruning work for parametric models as

well?



Attack Metric

Empirical Robustness of Distance to closest adversarial
attack A on f at x — example produced by A on f at x

Attack Metric: Average empirical robustness over examples
where f is accurate

Smaller means better attack

For the optimal attack, this is the average robustness radius



Baselines

Classifiers: Nearest Neighbors (INN), 3 Nearest Neighbors
(3NN), Decision Trees (DT), Random Forests (RF)

9 datasets

Attacks: Black box attack (Cheng+19) (for all)
Direct attack (for NN)
Kernel substitution attack (for NN)
Papernot’s attack (for DT)
Exact Region-based attack (for INN, DT)
Approx Region-based attack (for 3NN, RF)
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Defense Metric

Attack Metric: Average empirical robustness over examples
where f is accurate

Defense Score for

defense D with
attack A Empirical Robustness (A, fu)

Empirical Robustness (A, fp)

(fo = classifier produced by D, fu = undefended classifier)

High defense score means good defense
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Parametrics - AT vs AP
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Experiments

- Region-based Attacks are better than or competitive
with prior attacks

» Adversarial Pruning is also better than or competitive
with existing defenses

* Adversarial Pruning also helps parametric methods but
not as much as adversarial training



Conclusion

* kn Nearest neighbors is robust to adversarial examples
for very large kn

* Non-parametric methods are different from parametric
methods when it comes to adversarial examples
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