Nearest Neighbors II: Adversarial Examples

Kamalika Chaudhuri University of California, San Diego

Talk Outline

- Part I: k-Nearest neighbors: Regression and Classification
- Part II: k-Nearest neighbors (and other nonparametrics): Adversarial examples

Adversarial Examples

Gibbon

[Goodfellow+14,], [Szegedy+13], [Meek-Lowd 05],....

Adversarial Examples

Slight strategic modification of test input causes misclassification

Many Classifiers are Vulnerable to Adversarial Examples

Panda

[G+14]

 $+.007 \times$

Gibbon

State of the Art

- Many, many attacks
- Many defenses, to be broken again
- Some certifiable defenses

- Limited understanding on why these examples exist

Our Work: Adversarial examples for nearest neighbors

Talk Outline

- Adversarial Examples
 - A Statistical Learning Framework for Robustness
- Adversarial Examples for Nearest Neighbors
 - Small and large k
 - A Robust Modified Nearest Neighbor
- Beyond Nearest Neighbors
 - The r-Optimal Classifier
 - Experiments

Statistical Learning Framework

Metric space (X, d)

Underlying measure $\mu\,$ on X from which points are drawn Label of x is a coin flip with bias $\,\eta(x)=\Pr(y=1|x)\,$

Accuracy of a classifier f is acc(f) = Pr(f(x) = y)Goal: Find classifiers f with max accuracy

Definitions

Robustness Radius: of a classifier f at x is the distance to the closest z such that $f(x) \neq f(z)$

Denoted by $\rho(f, x)$

Higher robustness radius implies robust classifier at x

Robustness wrt Distribution

Robustness of a classifier f at radius r wrt underlying distribution μ :

$$R(f, r, \mu) = \Pr_{x \sim \mu}(\rho(f, x) \ge r)$$

High R implies high robustness on inputs from distribution

Robustness Definitions

Distributional robustness of A at radius r is

$$\lim_{n \to \infty} \mathbb{E}[R(A(S_n), r, \mu)]$$

Finite sample robustness of A gives bounds on $\mathbb{E}[R(A(S_n), r, \mu)] \qquad \text{for finite n}$

[Wang, Jha, Chaudhuri' 18]

Astuteness: Combining Robustness and Accuracy

The astuteness of classifier f at radius r is defined as: $\operatorname{ast}(f,r) = \Pr(f(x) = y, \rho(f,x) \ge r)$

Fraction of points where f is robust and accurate

Goal of robust learning is maximizing astuteness

Distributional and finite sample astuteness: similar

[Wang, Jha, Chaudhuri' 18, Tsipras+19]

Prior Work - Parametric Methods

- [Schmidt+18] For linear classifiers, adversarial robustness requires more data
- [Bubeck+18] Achieving robustness to adversarial examples may be more computationally challenging
- Others [Yin+18, Montesser+19] bounds on adversarial generalization

How to non-parametric methods respond to adversarial examples?

Tutorial Outline

- Adversarial Examples
 - A Statistical Learning Framework for Robustness
- Adversarial Examples for Nearest Neighbors
 - Small and large k
 - A Robust Modified Nearest Neighbor
- Beyond Nearest Neighbors
 - Generic Attacks
 - The r-Optimal Classifier
 - Experiments

When is nearest neighbors robust to adversarial examples?

I-Nearest Neighbors

Theorem: If μ is continuous and if in a neighborhood of x, we have $\eta \in (0, 1)$, then the robustness radius as x converges to 0 with growing n

Distributional robustness (and astuteness) is 0

Accuracy may be high

Proof Intuition

Theorem: If μ is continuous and if in a neighborhood of x, we have $\eta \in (0, 1)$, then the robustness radius as x converges to 0 with growing n

As n grows, more points in B(x, r)

- If $\eta \in (0, 1)$, at least one of them z a different label than x
- This z is an adversarial example

Constant k

Theorem: If μ is continuous and if in a neighborhood of x, we have $\eta \in (0, 1)$, then the robustness radius as x converges to 0 with growing n

Similar argument also holds for constant k

What about larger k?

Reminder: k-NN Accuracy

The risk of I-NN converges to $\mathbb{E}_X[2\eta(X)(1-\eta(X))]$ as n grows (more than Bayes Optimal risk)

k NN is also inconsistent for constant k

If $k_n \to \infty$ and $k_n/n \to 0$ then, the risk of k_n -NN converges to the risk of the Bayes Optimal

k_n-NN Robustness

What can we expect? Robust where Bayes Optimal is robust

Where is the Bayes Optimal robust?

Some Notation

Probability-radius $r_{P}(x)$: $r_{p}(x) = \inf\{r|\mu(B(x,r)) \ge p\}$

Robust Interiors

Positive: $\mathcal{X}_{r,p,\Delta}^+ = \{x | \forall x' \in B(x,r), \forall x'' \in B(x',r_p(x')), \eta(x'') > 1/2 + \Delta\}$

Robust Interiors

Positive: $\mathcal{X}_{r,p,\Delta}^+ = \{x | \forall x' \in B(x,r), \forall x'' \in B(x',r_p(x')), \eta(x'') > 1/2 + \Delta\}$

Negative:
$$\mathcal{X}_{r,p,\Delta}^- = \{x | \forall x' \in B(x,r), \forall x'' \in B(x',r_p(x')), \eta(x'') < 1/2 - \Delta\}$$

Robust Interiors

Positive: $\mathcal{X}_{r,p,\Delta}^+ = \{x | \forall x' \in B(x,r), \forall x'' \in B(x',r_p(x')), \eta(x'') > 1/2 + \Delta\}$

Negative: $\mathcal{X}_{r,p,\Delta}^- = \{x | \forall x' \in B(x,r), \forall x'' \in B(x',r_p(x')), \eta(x'') < 1/2 - \Delta\}$

 (r, p, Δ) -Interiors = Positive + Negative

Where is Bayes Optimal Robust?

Bayes Optimal has robustness radius r in $\mathcal{X}^+_{r,0,0} \cup \mathcal{X}^-_{r,0,0}$

Where is Bayes Optimal Robust?

Bayes Optimal has robustness radius r in $\mathcal{X}^+_{r,0,0} \cup \mathcal{X}^-_{r,0,0}$

Astuteness of Bayes Optimal at radius r is $\mathbb{E}_X[\eta(x)1(x \in \mathcal{X}^+_{r,0,0}) + (1 - \eta(x))1(x \in \mathcal{X}^-_{r,0,0})]$

Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \ge \sqrt{dn \log n / \Delta_n}$ and $p_n = \frac{k_n}{n} (1 + o(1))$ then w.h.p k_n-nearest neighbors has robustness radius at least r in $\mathcal{X}^+_{r,p_n,\Delta_n} \cup \mathcal{X}^-_{r,p_n,\Delta_n}$

Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \ge \sqrt{dn \log n} / \Delta_n$ and $p_n = \frac{k_n}{n} (1 + o(1))$ then w.h.p k_n-nearest neighbors has robustness radius at least r in $\mathcal{X}^+_{r,p_n,\Delta_n} \cup \mathcal{X}^-_{r,p_n,\Delta_n}$

Growth of k_n much faster than required for accuracy

Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \ge \sqrt{dn \log n} / \Delta_n$ and $p_n = \frac{k_n}{n} (1 + o(1))$ then w.h.p k_n-nearest neighbors has robustness radius at least r in $\mathcal{X}^+_{r,p_n,\Delta_n} \cup \mathcal{X}^-_{r,p_n,\Delta_n}$

Growth of k_n much faster than required for accuracy If $p_n = k_n/n \to 0$, and $\Delta_n \to 0$, then $\mathcal{X}^+_{r,p_n,\Delta_n} \cup \mathcal{X}^-_{r,p_n,\Delta_n} \to \mathcal{X}^+_{r,0,0} \cup \mathcal{X}^-_{r,0,0}$ (Robustness region of Bayes Optimal)

Proof Intuition

For $k_n \ge \sqrt{dn \log n} / \Delta_n$, by uniform convergence, for all x, $\frac{k_n}{n} (1 - o(1)) \le \mu(B(x, ||x - X^{(k_n)}||)) \le \frac{k_n}{n} (1 + o(1))$

Proof Intuition

For $k_n \ge \sqrt{dn \log n} / \Delta_n$, by uniform convergence, for all x, $\frac{k_n}{n} (1 - o(1)) \le \mu(B(x, ||x - X^{(k_n)}||)) \le \frac{k_n}{n} (1 + o(1))$

If $x' \in \mathcal{X}_{r,p_n,\Delta_n}^+$, for all $x'' \in B(x', X^{(k_n)}(x')), \eta(x'') > 1/2 + \Delta_n$ By uniform convergence, $\frac{1}{k_n} \sum_i Y^{(i)}(x'') > \frac{1}{2}$

Can we get robustness for 1 NN?

Yes, through a modified algorithm....

When is Nearest Neighbors Robust?

I-nearest neighbor is robust at x if:

- points with different labels are well-separated
- x is close to a point with the same label

Algorithm Idea

- Remove a subset of training data such that differently labeled points are far apart
- Do I-nearest neighbors on remaining data
Algorithm Idea

- Remove a subset of training data such that differently labeled points are far apart
- Do I-nearest neighbors on remaining data

Which points to remove?

Keep points with confident labels, and a maximal subset of the rest

r-separation

A set of points {(x_i, y_i)} is r-separated if $y_i \neq y_j \implies ||x_i - x_j|| \ge 2r$

Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

 $k_n = 3\log(2n/\delta)/\Delta^2$

Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

$$k_n = 3\log(2n/\delta)/\Delta^2$$
$$Y = \frac{1}{k_n} \sum_{i=1}^{k_n} Y^{(i)}(x)$$

Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

$$k_n = 3\log(2n/\delta)/\Delta^2$$

$$Y = \frac{1}{k_n} \sum_{i=1}^{k_n} Y^{(i)}(x)$$
If $Y \in \left[\frac{1}{2} - \Delta, \frac{1}{2} + \Delta\right]$ then
return "Don't Know"
Else return round(Y)

\'/

Full Algorithm

Input: x, training data S, radius r, parameters δ, Δ

For all i: $f(x_i) = ConfidentLabel (x_i, S, \delta, \Delta)$

Full Algorithm

Input: x, training data S, radius r, parameters δ, Δ

For all i: $f(x_i) = ConfidentLabel (x_i, S, \Delta, \Delta)$ T = emptyset For all i: if $f(x_i) = y_i$ and $f(x_i) = f(x_j)$ for all x_j in $B(x_i, r)$ then Add (x_i, y_i) to T

Full Algorithm

Input: x, training data S, radius r, parameters δ, Δ

For all i: $f(x_i) = ConfidentLabel (x_i, S, \Delta, \Delta)$ T = emptyset For all i: if $f(x_i) = y_i$ and $f(x_i) = f(x_j)$ for all x_j in $B(x_i, r)$ then Add (x_i, y_i) to T

Return the largest r-separated subset of S that contains T as training data for nearest neighbor

When is this algorithm robust?

Theorem: Fix δ , Δ_n , and let $k_n = 3\log(n/2\delta)/\Delta_n^2$, and $p_n = \frac{k_n}{n}(1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r : $X_R = \left\{ x | x \in \mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^-, \mu(B(x,t)) \ge Cd\log n/n \right\}$

Whp, algorithm has robustness radius at least r - 2t on X_R

When is this algorithm robust?

Theorem: Fix δ , Δ_n , and let $k_n = 3\log(n/2\delta)/\Delta_n^2$, and $p_n = \frac{k_n}{n}(1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r : $X_R = \left\{ x | x \in \mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^-, \mu(B(x,t)) \ge Cd\log n/n \right\}$

Whp, algorithm has robustness radius at least r - 2t on X_R

 X_R is a high density subset of $\mathcal{X}^+_{r+t,p_n,\Delta_n} \cup \mathcal{X}^-_{r+t,p_n,\Delta_n}$

When is this algorithm robust?

Theorem: Fix δ , Δ_n , and let $k_n = 3\log(n/2\delta)/\Delta_n^2$, and $p_n = \frac{k_n}{n}(1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r : $X_R = \left\{ x | x \in \mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^-, \mu(B(x,t)) \ge Cd\log n/n \right\}$

Whp, algorithm has robustness radius at least r - 2t on X_R

 X_R is a high density subset of $\mathcal{X}^+_{r+t,p_n,\Delta_n} \cup \mathcal{X}^-_{r+t,p_n,\Delta_n}$

As t, p_n, $\Delta_n \to 0$, $\mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^- \to \mathcal{X}_{r,0,0}^+ \cup \mathcal{X}_{r,0,0}^-$ (robust region of Bayes Opt)

Proof Intuition

Let $x_i \in \mathcal{X}_{r,p_n,\Delta_n}^+ \cup \mathcal{X}_{r,p_n,\Delta_n}^-$ and $y_i = 1(\eta(x) > 1/2)$ From property of k_n, (x_i, y_i) gets added to T

If x is in X_R , by uniform convergence, there is an (x_i, y_i) in S and B(x, t). This (x_i, y_i) will get added to the final training set

Since T is r-separated, any x_j with a different y_j will be at least 2r away from x_i . Triangle inequality gives radius r - 2t.

How does it work?

Experiments: Details

Baselines:

- StandardNN: Standard I-NN using full training set
- RobustNN: Our method
- ATNN: Adversarially-trained I-NN, dataset augmented using corresponding attack
- ATNN-all: Adversarially-trained I-NN, dataset augmented using all attack methods

Datasets: Half-moon, MNIST Iv7, UCI Abalone

White-box Attacks

Direct Attack [ABEF16]:

Find closest x' in training set with different label

Move a distance r towards x'

Substitute Attack [PMGI6]:

Find kernel classifier (soft nearest neighbors) Attack with standard gradient-based methods

White-Box Attack Results

Top: Direct attacks, Bottom: Kernel substitute

Black-box Attacks

Attack Method [PMGJ+17]:

Train substitute classifier by making queries to nearest neighbor

Return adversarial examples for substitute classifier

Black-Box Attack Results

Top: Kernel substitute, Bottom: Neural network substitute

Conclusion

- Proved robustness properties of nearest neighbors to adversarial examples
- New robust NN algorithm
- Experimental results

Tutorial Outline

- Adversarial Examples
 - A Statistical Learning Framework for Robustness
- Adversarial Examples for Nearest Neighbors
 - Small and large k
 - A Robust Modified Nearest Neighbor
- Beyond Nearest Neighbors
 - Generic Attacks
 - The r-Optimal Classifier
 - Experiments

Beyond Nearest Neighbors...

Can we get generic attacks and defenses for nonparametrics — NN, decision trees, RF?

Adversarial Examples for Parametric Methods

Model θ^* obtained by minimizing a loss function L

$$\theta^* = \min_{\theta} L(\theta, x, y)$$

(Most) Attacks: Gradient-based: Starting at x, do gradient ascent on the loss until label changes

Adversarial Examples for Parametric Methods

(Most) Defenses: Adversarial training (training with data augmented with adversarial examples).

[Goodfellow+14, Madry+17, many others..]

What about non-parametrics?

Can we get generic attacks and defenses for nonparametrics — NN, decision trees, RF?

Prior Work: Specific classifiers

- Nearest neighbors [Amsaleg+17,Wang+18]
- Decision trees [Kantchelian+16, Cheng+19]

What about non-parametrics?

Can we get generic attacks and defenses for nonparametrics — NN, decision trees, RF?

Challenges for generics:

- Gradient-based attacks do not apply
- Adversarial training does not work well

Talk Outline

- Generic Attacks
- A Limit Object
- A Generic Defense

Generic Attacks

Key Observation:

Many non-parametrics are piece-wise constant on polyhedra

Example: I NN on Voronoi cells, decision trees on leaf nodes

Key Observation:

Many non-parametrics are piece-wise constant on polyhedra

Key Observation:

Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be $P_1, ..., P_m$ with predicted labels $y_1, ..., y_m$

Key Observation:

Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be $P_1, ..., P_m$ with predicted labels $y_1, ..., y_m$

Given x, find $\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{z}\in P_i} \|\mathbf{x} - \mathbf{z}\|.$

Key Observation:

Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be $P_1, ..., P_m$ with predicted labels $y_1, ..., y_m$

Given x, find $\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{z}\in P_i} \|\mathbf{x} - \mathbf{z}\|.$

Convex program - solution gives optimal attack

Approx Region Based Attack

Let the polyhedra be $P_1, ..., P_m$ with predicted labels $y_1, ..., y_m$

Given x, find

$$\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{z}\in P_i} \|\mathbf{x}-\mathbf{z}\|.$$

Convex program!

Challenge: Too many polyhedra (about n^k for k-NN)

Approx Region Based Attack

Let the polyhedra be $P_1, ..., P_m$ with predicted labels $y_1, ..., y_m$

Given x, find

$$\min_{i:f(\mathbf{x})\neq y_i} \min_{\mathbf{z}\in P_i} \|\mathbf{x}-\mathbf{z}\|.$$

Convex program!

Challenge: Too many polyhedra (about n^k for k-NN) Solution: Search over P_i with L training points closest to x (lose optimality, but still valid)

What about defenses?

Beyond the Bayes Optimal...

Bayes Optimal maximizes accuracy but not robustness

Is there a robustness analogue to the Bayes Optimal?

Recall: Astuteness

The astuteness of classifier f at radius r is defined as: $\operatorname{ast}(f,r) = \Pr(f(x) = y, \rho(f,x) \ge r)$

Fraction of points where f is robust and accurate

Goal of robust learning is maximizing astuteness

Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts label j in S_j and is robust

Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts label j in S_j and is robust

Then: $d(S_i, S_j) \ge 2r, j \ne i$

Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts label j in S_j and is robust

Then: $d(S_i, S_j) \ge 2r, j \ne i$

Astuteness of f is:

$$\sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j | x) \mu(x) dx$$

... suggests the classifier

Given robustness radius r

$$\max_{S_j} \sum_{j=1}^K \int_{x \in S_j} \Pr(y = j | x) \mu(x) dx$$

subject to:

$$d(S_i, S_j) \ge 2r, j \neq i$$

Prediction Rule:

Predict j if $d(x, S_j) \leq r$

How to get a finite-sample approximation?

A finite sample approximation...

Given robustness radius r $\max_{j=1}^{K} \int_{x \in S_{j}} \Pr(y = j | x) \mu(x) dx$

subject to:

$$d(S_i, S_j) \ge 2r, j \neq i$$

Idea: Represent each S_j by a set of training samples...

A finite sample approximation...

Given robustness radius r

maxs_j
$$\sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j | x) \mu(x) dx \rightarrow \max_{j=1}^{K} \sum_{x_i \in S_j} 1(y_i = j)$$

subject to:

$$d(S_i, S_j) \ge 2r, j \neq i$$

 $d(S_i, S_j) \ge 2r, j \neq i$

A finite sample approximation...

Given robustness radius r

$$\begin{aligned} \max_{\mathbf{S}_{j}} & \sum_{j=1}^{K} \int_{x \in S_{j}} \Pr(y = j | x) \mu(x) dx \twoheadrightarrow \max_{\mathbf{S}_{j}} & \sum_{j=1}^{K} \sum_{x_{i} \in S_{j}} 1(y_{i} = j) \\ \text{subject to:} & \text{subject to:} \\ & d(S_{i}, S_{j}) \geq 2r, j \neq i \end{aligned}$$

Solution: Maximal subset of training samples where points with different labels are 2r or more apart

How to solve this?

How to solve this?

Binary - reduces to maximum bipartite matching K-ary - reduces to independent set, greedy algorithm

Note: Different from [Wang+18] - no confident points

Algorithm: Adversarial Pruning

I. Find maximal subset of training samples where points with different labels are 2r or more apart

2. Build classifier (NN, decision tree, RF) on it

Evaluation

- How good is the Region-Based Attack?
- How effective is Adversarial Pruning as a defense?
- Does Adversarial Pruning work for parametric models as well?

Attack Metric

Empirical Robustness of = Distance to closest adversarial attack A on f at x = example produced by A on f at x

Attack Metric: Average empirical robustness over examples where f is accurate

Smaller means better attack

For the optimal attack, this is the average robustness radius

Baselines

Classifiers: Nearest Neighbors (INN), 3 Nearest Neighbors (3NN), Decision Trees (DT), Random Forests (RF)

9 datasets

Attacks: Black box attack (Cheng+19) (for all) Direct attack (for NN) Kernel substitution attack (for NN) Papernot's attack (for DT) Exact Region-based attack (for 1NN, DT) Approx Region-based attack (for 3NN, RF)

Results

(Low bar means better)

Results

Defense Metric

Attack Metric: Average empirical robustness over examples where f is accurate

Defense Score for
defense D withEmpirical Robustness (A, f_D)attack A=

(f_D = classifier produced by D, f_U = undefended classifier)

High defense score means good defense

Results

(High bar is better)

Results

Parametrics - AT vs AP

Experiments

- Region-based Attacks are better than or competitive with prior attacks
- Adversarial Pruning is also better than or competitive with existing defenses
- Adversarial Pruning also helps parametric methods but not as much as adversarial training

Conclusion

- k_n Nearest neighbors is robust to adversarial examples for very large k_n
- Non-parametric methods are different from parametric methods when it comes to adversarial examples

References

- "Analyzing the Robustness of Nearest Neighbors to Adversarial Examples", Yizhen Wang, Somesh Jha and Kamalika Chaudhuri, ICML 2018
- "Adversarial Examples for Non-parametrics: Attacks, Defenses and Large-sample Limits", Yaoyuan Yang, Cyrus Rashtchian, Yizhen Wang and Kamalika Chaudhuri, Arxiv 2019

Acknowledgements

Cyrus Rashtchian

Yao-yuan Yang

Yizhen Wang

Somesh Jha