Talk Outline

• Part I: k-Nearest neighbors: Regression and Classification

• Part II: k-Nearest neighbors (and other non-parametrics): Adversarial examples
Adversarial Examples

\[[G+14] \]

Panda \[+.007 \times \] Gibbon

\[[\text{Goodfellow+14},] , [\text{Szegedy+13}], [\text{Meek-Lowd 05}], \ldots \]
Adversarial Examples

Slight strategic modification of test input causes misclassification
Many Classifiers are Vulnerable to Adversarial Examples

[G+14]

Panda

+ .007 \times

Gibbon
State of the Art

- Many, many attacks
- Many defenses, to be broken again
- Some certifiable defenses
- Limited understanding on why these examples exist

Our Work: Adversarial examples for nearest neighbors
Talk Outline

• Adversarial Examples
 • A Statistical Learning Framework for Robustness
• Adversarial Examples for Nearest Neighbors
 • Small and large k
 • A Robust Modified Nearest Neighbor
• Beyond Nearest Neighbors
 • The r-Optimal Classifier
 • Experiments
Statistical Learning Framework

Metric space \((X, d)\)

Underlying measure \(\mu\) on \(X\) from which points are drawn

Label of \(x\) is a coin flip with bias \(\eta(x) = \Pr(y = 1|x)\)

Accuracy of a classifier \(f\) is \(\text{acc}(f) = \Pr(f(x) = y)\)

Goal: Find classifiers \(f\) with max accuracy
Definitions

Robustness Radius: of a classifier \(f \) at \(x \) is the distance to the closest \(z \) such that \(f(x) \neq f(z) \)

Denoted by \(\rho(f, x) \)

Higher robustness radius implies robust classifier at \(x \)
Robustness wrt Distribution

Robustness of a classifier f at radius r wrt underlying distribution μ:

$$R(f, r, \mu) = \Pr_{x \sim \mu} (\rho(f, x) \geq r)$$

High R implies high robustness on inputs from distribution.
Robustness Definitions

Training Data S_n \[\rightarrow\] Algorithm A \[\rightarrow\] Classifier $A(S_n)$

Distributional robustness of A at radius r is

$$\lim_{n \to \infty} \mathbb{E}[R(A(S_n), r, \mu)]$$

Finite sample robustness of A gives bounds on

$$\mathbb{E}[R(A(S_n), r, \mu)] \text{ for finite } n$$

[Wang, Jha, Chaudhuri’18]
Astuteness: Combining Robustness and Accuracy

The astuteness of classifier f at radius r is defined as:

$$\text{ast}(f, r) = \Pr(f(x) = y, \rho(f, x) \geq r)$$

Fraction of points where f is robust and accurate

Goal of robust learning is maximizing astuteness

Distributional and finite sample astuteness: similar

[Wang, Jha, Chaudhuri’18, Tsipras+19]
Prior Work - Parametric Methods

- [Schmidt+18] For linear classifiers, adversarial robustness requires more data

- [Bubeck+18] Achieving robustness to adversarial examples may be more computationally challenging

- Others - [Yin+18, Montesser+19] - bounds on adversarial generalization
How to non-parametric methods respond to adversarial examples?
Tutorial Outline

• Adversarial Examples
 • A Statistical Learning Framework for Robustness
• Adversarial Examples for Nearest Neighbors
 • Small and large k
 • A Robust Modified Nearest Neighbor
• Beyond Nearest Neighbors
 • Generic Attacks
 • The r-Optimal Classifier
 • Experiments
When is nearest neighbors robust to adversarial examples?
1-Nearest Neighbors

Theorem: If \(\mu \) is continuous and if in a neighborhood of \(x \), we have \(\eta \in (0, 1) \), then the robustness radius as \(x \) converges to 0 with growing \(n \).

Distributional robustness (and astuteness) is 0.

Accuracy may be high.
Proof Intuition

Theorem: If μ is continuous and if in a neighborhood of x, we have $\eta \in (0, 1)$, then the robustness radius as x converges to 0 with growing n.

As n grows, more points in $B(x, r)$

If $\eta \in (0, 1)$, at least one of them z has a different label than x

This z is an adversarial example
Constant k

Theorem: If μ is continuous and if in a neighborhood of x, we have $\eta \in (0, 1)$, then the robustness radius as x converges to 0 with growing n

Similar argument also holds for constant k
What about larger k?
Reminder: k-NN Accuracy

The risk of 1-NN converges to $\mathbb{E}_X[2\eta(X)(1 - \eta(X))]$ as n grows (more than Bayes Optimal risk)

k NN is also inconsistent for constant k

If $k_n \to \infty$ and $k_n/n \to 0$ then, the risk of k_n-NN converges to the risk of the Bayes Optimal
k_n-NN Robustness

What can we expect? Robust where Bayes Optimal is robust

Where is the Bayes Optimal robust?
Some Notation

Probability-radius $r_p(x)$:

$$r_p(x) = \inf \{ r \mid \mu(B(x, r)) \geq p \}$$
Robust Interiors

Positive: \(\mathcal{X}^+_{r,p,\Delta} = \{ x \mid \forall x' \in B(x, r), \forall x'' \in B(x', r_p(x')) , \eta(x'') > 1/2 + \Delta \} \)
Robust Interiors

Positive: \[x^+_{r,p,\Delta} = \{ x | \forall x' \in B(x, r), \forall x'' \in B(x', r_p(x')), \eta(x'') > 1/2 + \Delta \} \]

Negative: \[x^-_{r,p,\Delta} = \{ x | \forall x' \in B(x, r), \forall x'' \in B(x', r_p(x')), \eta(x'') < 1/2 - \Delta \} \]
Robust Interiors

Positive: \(\mathcal{X}_{r,p,\Delta}^+ = \{ x | \forall x' \in B(x, r), \forall x'' \in B(x', r_p(x')), \eta(x'') > 1/2 + \Delta \} \)

Negative: \(\mathcal{X}_{r,p,\Delta}^- = \{ x | \forall x' \in B(x, r), \forall x'' \in B(x', r_p(x')), \eta(x'') < 1/2 - \Delta \} \)

\((r, p, \Delta)\)-Interiors = Positive + Negative
Where is Bayes Optimal Robust?

Bayes Optimal has robustness radius r in $\mathcal{X}^+_r \cup \mathcal{X}^-_r$.
Where is Bayes Optimal Robust?

Bayes Optimal has robustness radius r in $\mathcal{X}^+_{r,0,0} \cup \mathcal{X}^-_{r,0,0}$

Astuteness of Bayes Optimal at radius r is

$$\mathbb{E}_X[\eta(x)1(x \in \mathcal{X}^+_{r,0,0}) + (1 - \eta(x))1(x \in \mathcal{X}^-_{r,0,0})]$$
Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \geq \sqrt{dn \log n / \Delta_n}$ and $p_n = k_n/n (1 + o(1))$ then w.h.p k_n-nearest neighbors has robustness radius at least r in $X^+_{r, p_n, \Delta_n} \cup X^-_{r, p_n, \Delta_n}$.
Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \geq \sqrt{dn \log n / \Delta_n}$ and $p_n = \frac{k_n}{n} (1 + o(1))$ then w.h.p k_n-nearest neighbors has robustness radius at least r in $X_{r, p_n, n}^+ \cup X_{r, p_n, n}^-$.

Growth of k_n much faster than required for accuracy.
Robustness of k_n-NN

Theorem: Let $\Delta_n \to 0$. If $k_n \geq \sqrt{d n \log n / \Delta_n}$ and $p_n = \frac{k_n}{n}(1 + o(1))$ then w.h.p. k_n-nearest neighbors has robustness radius at least r in $X_{r,p_n,\Delta_n}^+ \cup X_{r,p_n,\Delta_n}^-$.

Growth of k_n much faster than required for accuracy

If $p_n = k_n/n \to 0$, and $\Delta_n \to 0$, then

$X_{r,p_n,\Delta_n}^+ \cup X_{r,p_n,\Delta_n}^- \to X_{r,0,0}^+ \cup X_{r,0,0}^-$

(Robustness region of Bayes Optimal)
Proof Intuition

For $k_n \geq \sqrt{dn \log n} / \Delta_n$, by uniform convergence, for all x,

$$\frac{k_n}{n} (1 - o(1)) \leq \mu(B(x, \|x - X^{(k_n)}\|)) \leq \frac{k_n}{n} (1 + o(1))$$
Proof Intuition

For $k_n \geq \sqrt{dn \log n}/\Delta_n$, by uniform convergence, for all x,

$$\frac{k_n}{n} (1 - o(1)) \leq \mu(B(x, \|x - X^{(k_n)}\|)) \leq \frac{k_n}{n} (1 + o(1))$$

If $x' \in \mathcal{X}_{r,p_n,\Delta_n}^+$, for all $x'' \in B(x', X^{(k_n)}(x'))$, $\eta(x'') > 1/2 + \Delta_n$

By uniform convergence, $\frac{1}{k_n} \sum_{i} Y^{(i)}(x'') > \frac{1}{2}$
Can we get robustness for 1 NN?

Yes, through a modified algorithm....
When is Nearest Neighbors Robust?

1-nearest neighbor is robust at x if:
- points with different labels are well-separated
- x is close to a point with the same label
Algorithm Idea

- Remove a subset of training data such that differently labeled points are far apart
- Do 1-nearest neighbors on remaining data
Algorithm Idea

- Remove a subset of training data such that differently labeled points are far apart
- Do 1-nearest neighbors on remaining data

Which points to remove? Keep points with confident labels, and a maximal subset of the rest
A set of points \(\{(x_i, y_i)\} \) is \(r \)-separated if

\[
y_i \neq y_j \implies \| x_i - x_j \| \geq 2r
\]
Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

$$k_n = 3 \log(2n/\delta)/\Delta^2$$
Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

$k_n = 3 \log(2n/\delta)/\Delta^2$

$Y = \frac{1}{k_n} \sum_{i=1}^{k_n} Y^{(i)}(x) $
Getting Confident Labels

Input: x, training data of size n, parameters δ, Δ

$$k_n = 3 \log(2n/\delta)/\Delta^2$$

$$Y = \frac{1}{k_n} \sum_{i=1}^{k_n} Y(i)(x)$$

If $Y \in \left[\frac{1}{2} - \Delta, \frac{1}{2} + \Delta \right]$ then return “Don’t Know”

Else return round(Y)
Full Algorithm

Input: x, training data S, radius r, parameters δ, Δ

For all i: $f(x_i) = \text{ConfidentLabel} \ (x_i, S, \delta, \Delta)$
Full Algorithm

Input: x, training data S, radius r, parameters δ, Δ

For all i: $f(x_i) = \text{ConfidentLabel} \ (x_i, S, \delta, \Delta)$

$T = \emptyset$

For all i: if $f(x_i) = y_i$ and $f(x_i) = f(x_j)$ for all x_j in $B(x_i, r)$ then

Add (x_i, y_i) to T
Full Algorithm

Input: \(x \), training data \(S \), radius \(r \), parameters \(\delta, \Delta \)

For all \(i \): \(f(x_i) = \text{ConfidentLabel} (x_i, S, \delta, \Delta) \)

\(T = \) emptyset

For all \(i \): if \(f(x_i) = y_i \) and \(f(x_i) = f(x_j) \) for all \(x_j \) in \(B(x_i, r) \) then

Add \((x_i, y_i) \) to \(T \)

Return the largest \(r \)-separated subset of \(S \) that contains \(T \) as training data for nearest neighbor
When is this algorithm robust?

Theorem: Fix δ, Δ_n, and let $k_n = \frac{3 \log(n/2\delta)}{\Delta_n^2}$, and $p_n = \frac{k_n}{n} (1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r:

$$X_R = \left\{ x \mid x \in \mathcal{X}^+_{r+t, p_n, \Delta_n} \cup \mathcal{X}^-_{r+t, p_n, \Delta_n}, \mu(B(x, t)) \geq Cd \log n/n \right\}$$

With high probability, the algorithm has robustness radius at least $r - 2t$ on X_R.
When is this algorithm robust?

Theorem: Fix δ, Δ_n, and let $k_n = 3 \log(n/2\delta)/\Delta_n^2$, and $p_n = \frac{k_n}{n}(1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r:

$$X_R = \left\{ x \mid x \in \mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^- , \mu(B(x,t)) \geq Cd \log n/ n \right\}$$

Whp, algorithm has robustness radius at least $r - 2t$ on X_R

X_R is a high density subset of $\mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^-$
When is this algorithm robust?

Theorem: Fix δ, Δ_n, and let $k_n = 3 \log(n/2\delta)/\Delta_n^2$, and $p_n = \frac{k_n}{n}(1 + \Theta(\sqrt{d/k_n}))$. For a parameter t, define a set X_r:

$$X_R = \left\{ x \mid x \in \mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^- , \mu(B(x,t)) \geq Cd \log n/n \right\}$$

Whp, algorithm has robustness radius at least $r - 2t$ on X_R

X_R is a high density subset of $\mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^-$

As $t, p_n, \Delta_n \to 0$, $\mathcal{X}_{r+t,p_n,\Delta_n}^+ \cup \mathcal{X}_{r+t,p_n,\Delta_n}^- \to \mathcal{X}_{r,0,0}^+ \cup \mathcal{X}_{r,0,0}^-$

(robust region of Bayes Opt)
Proof Intuition

Let \(x_i \in \mathcal{X}_{r,p_n,\Delta_n}^+ \cup \mathcal{X}_{r,p_n,\Delta_n}^- \) and \(y_i = 1(\eta(x) > 1/2) \)

From property of \(k_n \), \((x_i, y_i)\) gets added to \(T \)

If \(x \) is in \(X_R \), by uniform convergence, there is an \((x_i, y_i)\) in \(S \) and \(B(x, t) \). This \((x_i, y_i)\) will get added to the final training set

Since \(T \) is \(r \)-separated, any \(x_j \) with a different \(y_j \) will be at least \(2r \) away from \(x_i \). Triangle inequality gives radius \(r - 2t \).
How does it work?
Experiments: Details

Baselines:
- StandardNN: Standard 1-NN using full training set
- RobustNN: Our method
- ATNN: Adversarially-trained 1-NN, dataset augmented using corresponding attack
- ATNN-all: Adversarially-trained 1-NN, dataset augmented using all attack methods

Datasets: Half-moon, MNIST 1v7, UCI Abalone
White-box Attacks

Direct Attack [ABEF16]:

Find closest x' in training set with different label
Move a distance r towards x'

Substitute Attack [PMG16]:

Find kernel classifier (soft nearest neighbors)
Attack with standard gradient-based methods
White-Box Attack Results

Top: Direct attacks, Bottom: Kernel substitute
Black-box Attacks

Attack Method [PMGJ+17]:

- Train substitute classifier by making queries to nearest neighbor

- Return adversarial examples for substitute classifier
Black-Box Attack Results

Top: Kernel substitute, Bottom: Neural network substitute
Conclusion

• Proved robustness properties of nearest neighbors to adversarial examples

• New robust NN algorithm

• Experimental results
Tutorial Outline

• Adversarial Examples
 • A Statistical Learning Framework for Robustness
• Adversarial Examples for Nearest Neighbors
 • Small and large k
 • A Robust Modified Nearest Neighbor
• Beyond Nearest Neighbors
 • Generic Attacks
 • The r-Optimal Classifier
 • Experiments
Beyond Nearest Neighbors…

Can we get generic attacks and defenses for non-parametrics — NN, decision trees, RF?
Adversarial Examples for Parametric Methods

Model θ^* obtained by minimizing a loss function L

$$\theta^* = \min_{\theta} L(\theta, x, y)$$

(Most) Attacks: Gradient-based: Starting at x, do gradient ascent on the loss until label changes
Adversarial Examples for Parametric Methods

(Most) Defenses: Adversarial training (training with data augmented with adversarial examples).

[Goodfellow+14, Madry+17, many others..]
What about non-parametrics?

Can we get generic attacks and defenses for non-parametrics — NN, decision trees, RF?

Prior Work: Specific classifiers

- Nearest neighbors [Amsaleg+17, Wang+18]
- Decision trees [Kantchelian+16, Cheng+19]
What about non-parametrics?

Can we get generic attacks and defenses for non-parametrics — NN, decision trees, RF?

Challenges for generics:
- Gradient-based attacks do not apply
- Adversarial training does not work well
Talk Outline

• Generic Attacks
• A Limit Object
• A Generic Defense
Generic Attacks

Key Observation: Many non-parametrics are piece-wise constant on polyhedra

Example: 1 NN on Voronoi cells, decision trees on leaf nodes
Region-Based Attack

Key Observation: Many non-parametrics are piece-wise constant on polyhedra
Region-Based Attack

Key Observation: Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be P_1, \ldots, P_m with predicted labels y_1, \ldots, y_m
Region-Based Attack

Key Observation: Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be P_1, \ldots, P_m with predicted labels y_1, \ldots, y_m

Given x, find

$$\min_{i: f(x) \neq y_i} \min_{z \in P_i} \|x - z\|.$$
Region-Based Attack

Key Observation: Many non-parametrics are piece-wise constant on polyhedra

Let the polyhedra be P_1, \ldots, P_m with predicted labels y_1, \ldots, y_m

Given x, find

$$\min_{i: f(x) \neq y_i} \min_{z \in P_i} \|x - z\|.$$

Convex program - solution gives optimal attack
Approx Region Based Attack

Let the polyhedra be P_1, \ldots, P_m with predicted labels y_1, \ldots, y_m

Given x, find

$$\min_{i: f(x) \neq y_i} \min_{z \in P_i} \|x - z\|.$$

Convex program!

Challenge: Too many polyhedra (about n^k for k-NN)
Approx Region Based Attack

Let the polyhedra be P_1, \ldots, P_m with predicted labels y_1, \ldots, y_m

Given x, find

$$\min_{i: f(x) \neq y_i} \min_{z \in P_i} \|x - z\|.$$

Convex program!

Challenge: Too many polyhedra (about n^k for k-NN)

Solution: Search over P_i with L training points closest to x

(lose optimality, but still valid)
What about defenses?
Beyond the Bayes Optimal...

Bayes Optimal maximizes accuracy but not robustness

Is there a robustness analogue to the Bayes Optimal?
Recall: Astuteness

The astuteness of classifier f at radius r is defined as:

$$\text{ast}(f, r) = \Pr(f(x) = y, \rho(f, x) \geq r)$$

Fraction of points where f is robust and accurate

Goal of robust learning is maximizing astuteness
Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts label j in S_j and is robust
Maximizing Astuteness

Given robustness radius r

Suppose classifier f predicts label j in S_j and is robust

Then: $d(S_i, S_j) \geq 2r, j \neq i$
Maximizing Astuteness

Given robustness radius \(r \)

Suppose classifier \(f \) predicts label \(j \) in \(S_j \) and is robust

Then: \(d(S_i, S_j) \geq 2r, j \neq i \)

Astuteness of \(f \) is:

\[
\sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j|x) \mu(x) dx
\]
...suggests the classifier

Given robustness radius r

$$\max_{S_j} \sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j | x) \mu(x) dx$$

subject to:
$$d(S_i, S_j) \geq 2r, j \neq i$$

Prediction Rule:
Predict j if $d(x, S_j) \leq r$
How to get a finite-sample approximation?
A finite sample approximation...

Given robustness radius \(r \)

\[
\max_{S_j} \sum_{j=1}^{K} \sum_{x \in S_j} \Pr(y = j|x) \mu(x) dx
\]

subject to:

\[
d(S_i, S_j) \geq 2r, \ j \neq i
\]

Idea: Represent each \(S_j \) by a set of training samples…
A finite sample approximation...

Given robustness radius r

$$\max_{\mathbf{S}_j} \sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j | x) \mu(x) dx \rightarrow \max_{\mathbf{S}_j} \sum_{j=1}^{K} \sum_{x_i \in S_j} 1(y_i = j)$$

subject to:

$$d(S_i, S_j) \geq 2r, j \neq i$$

subject to:

$$d(S_i, S_j) \geq 2r, j \neq i$$
A finite sample approximation...

Given robustness radius r

$$\max_{S_j} \sum_{j=1}^{K} \int_{x \in S_j} \Pr(y = j|x) \mu(x) \, dx \rightarrow \max_{S_j} \sum_{j=1}^{K} \sum_{x_i \in S_j} 1(y_i = j)$$

subject to:

$$d(S_i, S_j) \geq 2r, j \neq i$$

Solution: Maximal subset of training samples where points with different labels are $2r$ or more apart
How to solve this?

How to solve this?
 Binary - reduces to maximum bipartite matching
 K-ary - reduces to independent set, greedy algorithm

Note: Different from [Wang+18] - no confident points
Algorithm: Adversarial Pruning

1. Find maximal subset of training samples where points with different labels are $2r$ or more apart

2. Build classifier (NN, decision tree, RF) on it
Evaluation

- How good is the Region-Based Attack?
- How effective is Adversarial Pruning as a defense?
- Does Adversarial Pruning work for parametric models as well?
Attack Metric

Empirical Robustness of attack A on f at x $=$ Distance to closest adversarial example produced by A on f at x

Attack Metric: Average empirical robustness over examples where f is accurate

Smaller means better attack

For the optimal attack, this is the average robustness radius
Baselines

Classifiers: Nearest Neighbors (1NN), 3 Nearest Neighbors (3NN), Decision Trees (DT), Random Forests (RF)

9 datasets

Attacks: Black box attack (Cheng+19) (for all)
Direct attack (for NN)
Kernel substitution attack (for NN)
Papernot’s attack (for DT)
Exact Region-based attack (for 1NN, DT)
Approx Region-based attack (for 3NN, RF)
Results

(Low bar means better)
Results

1-NN

3-NN

DT

RF

(Low bar means better)
Defense Metric

Attack Metric: Average empirical robustness over examples where f is accurate

Defense Score for defense D with attack A = \[rac{\text{Empirical Robustness (A, } f_D)}{\text{Empirical Robustness (A, } f_U)}\]

($f_D = \text{classifier produced by } D, f_U = \text{undefended classifier}$)

High defense score means good defense
Results

1-NN

3-NN

DT

RF

(High bar is better)
Results

1-NN

3-NN

DT

RF

(High bar is better)
Parametrics - AT vs AP

LR

MLP

(High bar is better)
Experiments

- Region-based Attacks are better than or competitive with prior attacks
- Adversarial Pruning is also better than or competitive with existing defenses
- Adversarial Pruning also helps parametric methods but not as much as adversarial training
Conclusion

• k_n Nearest neighbors is robust to adversarial examples for very large k_n

• Non-parametric methods are different from parametric methods when it comes to adversarial examples
References

• “Analyzing the Robustness of Nearest Neighbors to Adversarial Examples”, Yizhen Wang, Somesh Jha and Kamalika Chaudhuri, ICML 2018

• “Adversarial Examples for Non-parametrics: Attacks, Defenses and Large-sample Limits”, Yaoyuan Yang, Cyrus Rashtchian, Yizhen Wang and Kamalika Chaudhuri, Arxiv 2019
Acknowledgements

Cyrus Rashtchian
Yao-yuan Yang
Yizhen Wang
Somesh Jha