
Nearest Neighbors II:  
Adversarial Examples

Kamalika Chaudhuri 

University of California, San Diego



Talk Outline

• Part I: k-Nearest neighbors:  Regression and 
Classification

• Part II: k-Nearest neighbors (and other non-
parametrics):  Adversarial examples



[G+14]

Panda Gibbon

Adversarial Examples

[Goodfellow+14, ], [Szegedy+13], [Meek-Lowd 05],….



Slight strategic modification of test input
causes misclassification

Adversarial Examples



[G+14]

Panda Gibbon

Many Classifiers are Vulnerable to 
Adversarial Examples



State of the Art

- Many, many attacks 

- Many defenses, to be broken again

- Some certifiable defenses

- Limited understanding on why these examples exist

Our Work:  Adversarial examples for nearest neighbors 



Talk Outline

• Adversarial Examples
• A Statistical Learning Framework for Robustness

• Adversarial Examples for Nearest Neighbors
• Small and large k
• A Robust Modified Nearest Neighbor

• Beyond Nearest Neighbors
• The r-Optimal Classifier
• Experiments



Statistical Learning Framework

Metric space (X, d)

Underlying measure     on X from which points are drawnµ

Label of x is a coin flip with bias ⌘(x) = Pr(y = 1|x)

Accuracy of a classifier f is  acc(f) = Pr(f(x) = y)

Goal:  Find classifiers f with max accuracy



Definitions
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Robustness Radius: of a classifier f at x is the distance 
to the closest z such that f(x)     f(z) 6=

Higher robustness radius 
implies robust classifier at x

Denoted by ⇢(f, x)



Robustness wrt Distribution
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Robustness of a classifier f at radius r wrt 
underlying distribution   :µ

R(f, r, µ) = Pr
x⇠µ

(⇢(f, x) � r)

High R implies high robustness on inputs from distribution



Robustness Definitions

Algorithm ATraining 
Data Sn

Classifier
A(Sn)

Distributional robustness of A at radius r is

lim
n!1

E[R(A(Sn), r, µ)]

Finite sample robustness of A gives bounds on 
E[R(A(Sn), r, µ)] for finite n

[Wang, Jha, Chaudhuri’18]



Astuteness: Combining 
 Robustness and Accuracy

The astuteness of classifier f at radius r is defined as:
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Fraction of points 
where f is robust and accurate

Goal of robust learning is 
maximizing astuteness

ast(f, r) = Pr(f(x) = y, ⇢(f, x) � r)

Distributional and finite sample astuteness: similar

[Wang, Jha, Chaudhuri’18, Tsipras+19]



Prior Work - Parametric Methods

• [Schmidt+18] For linear classifiers, adversarial 
robustness requires more data

• [Bubeck+18] Achieving robustness to adversarial 
examples may be more computationally challenging

• Others - [Yin+18, Montesser+19] - bounds on 
adversarial generalization



How to non-parametric methods respond 
to adversarial examples?



Tutorial Outline

• Adversarial Examples
• A Statistical Learning Framework for Robustness

• Adversarial Examples for Nearest Neighbors
• Small and large k
• A Robust Modified Nearest Neighbor

• Beyond Nearest Neighbors
• Generic Attacks
• The r-Optimal Classifier
• Experiments



When is nearest neighbors robust 
to adversarial examples?



1-Nearest Neighbors

Theorem: If     is continuous and if in a neighborhoodµ

of x, we have                 then the robustness radius as x⌘ 2 (0, 1),

converges to 0 with growing n

Distributional robustness
 (and astuteness) is 0

Accuracy may be high

x



Proof Intuition

Theorem: If     is continuous and if in a neighborhoodµ

of x, we have                 then the robustness radius as x⌘ 2 (0, 1),

converges to 0 with growing n

x
As n grows, more points in B(x, r)

This z is an adversarial example

If                  at least one of them z
a different label than x
⌘ 2 (0, 1),



Constant k

Theorem: If     is continuous and if in a neighborhoodµ

of x, we have                 then the robustness radius as x⌘ 2 (0, 1),

converges to 0 with growing n

xSimilar argument also holds for
constant k



What about larger k?



Reminder: k-NN Accuracy

The risk of 1-NN converges to EX [2⌘(X)(1� ⌘(X))]

as n grows (more than Bayes Optimal risk)

k NN is also inconsistent for constant k  

kn ! 1 kn/n ! 0If             and                  then, the risk of kn-NN
converges to the risk of the Bayes Optimal



kn-NN Robustness

What can we expect? Robust where 
Bayes Optimal is robust

Where is the Bayes Optimal robust?



Some Notation

Probability-radius rp(x):

rp(x) = inf{r|µ(B(x, r)) � p}
x

rp(x)

µ(B(x, rp(x))) � p

B(x, rp(x))



Robust Interiors

Positive: X+
r,p,� = {x|8x0 2 B(x, r), 8x00 2 B(x0

, rp(x
0)),

⌘(x00) > 1/2 +�}

x
x’

r rp(x’)



Robust Interiors

Positive: X+
r,p,� = {x|8x0 2 B(x, r), 8x00 2 B(x0

, rp(x
0)),

⌘(x00) > 1/2 +�}

⌘(x00) < 1/2��}
X�

r,p,� = {x|8x0 2 B(x, r), 8x00 2 B(x0
, rp(x

0)),Negative:

x
x’

r rp(x’)



Robust Interiors

Positive: X+
r,p,� = {x|8x0 2 B(x, r), 8x00 2 B(x0

, rp(x
0)),

⌘(x00) > 1/2 +�}

⌘(x00) < 1/2��}
X�

r,p,� = {x|8x0 2 B(x, r), 8x00 2 B(x0
, rp(x

0)),Negative:

x
x’

r rp(x’) -Interiors =(r, p,�)

Positive + Negative



Where is Bayes Optimal Robust?

Bayes Optimal has robustness 
radius r in X+

r,0,0 [ X�
r,0,0

Interior

Decision
Boundary

r
x x’

(r, p,�)



Where is Bayes Optimal Robust?

Bayes Optimal has robustness 
radius r in X+

r,0,0 [ X�
r,0,0

Astuteness of Bayes Optimal
at radius r is

EX [⌘(x)1(x 2 X+
r,0,0)

+(1� ⌘(x))1(x 2 X�
r,0,0)]

Interior

Decision
Boundary

r
x x’

(r, p,�)



Robustness of kn-NN

Theorem: Let             . If                                  and            �n ! 0 kn �
p
dn log n/�n

then w.h.p  kn-nearest neighbors has 

robustness radius at least r in X+
r,pn,�n

[ X�
r,pn,�n

pn =
kn

n

(1 + o(1))



Robustness of kn-NN

Growth of kn much faster than required for accuracy

Theorem: Let             . If                                  and            �n ! 0 kn �
p
dn log n/�n

then w.h.p  kn-nearest neighbors has 

robustness radius at least r in X+
r,pn,�n

[ X�
r,pn,�n

pn =
kn

n

(1 + o(1))



Robustness of kn-NN

Growth of kn much faster than required for accuracy

If                         ,  and              , then  pn = kn/n ! 0 �n ! 0

X+
r,pn,�n

[ X�
r,pn,�n

! X+
r,0,0 [ X�

r,0,0

(Robustness region 
of Bayes Optimal)

Theorem: Let             . If                                  and            �n ! 0 kn �
p
dn log n/�n

then w.h.p  kn-nearest neighbors has 

robustness radius at least r in X+
r,pn,�n

[ X�
r,pn,�n

pn =
kn

n

(1 + o(1))



Proof Intuition

kn

n

(1� o(1))  µ(B(x, kx�X

(kn)k))  kn

n

(1 + o(1))

For                          , by uniform convergence, for all x, kn �
p
dn log n/�n

x



Proof Intuition

kn

n

(1� o(1))  µ(B(x, kx�X

(kn)k))  kn

n

(1 + o(1))

If                   , for all          x

0 2 X+
r,pn,�n

x

00 2 B(x0
, X

(kn)(x0)), ⌘(x00) > 1/2 +�n

By uniform convergence, 
1

kn

X

i

Y

(i)(x00) >
1

2

For                          , by uniform convergence, for all x, kn �
p
dn log n/�n

x



Can we get robustness for 1 NN?

Yes, through a modified algorithm….



When is Nearest Neighbors Robust? 

1-nearest neighbor is robust at x if:
- points with different labels are well-separated
- x is close to a point with the same label

x



Algorithm Idea

- Remove a subset of training data such that differently 
labeled points are far apart

- Do 1-nearest neighbors on remaining data



Algorithm Idea

- Remove a subset of training data such that differently 
labeled points are far apart

- Do 1-nearest neighbors on remaining data

Which points to remove?
Keep points with confident 
labels, and a maximal subset
of the rest



r-separation

A set of points {(xi, yi)} is r-separated if 

yi 6= yj =) kxi � xjk � 2r

2r



Getting Confident Labels

kn = 3 log(2n/�)/�2

Input:  x,  training data of size n,  parameters �,�



Getting Confident Labels

kn = 3 log(2n/�)/�2

Y =
1

kn

knX

i=1

Y

(i)(x)

Input:  x,  training data of size n,  parameters �,�



Getting Confident Labels

kn = 3 log(2n/�)/�2

Y =
1

kn

knX

i=1

Y

(i)(x)

If                              then 

return “Don’t Know” 

Y 2
h1
2
��,

1

2
+�

i

Else return round(Y)

Input:  x,  training data of size n,  parameters �,�



Full Algorithm

Input:  x,  training data S,  radius r,  parameters �,�

For all i:     f(xi) = ConfidentLabel (xi, S,       )�,�



Full Algorithm

Input:  x,  training data S,  radius r,  parameters �,�

For all i:     f(xi) = ConfidentLabel (xi, S,       )�,�

T = emptyset

For all i:  if f(xi) = yi and f(xi) = f(xj) for all xj in B(xi, r) then

Add (xi ,yi )  to T



Full Algorithm

Input:  x,  training data S,  radius r,  parameters �,�

For all i:     f(xi) = ConfidentLabel (xi, S,       )�,�

T = emptyset

For all i:  if f(xi) = yi and f(xi) = f(xj) for all xj in B(xi, r) then

Add (xi ,yi )  to T

Return the largest r-separated subset of S that contains T
as training data for nearest neighbor



When is this algorithm robust?

Theorem:  Fix         , and let                              , and�,�n kn = 3 log(n/2�)/�2
n

pn =
kn
n
(1 +⇥(

p
d/kn)). For a parameter t, define a set Xr :

XR =

n

x|x 2 X+
r+t,pn,�n

[ X�
r+t,pn,�n

, µ(B(x, t)) � Cd log n/n

o

Whp, algorithm has robustness radius at least r - 2t on XR
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When is this algorithm robust?

Theorem:  Fix         , and let                              , and�,�n kn = 3 log(n/2�)/�2
n

pn =
kn
n
(1 +⇥(

p
d/kn)). For a parameter t, define a set Xr :

XR =

n

x|x 2 X+
r+t,pn,�n

[ X�
r+t,pn,�n

, µ(B(x, t)) � Cd log n/n

o

Whp, algorithm has robustness radius at least r - 2t on XR

XR is a high density subset of X+
r+t,pn,�n

[ X�
r+t,pn,�n

X+
r+t,pn,�n

[ X�
r+t,pn,�n

! X+
r,0,0 [ X�

r,0,0As t, pn,                        �n ! 0,

(robust region of Bayes Opt)



Proof Intuition

xi 2 X+
r,pn,�n

[ X�
r,pn,�n

Let                                    and yi = 1(⌘(x) > 1/2)

From property of kn, (xi, yi) gets added to T

If x is in XR, by uniform convergence,  there is an (xi, yi) in S
and B(x, t).  This (xi, yi) will get added to the final training set 

2r

Since T is r-separated, 
any xj with a different yj 
will be at least 2r away 
from xi. Triangle inequality 
gives radius r - 2t.

x

xi

xj
x’



How does it work?



Experiments: Details

• StandardNN: Standard 1-NN using full training set
• RobustNN: Our method
• ATNN:  Adversarially-trained 1-NN, dataset augmented using 

corresponding attack
• ATNN-all:  Adversarially-trained 1-NN, dataset augmented 

using all attack methods

Baselines:

Datasets: Half-moon, MNIST 1v7,  UCI Abalone



White-box Attacks

Direct Attack [ABEF16]:

Substitute Attack [PMG16]:

Find kernel classifier (soft nearest neighbors)

Attack with standard gradient-based methods

Find closest x’ in training set
with different label
Move a distance r towards x’



White-Box Attack Results

Top: Direct attacks, Bottom: Kernel substitute



Black-box Attacks

Train substitute classifier by making queries to 
nearest neighbor

Return adversarial examples for substitute classifier

Attack Method [PMGJ+17]:



Black-Box Attack Results

Top: Kernel substitute, Bottom: Neural network substitute



Conclusion

• Proved robustness properties of nearest neighbors to 
adversarial examples

• New robust NN algorithm

• Experimental results
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Beyond Nearest Neighbors…

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?



Adversarial Examples for  
Parametric Methods

(Most) Attacks:  Gradient-based: Starting at x, do gradient 
ascent on the loss until label changes

✓

⇤ = min
✓

L(✓, x, y)

Model     obtained by minimizing a loss function L✓⇤



Adversarial Examples for  
Parametric Methods

(Most) Defenses:  Adversarial training (training with 
data augmented with adversarial examples).

[Goodfellow+14, Madry+17, many others..]



What about non-parametrics?

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?

Prior Work: Specific classifiers
- Nearest neighbors [Amsaleg+17, Wang+18] 
- Decision trees [Kantchelian+16, Cheng+19] 



What about non-parametrics?

Can we get generic attacks and defenses for non-
parametrics — NN, decision trees, RF?

Challenges for generics:
- Gradient-based attacks do not apply 
- Adversarial training does not work well 



Talk Outline

• Generic Attacks

• A Limit Object

• A Generic Defense



Generic Attacks

Key Observation: Many non-parametrics are piece-wise 
constant on polyhedra

Example: 1 NN on Voronoi cells, decision trees on leaf nodes



Region-Based Attack

Key Observation: Many non-parametrics are piece-wise 
constant on polyhedra



Region-Based Attack

Key Observation: Many non-parametrics are piece-wise 
constant on polyhedra

Let the polyhedra be P1, …, Pm

with predicted labels y1, …, ym
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Region-Based Attack

Key Observation: Many non-parametrics are piece-wise 
constant on polyhedra

Let the polyhedra be P1, …, Pm

with predicted labels y1, …, ym

Given x, find

Convex program - solution gives optimal attack 



Approx Region Based Attack

Let the polyhedra be P1, …, Pm

with predicted labels y1, …, ym

Given x, find

Convex program!

Challenge:  Too many polyhedra (about nk for k-NN)



Approx Region Based Attack

Let the polyhedra be P1, …, Pm

with predicted labels y1, …, ym

Given x, find

Convex program!

Challenge:  Too many polyhedra (about nk for k-NN)

Solution: Search over Pi with L training points closest to x 

(lose optimality, but still valid)



What about defenses?



Beyond the Bayes Optimal…

Bayes Optimal maximizes accuracy 
but not robustness

Is there a robustness analogue 
to the Bayes Optimal?



Recall: Astuteness

The astuteness of classifier f at radius r is defined as:

+

-

f

x

Fraction of points 
where f is robust and accurate

Goal of robust learning is 
maximizing astuteness

ast(f, r) = Pr(f(x) = y, ⇢(f, x) � r)



Maximizing Astuteness 

Suppose classifier f predicts
label j in Sj and is robust 

Given robustness radius r

S1

S2

S3
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Maximizing Astuteness 

Suppose classifier f predicts
label j in Sj and is robust 

Given robustness radius r

Then: d(Si, Sj) � 2r, j 6= i
S1

S2

S3

Astuteness of f is:
KX

j=1

Z

x2Sj

Pr(y = j|x)µ(x)dx



…suggests the classifier

maxSj

Given robustness radius r

d(Si, Sj) � 2r, j 6= i S1

S2

S3

KX

j=1

Z

x2Sj

Pr(y = j|x)µ(x)dx

subject to:

Prediction Rule: 
Predict j if d(x, Sj)  r



How to get a finite-sample 
approximation?



A finite sample approximation…

maxSj

Given robustness radius r

d(Si, Sj) � 2r, j 6= i

KX

j=1

Z

x2Sj

Pr(y = j|x)µ(x)dx

subject to:

Idea: Represent each Sj by a set of training samples…

S1

S2

S3



A finite sample approximation…

maxSj

Given robustness radius r
KX

j=1

Z

x2Sj

Pr(y = j|x)µ(x)dx

d(Si, Sj) � 2r, j 6= i

subject to:

maxSj

KX

j=1

X

xi2Sj

1(y
i

= j)

d(Si, Sj) � 2r, j 6= i

subject to:



A finite sample approximation…

maxSj

Given robustness radius r
KX

j=1

Z

x2Sj

Pr(y = j|x)µ(x)dx

d(Si, Sj) � 2r, j 6= i

subject to:

Solution: Maximal subset of training samples where 
points with different labels are 2r or more apart

maxSj

KX

j=1

X

xi2Sj

1(y
i

= j)

d(Si, Sj) � 2r, j 6= i

subject to:



How to solve this?

Note:  Different from [Wang+18] - no confident points

How to solve this?
Binary - reduces to maximum bipartite matching

K-ary - reduces to independent set, greedy algorithm



Algorithm: Adversarial Pruning

1. Find maximal subset of training samples where 
points with different labels are 2r or more apart

2. Build classifier (NN, decision tree, RF) on it

S1

S2

S3

S1

S2

S3



Evaluation

• How good is the Region-Based Attack?

• How effective is Adversarial Pruning as a defense?

• Does Adversarial Pruning work for parametric models as 
well?



Attack Metric

Empirical Robustness of 
attack A on f at x

Distance to closest adversarial 
example produced by A on f at x =

Attack Metric:  Average empirical robustness over examples 
where f is accurate

Smaller means better attack
For the optimal attack, this is the average robustness radius



Baselines

Classifiers: Nearest Neighbors (1NN), 3 Nearest Neighbors 
(3NN), Decision Trees (DT), Random Forests (RF) 

9 datasets

Attacks: Black box attack (Cheng+19) (for all)
Direct attack (for NN)
Kernel substitution attack (for NN)
Papernot’s attack (for DT)
Exact Region-based attack (for 1NN, DT)
Approx Region-based attack (for 3NN, RF)



Results 

1-NN 3-NN

DT RF

(Low bar means better)



Results

1-NN 3-NN

DT RF

(Low bar means better)



Defense Metric

Attack Metric:  Average empirical robustness over examples 
where f is accurate

Defense Score for 
defense D with 
attack A

Empirical Robustness (A, fD)

Empirical Robustness (A, fU)
=

(fD = classifier produced by D, fU = undefended classifier)

High defense score means good defense



Results

(High bar is better)

1-NN 3-NN

DT RF



Results

(High bar is better)

1-NN 3-NN

DT RF



Parametrics - AT vs AP

LR

MLP

(High bar is better)



Experiments

• Region-based Attacks are better than or competitive 
with prior attacks 

• Adversarial Pruning is also better than or competitive 
with existing defenses

• Adversarial Pruning also helps parametric methods but 
not as much as adversarial training



Conclusion

• kn Nearest neighbors is robust to adversarial examples 
for very large kn

• Non-parametric methods are different from parametric 
methods when it comes to adversarial examples
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