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Talk Outline

* Part I: k-Nearest neighbors: Regression and

Classification

* Part ll: k-Nearest neighbors (and other non-

parametrics): Adversarial examples



k Nearest Neighbors

Given: training data (xi, Y1), ..., (Xn, ¥n) in X x {0, I}

query point X

Predict y for x from the k closest neighbors of x among x;

Example:
Y
®  k-NN classification: predict majority
® o e label of k closest neighbors
° #
o o ° k-NN regression: predict average label

& of k closest neighbors



The Metric Space

Data points lie in metric space with distance function d

Examples:

X = RP, d = Euclidean distance
X =RP,d = |, distance
Metric based on user preferences




Notation

X0(x) = i-th nearest neighbor of x
Y0(x) = label of X()(x)

X)(x)
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NN Regression Setting

Compact metric space (X, d)

Uniform measure ¢ on X (for now)

Input: Training data (xi, Y1), ..., (Xn, Yn)
where: x; ~ U

y; = f(x;) + noise

unknown f

k-NN Regressor: f.(z ZY“)
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Universality

Input: Training data (xi, y1), ..., (Xn, ¥n)
where y; = f(x;) + noise

k
A 1 .
k-NN Regressor:  fi(z) = ; Y@ (x

What f can k-NN regression represent!?

Answer: Any f, provided k grows suitably with n

[Devroye, Gyorfi, Kryzak, Lugosi, 94]



More Formally...

kn NN Regression: when k grows with n

Theorem: If k, — oo and if k,,/n — 0, then for any f,
X mopll F(X) = fi, (X)]] = 0

as 1 — OO

kn NN Regression is universally consistent
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Intuition: Universal Consistency

® As n grows, X (x) move
® ® ® o closer to x (continuous [t )
X
o
@ @ @ @
® @ If kn is constant or grows slowly
© o 0 .
® @ (kn/n — 0)then X () = x,i < ky,

If f is continuous, then (X9 (z)) = f(z),1 < i<k,
] & .
If K, — oo,then - > (f(XW(x)) + noise) — f(x)

1=1
Any f can be approximated arbitrarily well by continuous f
H
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Convergence Rates

Definition: fis L-Lipschitz if for all x and x,

[f(@) = f(a")| < L-d(z,z)

Theorem: If f is L-Lipschitz then for k,, = @(nQ/(2+D>),

there exists a constant C such that

Lol fe(z) — f(2)]|] < Cn~?/CTP) (D = data dim)

Better bounds for low intrinsic dimension [Kpotufel |]

kn = @(nQ/(2+D)) is the optimal value of ki,



How fast is convergence!

- How small are k-NN distances?

- From distances to convergence rates



k-NN Distances

Given i.i.d. T1yeoey Ty ~ WU

Define: r(z) = d(z, X*) (z))
X2)(x)

How small is ri(x)?
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k-NN Distances

Given i.i.d. Liyeeey Ly ~ U

Define: 74 (z) = d(z, X® (z))

f(Bz) = k/n =~ u(By)

(whp for large k, n)

X®)(x)



k-NN Distances

@
Given i.i.d. LlyeoeyLpy ~ W B,
Define: 7 (z) = d(z, X*) (z))
Let Bx = Ball(x, rr(x)) X&) (x)
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k-NN Distances

@
Given i.i.d. LlyeoeyLpy ~ W B,
Define: 7 (z) = d(z, X*) (z))
Let Bx = Ball(x, rr(x)) X&) (x)

i(Bz) =k/n =~ u(B;) (whp for large k, n)
u(Bo) = [ e’ o) [ da' (o)

1k
p(x) n

1/D
) (D = data dimension)



k-NN Distances

@
Given i.i.d. Llyeeeypn ~ U 3
Define: 7 (z) = d(z, X% (z))
1 k\'"  (Curse of X (x)
re(z) ~ | ——= - = : : :
u(z) n dimensionality)

Better for data with low intrinsic dimension
[Kpotufe, 201 | ], [Samworth |2], [Costa and Hero 04]



From Distances to Rates

|. Bias-Variance Decomposition
2. Bound Bias and Variance in terms of distances

3. Integrate over the space



Bias-Variance Decomposition

For a fixed x, and {x},

define;

ule) = 2 STEVO @) i}

(

Then:
|| fr(z) = f(2)]]] =

k

1

(|| fi () — f()]”] +

o e

Bias

B[]l fi () — fio(@)]|°]

e o

Variance
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Bounding Bias and Variance

Bounding bias: For any x,

| fu(x) = fla)|* < ( Z|f FXO ))

(L-d(z, X" (z)))? (by Lipschitzness)

VAN

1\ 2/D
<06 (—> (from distances)

mn



Bounding Bias and Variance

Bounding bias: For any x, :
~ 1 |
| fe(z) = f(2)|]" < (k Z f(z) — F(X© (x)>
< (L-d(z,X®)(z)))? (by Lipschitzness)
1\ 2/D
<6 (—> (from distances)
n

Bounding variance:

1) ~ (@) = E (O ) - Y O () ) = 77




Integrating across the space

|| fre(2) — f(2)]"] =

8[| fi(a) — f(@)]1%] +

e

8[| fu () — fiol@)]|°]

o o

Variance



Integrating across the space

|| fre(2) — f(2)]"] =

A

Optimizing for k: k, = O(n

8[| fi(a) — f(@)]1%] +

e

Bias
1 I 2/D
P (ﬁ)

2/(2—|—D))

8[| fu () — fiol@)]|°]

o o

Variance



Integrating across the space

[ £ () — f(@)1°] = Elll fe(z) — f(@) 1] + E[|| fu(z) — frlz)]?]
7 7
Bias . Variance
1 k2
<+ (3)

Optimizing for k: k, = ©(n?/ 2TD))

Which leads to:  E[|| fx(z) — f(2)||?] < n=2/+D)

Bound is optimal, better for low intrinsic dimension -
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Nearest Neighbor Classification

Given: training data (xi, Y1), ..., (Xn, ¥n) in X x {0, I}

query point X

Predict majority label of the k closest points closest to x

< hnk = k-NN classifier on n points
®
. e~ ha) =0, if 7> V@) <
® 1=1
o o °

= |, otherwise



The Statistical Learning Framework

Metric space (X, d)
Underlying measure i on X from which points are drawn

Label of x is a coin flip with bias 1(x) = Pr(y = 1|x)

Risk or error of a classifier h: R(h) = Pr(h(X) #Y)
Accuracy(h) = | - R(h)

Goal: Find h that minimizes risk or maximizes accuracy



The Bayes Optimal Classifier

0, if n(x) <1/2
h(x) = {

|, otherwise

Risk(h) = Ex[min(n(X),1 —n(X))] =R*

The Bayes Optimal Classifier minimizes risk
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Consistency

Does R(hnk) converge to R* as n
goes to infinity?



Consistency of |-NN

® Assume:
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Consistency of |-NN

® Assume;
® o © Continous 7
“x. ®o Absolutely continuous
& @ &
R @ @
° . “ ¢ R(hn1) = Ex[2n(X)(1 — n(X))] # R*

| -NIN is inconsistent

k-NN for constant k is also inconsistent

[Cover and Hart, 67}
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Proof Intuition

® Assume:
® o © Continous 7]
‘.x. ® 9 Absolutely continuous pu
@ @ @
® .9 @
® e e |
® o 9o For any x, X()(x) converges to x

By continuity, (XM (2)) = n(x)

Pr(Y M (z) # y) = n(z)(1 — (X (2)) + n(X D (2))(1 - n(z))
= 2n(x)(1 —n(x))

Thus: R(hy,1) = Ex2n(X)(1 —n(X))] # R” B




Consistency under Continuity

Assume 7] is continuous

Theorem: If k,, — oo and if k,,/n — 0, then
R(hnr,) = R* as n— o0

[Fix and Hodges’5 1, Stone’/77, Cover and Hart 65,67,68]



Proof Intuition
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R(hpk,) > R" as n— o0 .‘
@ & 0.
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Proof Intuition

Assume 7 is continuous

Theorem: If k,, — oo and if k,,/n — 0, then .
R(hpk,) > R" as n— o0 ..
@ & 0.
® #
Proof: X((x), ..., X&M(x) lie in < o®
a ball of prob. mass ~ &, /n -

XD(z),..., XE)(z) 5 2
By continuity, (X" (x)),...,n(X"")(z)) — n(x)

k
1 «— .
= (%)
As kn grows, - ;leY (z) = n(x)



Universal Consistency in Metric Spaces

Theorem: Let (X, d, it) be a separable metric measure space

where the Lebesgue differentiation property holds:

For any bounded measurable f,

1

lim dp =
rl0 pu(B(x,r)) /B(x,r) fdp = J(x)

for almost all 1 -a.e xin X




Universal Consistency in Metric Spaces

Theorem: Let (X, d, it) be a separable metric measure space

where the Lebesgue differentiation property holds:

For any bounded measurable f,

1

lim dp =
rl0 pu(B(x,r)) /B(x,r) fdp = J(x)

for almost all 1 -a.e xin X

If k, = occand k,/n — 0 then R(hnk,) = R in probability
If in addition k,/logn — 0 then R(h, ) — R* almost surely
[Chaudhuri and Dasgupta, 14]
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Universal Consistency in Metric Spaces

e Since kn,/n — 0, XV (2),.... XF)(2) -
® Earlier continuity argument: n(X™" (2)),....n(X"")(z)) — n(z)
o It suffices that avg(n( XM (z)),..., n(X %) (2))) = n(z)
o X((x), .., Xk (x) lie in some ball B(x, r). For suitable r,
they are random draws from (i restricted to B(x, r)
o avg(n( XM (x)),...,n(X*)(z)))is close to avg 7 in B(x, r)

e As n grows, this ball shrinks. Thus it is enough that

1
lim / ndu = n(z)
10 W(B(z,7)) JB(e,r)
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Main Idea in Prior Analysis

Smoothness of (t === Small ri(x)

Lipschitzness of 7 ==l (X (2)) = n(x)

Neither smoothness nor Lipschitzness matter!
[Chaudhuri and Dasgupta’ | 4]



A Motivating Example

-

Class 0 Class 1 Class 0 Class 1

Property of interest:

Balls of probability mass approx. k/n around x

where x is close to the decision boundary



Some Notation

B(x,
Probability-radius rp(x): 0% rp())

rp(x) = inf{r|u(B(z,r)) = p}

Conditional probability for a set:

n(A) = L/Anolu



Effective Interiors and Boundaries

(p, A)

Interior

Positive Interior:

X\ = {zn(x) > 1/2,
n(B(z,7)) = 1/2 + A,
for all r < r,(x)}
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Effective Interiors and Boundaries

Positive Interior:

X\ = {zn(x) > 1/2,
n(B(z,7)) = 1/2 + A,
for all r < r,(x)}

(p, A)

: Similarly Negative Interior
Interior 4 8

(p, A) -Interior: X;A U XA

(p, A) -Boundary: é)p,A =X\ (X;A U Xp_’A)



Convergence Rate Theorem
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Convergence Rate Theorem

Risk Rk of the k-NN classifier based on n training
examples is:

Roi <R "4+0+ pu(0pa)

for: Detision

S

(1 Nog(2/6 (p, A
A = min (2»\/Og(k/ )) Interior




Proof Intuition | 66 100)

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:



Proof Intuition | 66 100)

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:

l. x€0,n



Proof Intuition | 66 100)

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:



Proof Intuition | 66 100)

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:

l. z€dpa
2. d(z, X (z)) > r,(x)

1
3. EZE-I(XieB)—n(B) > A
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Then n(B) > 1/2+ A



Proof Intuition |

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:

1.
2.

3.

Tr € 0p,A
d(z, XM (2)) > ry(x)

%Zw(xi c B) — y(B)

B(x, rp(x))

If (1) does not hold, say
n(x) = 1/2

Then n(B) > 1/2+ A

Either k-th NN of x lies

outside B or (3) holds



Proof Intuition 2

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:

1.
2.

3.

Tr € 0p,A
d(z, XM (2)) > ry(x)

%Zyi'l(Xz‘ € B) —n(B)

B(x, rp(x))

If

k 1
p=—-
n

1 —/(4/k)log(2/9)
then, the probability
of (2) is at most /2

(Chernoff bounds)



Proof Intuition 3

For fixed x, let B = B(x, rp(x))

If hnx(x) # h(x) then:

1.
2.

3.

Tr € 0p,A

d(x, X<k)(:13)) > r,(x)

%Zyi'l(Xz‘ € B) —n(B)

B(x, rp(x))

If

(1 [log(2/d)
A = min (2,\/ - )

then, the probability
of (3) is at most /2

(Chernoff bounds)
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Putting it all together...

Risk Rk of the k-NN classifier based on n training
examples is:

R, <Pr(h(x) #y)+ Pr(z € 0, A) + Pr(2.) + Pr(3.)

Pr(h(x) #£y) = R" (By definition)
Pr(z € Op,a) = 1(0p,a)

k- 1 . (1 [log(2/6)
T k) logejs) 2nd AT (2\/ z )

then Pr(2.)+Pr(3.) <6




Convergence Rate Theorem

Risk Rk of the k-NN classifier based on n training
examples is:

Roi <R "4+0+ pu(0pa)

for: Detision

S

(1 Nog(2/6 (p, A
A = min (2»\/Og(k/ )) Interior




Smoothness

n is a-Holder continuous if for constant L, all x, x’,
n(x) —n(’)| < Lilz —2'||

)
Margin: For constant C,for any t, ..

u({z| n(x) —1/2] <)) < Ctf b\ /NS

The above two conditions plus it is supported on
a regular set with fmin < {0 < [max

Then E[R] - R*is @(n~a(F+1)/(Zatd))

Also achieved by k-NN for suitable k



A Better Smoothness Condition

n(z)
A
More natural notion:
Relate smoothness to \/\/
(|| — ')

n is «a-smooth if for some constant L, for all x, r > 0,

n(z) =n(B(z,r))| < Lp(B(z,7))"



Smoothness Bounds

Suppose 7) is & -smooth. Then for any n, k,
With probability > 1 — ¢,

Pr(h 4(X) # h(X)) < 8+ ({x ()~ 1721 < € Lo %)
2/ (2a+1)

For k x n

Lower Bounds: With constant probability,
Pr(hn i (X) # h(X)) = Cope ({q; n(z) —1/2| < 03\/%}>



Implications

|. Recovers previous bounds on smooth functions with
margin conditions

2. Faster rates for special cases
- Lero Bayes Risk: |-NN has the best rates

- A Bounded away from 0: Exponential convergence



Conclusion

|. kn-NN is always universally consistent provided k
grows a certain way with n

2. k-NN regression suffers from curse of dimensionality

3. k-NN classification also does, but can do better
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