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Positive dependence and MTP, distributions

o A distribution (i.e. density function) p on X =[] . &\, with
X, C R discrete or open subset, is multivariate totally positive of
order 2 (MTP,) if

p(x)p(y) < pxAy)p(xVy)  forallx,y € X,

where A and V are applied coordinate-wise.
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Positive dependence and MTP, distributions

o A distribution (i.e. density function) p on X =[] . &\, with
X, C R discrete or open subset, is multivariate totally positive of
order 2 (MTP,) if

p(x)p(y) < pxAy)p(xVy)  forallx,y € X,

where A and V are applied coordinate-wise.

@ A random vector X is positively associated if for any non-decreasing
functions ¢, : R™ — R

cov{p(X),¥(X)} = 0.

Theorem (FortuinKasteleynGiniore inequality, 1971, Karlin & Rinott, 1980)

MTP, implies positive association.
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No Yule-Simpson Paradox under MTP5!

The Yule-Simpson paradox says that we may have two random variables
X and Y positively associated, but X and Y negatively associated

conditionally on a third variable Z.

Sentences in 4863 murder cases in Florida over the six years 1973-1978:

Sentence
Murderer | Death  Other
Black 59 2547
White 72 2185

Overall greater proportion of white murderers receiving death sentence
than black (3.2% vs. 2.3%); this trend is reversed given color of victim.

Sentence
Victim Murderer | Death Other
Black 11 2309
Black  \White 0 111
. Black 48 238
White  \hite | 72 2074
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Gaussian-like properties of MTP, distribution

Reminder: A distribution p on X C R™ is MTP; if

p(x)p(y) < p(xAy)p(xVy), forallx,yeX.

Theorem (Lebowitz, 1972; Karlin and Rinott, 1980)
If X is MTP», then
(i) any marginal distribution is MTP,
(ii) any conditional distribution is MTP;
(i) Xa L Xg <= cov(Xy, X,) =0 forall ue A,veB
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A multivariate Gaussian distribution p(x; K) is MTPy if and only if the
inverse covariance matrix K is an M-matrix, that is

Ky <0 for all u##v.




Gaussian MTP, distributions

Theorem (Bglviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP, if and only if the

inverse covariance matrix K is an M-matrix, that is

KUVSO

for all uz#v.

Ex: 2016 Monthly correlations of global stock markets (investmentFrontier.com)
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Gaussian MTP, distributions

Theorem (Bglviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP, if and only if the
inverse covariance matrix K is an M-matrix, that is

for all uz#v.

KUVSO

Ex: 2016 monthly correlations of global
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Sample distribution is MTP5! If you sample a correlation matrix uniformly
at random the probability of it being MTP; is < 107°!
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Discrete MTP, distributions

Reminder: A distribution p on X C R™ is MTP5 if
p(x)p(y) < p(xAy)p(xVy), forallx,yeX.

@ Distribution of 3 binary variables X, Y and Z is MTP;, iff

Poo1P110 < PoooP11l Po1oP101 < PoooP11l P100Po11 < PooopPiil
Po11P101 < Poo1P11l Po11P110 < Po1oP11l P1o1P110 < P1oopPi1l
Poo1Po10 < Po0ooPo1l Poo1P100 < Po0oP101 Po10P100 < P000P110

e Dataset on EPH-gestosis analyzed by Wermuth & Marchetti (2014)
o edema (high body water retention)
e proteinuria (high amounts of urinary proteins)
e hypertension (elevated blood pressure)

{3299 107 1012 58

78 11 65 19 |-

Mooo No10 Noor Mo11
Moo 0Ni10 Nior Mii

@ This sample distribution is MTP,! Although when you sample 3-dim
binary distributions only about 2% are MTP>.
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|X]| is MTPs in:
@ Gaussian / binary tree models

e Gaussian / binary latent tree models

e Binary latent class models
e Single factor analysis models

Transcription
factors

NA RNA
Polymerase transcript




Hyperbolic MTP, exponential families

@ An exponential family is a parametric model with density
pg(X) - exp((@, T(X)> - A(e))7

sample space X’ with measure v, sufficient statistics T : X — RY,
and space of canonical parameters: C = {0 eRI: A®9) < +oo}

@ Gaussian distribution: A(f) = —alogdet(9), C =SE,

e Hyperbolic exponential family: A(f) = —alog(f(6)), f hyperbolic
with hyperbolicity cone C
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Hyperbolic MTP, exponential families

@ An exponential family is a parametric model with density
pg(X) - exp((@, T(X)> - A(e))7
sample space X’ with measure v, sufficient statistics T : X — RY,
and space of canonical parameters: C = {§ € R?: A(f) < o0}
o Gaussian distribution: A(f) = —alogdet(9), C =S,

e Hyperbolic exponential family: A(f) = —alog(f(0)), f hyperbolic
with hyperbolicity cone C

Theorem (Lauritzen, Uhler & Zwiernik, 2019)

The space of canonical parameters for any MTP, exponential family is

given by C N K, where K C R is a closed convex cone whose dual is
generated by

{TxANy)+ T(xVy)—T(x)—T(y): x,y € X differing in 2 entries}.
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Density estimation

Given i.i.d. samples X = {x1,...,xp} C R"™ from an unknown distribution

on R™ with density p, can we estimate p?

@ parametric: assume p lies in some parametric family

o finite-dimensional optimization problem (estimate parameters)

e restrictive: real-world distribution might not lie in specified family

@ non-parametric: assume that p lies in a non-parametric family:

e infinite-dimensional optimization problem
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ML Estimation for Gaussian MTP, distributions

Let Xi,.

Primal: Max-Likelihood:

o Xn ~N(0,%), S:=15"1 X;X.T sample covariance matrix.

Dual: Min-Entropy:

ma%|>_r_18|ze log det(K) — trace(KS)

subject to K, <0, Yu#v.

— log det(X) —
mlglgalze ogdet(X) —m

subject to X,y = Sy, Tuy > Suv-

@ Maximum likelihood estimation under MTP> is a convex optimization

problem with strong duality
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ML Estimation for Gaussian MTP, distributions
Let X1,...,Xn ~N(0,%), S:=213" X;X.T sample covariance matrix.

Primal: Max-Likelihood: Dual: Min-Entropy:

imi logdet(K) — t K inimi - —
ma%L_r_walze og det(K) — trace(KS) minimize logdet(X) — m

subject to K, <0, Yu#v.

subject to X,y = Sy, Tuy > Suv-

@ Maximum likelihood estimation under MTP> is a convex optimization
problem with strong duality

@ the global optimum is characterized by KKT conditions

° Complementary slackness implies that the MLE K—1 =% satisfies
(Zuv —Sw) Ky =0 Yu#v
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ML Estimation for Gaussian MTP, distributions

Let X1,...,Xn ~N(0,%), S:=213" X;X.T sample covariance matrix.

Primal: Max-Likelihood:

Dual: Min-Entropy:

ma%|>_r_18|ze log det(K) — trace(KS)

subject to K, <0, Yu#v.

— log det(X) —
mlglgalze ogdet(X) —m

subject to X,y = Sy, Tuy > Suv-

@ Maximum likelihood estimation under MTP> is a convex optimization

problem with strong duality

@ the global optimum is characterized by KKT conditions

o Complementary slackness implies that the MLE K—1 =% satisfies

A~

(iuv —Sw)Kuw =0 Yu#v

e Linear algebra: If M is an M-matrix, then (M~1); > 0 for all i,
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ML Estimation for Gaussian MTP, distributions

Let X1,...,Xn ~N(0,%), S:=213" X;X.T sample covariance matrix.

Primal: Max-Likelihood: Dual: Min-Entropy:

imi log det(K) — t K inimi — _
ma%L_r_walze og det(K) — trace(KS) minimize logdet(X) — m
subject to K, <0, Vu#v. subject to X,, = S,, L, > Suv.

@ Maximum likelihood estimation under MTP> is a convex optimization
problem with strong duality

@ the global optimum is characterized by KKT conditions

° Complementary slackness implies that the MLE K—1 =% satisfies
(Zuv —Sw) Ky =0 Yu#v

e Linear algebra: If M is an M-matrix, then (M~1); > 0 for all i,

e Graphical model: G (support of R) is in general sparse!!!
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Ultrametric matrices and inverse M-matrices

e Uis ultrametric: U; > Uj = Ujj > min(Uj, Uy) >0 forall i,j, k.
Theorem (Dellacherie, Martinez and San Martin, 2014)

Let U be an ultrametric matrix with strictly positive entries on the
diagonal. Then U is non-singular if and only if no two rows are equal.
Moreover, if U is non-singular, then U~ is an M-matrix.

Theorem (Slawski and Hein, 2015)
The MLE in a Gaussian MTP, model exists with probability 1 when n > 2.
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Ultrametric matrices and inverse M-matrices

e Uis ultrametric: U; > Uj = Ujj > min(Uj, Uy) >0 forall i,j, k.
Theorem (Dellacherie, Martinez and San Martin, 2014)

Let U be an ultrametric matrix with strictly positive entries on the
diagonal. Then U is non-singular if and only if no two rows are equal.
Moreover, if U is non-singular, then U~ is an M-matrix.

Theorem (Slawski and Hein, 2015)
The MLE in a Gaussian MTP, model exists with probability 1 when n > 2.

New proof: Construct primal & dual feasible point by single-linkage clustering
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Density estimation

Given i.i.d. samples X = {x1,...,xp} C R"™ from an unknown distribution
on R™ with density p, can we estimate p?

@ parametric: assume p lies in some parametric family

o finite-dimensional optimization problem (estimate parameters)

e restrictive: real-world distribution might not lie in specified family

@ non-parametric: assume that p lies in a non-parametric family:

e infinite-dimensional optimization problem
e need constraints that are:

@ strong enough so that there is no spiky behavior

e weak enough so that function class is large
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Shape-constrained density estimation

e monotonically decreasing densities: [Grenander 1956, Rao 1969]
@ convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
o |0g-c0rlcave densities: [Cule, Samworth, and Stewart 2010]

@ generalized additive models with shape constraints: [Chen and Samworth
2016]
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Shape-constrained density estimation

e monotonically decreasing densities: [Grenander 1956, Rao 1969]
@ convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Weliner 2001]
o |0g-c0rlcave densities: [Cule, Samworth, and Stewart 2010]

@ generalized additive models with shape constraints: [Chen and Samworth
2016]

@ Maximum liklihood estimation under MTP5: Given i.i.d. samples
X ={x1,....xn} CTR™,

n
maximizep Z log(p(xi))
i=1

s.t. p is an MTP, density.
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Shape-constrained density estimation

monotonically decreasing densities: [Grenander 1956, Rao 1969]

convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Weliner 2001]

|0g-c0rlcave densities: [Cule, Samworth, and Stewart 2010]

generalized additive models with shape constraints: [Chen and Samworth

2016]

Maximum liklihood estimation under MTP5: Given i.i.d. samples
X ={x1,....xn} CTR™,

Caroline Uhler (MIT)

n
maximizep Z log(p(xi))
i=1

s.t. p is an MTP, density.

p log-concave.
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@ Log-concavity is natural assumption: ensures density is continuous
and includes many distributions: Gaussian, Uniform(a, b),
Gamma(k, ) for k > 1, Beta(a, b) for a, b > 1, etc.



Log-concave density estimation

@ Log-concavity is natural assumption: ensures density is continuous
and includes many distributions: Gaussian, Uniform(a, b),
Gamma(k,0) for k > 1, Beta(a, b) for a,b > 1, etc.

Theorem (Cule, Samworth and Stewart, 2008)

When n > m+ 1, a log-concave MLE p exists and is unique with
probability 1. Moreover, log(p) is a tent-function supported on the convex
hull of the data. Finite-dimensional optimization problem!
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ML estimation under log-concavity and MTP, / LLC

Questions:

@ When does the MLE under log-concavity and MTP, / LLC exist? Is
it unique?

@ What is the shape of the MLE under log-concavity and MTP, / LLC?

o Is the MLE always exp(tent function)?

@ Can we compute the MLE?
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@ A function f : R™ — R is MTP,, if
f(x)f(y) <f(xAy)f(xVy) forallx,yeR"
e A function f : R™ — R is log-L"-concave (LLC) if
f)f(y) <f((x+al)Ay)f(xV(y—al)) VYa>0andx,y € R™.



Log-L"-concave (LLC) functions

@ A function f : R™ — R is MTP5 if
f(x)f(y) <f(xAy)f(xVy) forall x,y e R".
@ A function f : R™ — R is log-L*-concave (LLC) if
f(x)f(y) < f((x+al)Ay)f(xV(y—al)) VYa>0andx,y € R".

Theorem (Murota, 2008)

A function f : Z™ — R is LLC if and only if it is log-concave, i.e.,

f(x)f(y) < f(LX;yJ) qu—;y-D for all x,y € Z™.

Ex.: A Gaussian distribution with covariance matrix X is LLC if and only if
K = ¥~ 1 is a diagonally dominant M-matrix, i.e.,

Kj<Oforalli#,j and > " K;j>O0foralli=1,..m.
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Existence and uniqueness of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let Xi,...,X, be i.i.d samples from a distribution with density fy
supported on a full-dimensional subset of R™. The following hold with
probability one:

e If n > 3, the MTP, log-concave MLE exists and is unique.

@ Ifn> 2, the LLC log-concave MLE exists and is unique.

@ This result is in contrast with existence of the MLE under
log-concavity, where n > m + 1 samples are needed for existence

@ Proof uses convergence properties for log-concave distributions, and
does not shed light on the shape of the MLE.
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Under MTP, we need the density to be nonzero at additional points:

= "Min-max convex hull” of X




Support of the MLE

Under MTP> we need the density to be nonzero at additional points:

= "Min-max convex hull” of X

e MM(X) := smallest min-max closed set S containing X, i.e.
X, yES=xANy,xVyeS

@ MMconv(X) := smallest min-max closed & convex set containing X

Is it always true that MMconv(X) = conv(MM(X))?
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Support of the MLE

Under MTP> we need the density to be nonzero at additional points:

= "Min-max convex hull” of X

e MM(X) := smallest min-max closed set S containing X, i.e.
X, ye€ES=xANy,xVyeS

@ MMconv(X) := smallest min-max closed & convex set containing X

Is it always true that MMconv(X) = conv(MM(X))?

Lemma
If X CR? or X C {0,1}™, then MMconv(X) = conv(MM(X)). J
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Support of the MLE in higher dimensions

Ex: Consider X = {(0,0,0),(6,0,0),(6,4,0),(8,4,2)} C R3.

)

e MM(X) =X

e But conv(MM(X)) is not min-max closed!
(6,4,3/2) = max{(6,4,0), (6,3,3/2)} & conv(MM(X)).
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Support of the MLE in higher dimensions

Ex: Consider X = {(0,0,0),(6,0,0),(6,4,0),(8,4,2)} C R3.

e MM(X) =X
e But conv(MM(X)) is not min-max closed!
(6,4,3/2) = max{(6,4,0), (6,3,3/2)} & conv(MM(X)).

Theorem (The 2-D Projections Theorem)
Let wjj : R™ = R, x — (xj, x;). Then for any finite subset X C R",

MMconv(X) = (] ;" (conv(m(MM(X))).

1<i<j<m
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Exponentials of tent functions hx

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let X C R™ be a finite set of points. The exponential of a tent function

hx , is MTP; if and only if all of the walls of the subdivision h induces are
bimonotone.

A linear inequality a-x+b < 0 is bimonotone
if it has the form a;x; 4+ ajx; + b < 0, where

ajaj < 0.

(1,0

(1,1) (1,0

(1,1)

(0,0) 0. 1) (0.0) (0, 1)
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Shape of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

IfX CR2 or X C {0,1}™ (X C Q™), then the MTP, (LLC) MLE is of

the form exp(tent function) and the set of MTP, (LLC) tent pole heights
define a convex polytope.

—> We can use the conditional gradient method to compute the MLE
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Conclusions

@ We conjecture that the MTP>-MLE is always the exponential of a
tent function (we provide conjectured tent pole locations)

@ LLC estimate provides an MTP, estimate (might not be the MLE)

o Total positivity constraints are often implicit and reflect real processes

e ferromagnetism

o latent tree models

o Total positivity represents interesting shape constraint for
non-parametric density estimation: broad enough class to be of
interest in applications, constrained enough to obtain good density
estimates with few samples

@ MTP; / LLC is well-suited for high-dimensional applications
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