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Positive dependence and MTP2 distributions

A distribution (i.e. density function) p on X =
∏

v∈V Xv , with
Xv ⊆ R discrete or open subset, is multivariate totally positive of
order 2 (MTP2) if

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y) for all x , y ∈ X ,

where ∧ and ∨ are applied coordinate-wise.

A random vector X is positively associated if for any non-decreasing
functions φ, ψ : Rm → R

cov{φ(X ), ψ(X )} ≥ 0.

Theorem (FortuinKasteleynGinibre inequality, 1971, Karlin & Rinott, 1980)

MTP2 implies positive association.
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No Yule-Simpson Paradox under MTP2!

The Yule-Simpson paradox says that we may have two random variables
X and Y positively associated, but X and Y negatively associated
conditionally on a third variable Z .

Sentences in 4863 murder cases in Florida over the six years 1973-1978:

Sentence
Murderer Death Other

Black 59 2547
White 72 2185

Sentence
Victim Murderer Death Other

Black
Black 11 2309
White 0 111

White
Black 48 238
White 72 2074

Overall greater proportion of white murderers receiving death sentence
than black (3.2% vs. 2.3%); this trend is reversed given color of victim.

Data from: Range (1979)
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Gaussian-like properties of MTP2 distribution

Reminder: A distribution p on X ⊆ Rm is MTP2 if

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y), for all x , y ∈ X .

Theorem (Lebowitz, 1972; Karlin and Rinott, 1980)

If X is MTP2, then

(i) any marginal distribution is MTP2

(ii) any conditional distribution is MTP2

(iii) XA ⊥⊥ XB ⇐⇒ cov(Xu,Xv ) = 0 for all u ∈ A, v ∈ B
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Gaussian MTP2 distributions

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Ex: 2016 Monthly correlations of global stock markets (InvestmentFrontier.com)

S =

Nasdaq Canada Europe UK Australia


1.000 0.606 0.731 0.618 0.613 Nasdaq
0.606 1.000 0.550 0.661 0.598 Canada
0.731 0.550 1.000 0.644 0.569 Europe
0.618 0.661 0.644 1.000 0.615 UK
0.613 0.598 0.569 0.615 1.000 Australia

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x ;K ) is MTP2 if and only if the
inverse covariance matrix K is an M-matrix, that is

Kuv ≤ 0 for all u 6= v .

Ex: 2016 monthly correlations of global stock markets (InvestmentFrontier.com)

S−1 =

Nasdaq Canada Europe UK Australia


2.629 −0.480 −1.249 −0.202 −0.490 Nasdaq
−0.480 2.109 −0.039 −0.790 −0.459 Canada
−1.249 −0.039 2.491 −0.675 −0.213 Europe
−0.202 −0.790 −0.675 2.378 −0.482 UK
−0.490 −0.459 −0.213 −0.482 1.992 Australia

Sample distribution is MTP2! If you sample a correlation matrix uniformly
at random the probability of it being MTP2 is < 10−6!
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Discrete MTP2 distributions

Reminder: A distribution p on X ⊆ Rm is MTP2 if

p(x)p(y) ≤ p(x ∧ y)p(x ∨ y), for all x , y ∈ X .

Distribution of 3 binary variables X , Y and Z is MTP2 iff
p001p110 ≤ p000p111 p010p101 ≤ p000p111 p100p011 ≤ p000p111

p011p101 ≤ p001p111 p011p110 ≤ p010p111 p101p110 ≤ p100p111

p001p010 ≤ p000p011 p001p100 ≤ p000p101 p010p100 ≤ p000p110

Dataset on EPH-gestosis analyzed by Wermuth & Marchetti (2014)
edema (high body water retention)
proteinuria (high amounts of urinary proteins)
hypertension (elevated blood pressure)[
n000 n010 n001 n011

n100 n110 n101 n111

]
=

[
3299 107 1012 58

78 11 65 19

]
.

This sample distribution is MTP2! Although when you sample 3-dim
binary distributions only about 2% are MTP2.
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MTP2 constraints are often implicit

MTP2 constraints are often implicit

|X | is MTP2 in:

Gaussian / binary tree models

Gaussian / binary latent tree models

Binary latent class models
Single factor analysis models

X is MTP2 in:

ferromagnetic Ising models

Markov chains with MTP2 transitions

order statistics of i.i.d. variables
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Hyperbolic MTP2 exponential families

An exponential family is a parametric model with density

pθ(x) = exp
(
〈 θ,T (x)〉 − A(θ)

)
,

sample space X with measure ν, sufficient statistics T : X → Rd ,
and space of canonical parameters: C =

{
θ ∈ Rd : A(θ) < +∞

}
Gaussian distribution: A(θ) = −α log det(θ), C = Sp�0

Hyperbolic exponential family: A(θ) = −α log(f (θ)), f hyperbolic
with hyperbolicity cone C

Theorem (Lauritzen, Uhler & Zwiernik, 2019)

The space of canonical parameters for any MTP2 exponential family is
given by C ∩ K, where K ⊂ R is a closed convex cone whose dual is
generated by

{T (x ∧ y) + T (x ∨ y)− T (x)− T (y) : x , y ∈ X differing in 2 entries}.
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Density estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rm from an unknown distribution
on Rm with density p, can we estimate p?

parametric: assume p lies in some parametric family

finite-dimensional optimization problem (estimate parameters)

restrictive: real-world distribution might not lie in specified family

non-parametric: assume that p lies in a non-parametric family:

infinite-dimensional optimization problem
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ML Estimation for Gaussian MTP2 distributions

Let X1, . . . ,Xn ∼ N (0,Σ), S := 1
n

∑n
i=1 XiX

T
i sample covariance matrix.

Primal: Max-Likelihood: Dual: Min-Entropy:

ML Estimation for Gaussian MTP2 distributions

maximize
K⌫0

log det(K ) � trace(KS)

subject to Kuv  0, 8 u 6= v .

minimize
⌃⌫0

� log det(⌃) � p

subject to ⌃vv = Svv , ⌃uv � Suv .

Caroline Uhler (MIT) Estimating Covariance Matrices Vienna, June 2017 17 / 27

ML Estimation for Gaussian MTP2 distributions

maximize
✓⌫0

log det(✓) � trace(✓S)

subject to ✓uv  0, 8 u 6= v .

minimize
⌃⌫0

� log det(⌃) � m

subject to ⌃vv = Svv , ⌃uv � Suv .

Caroline Uhler (MIT) MTP2 distributions Minneapolis, January 2016 13 / 20

Maximum likelihood estimation under MTP2 is a convex optimization
problem with strong duality

the global optimum is characterized by KKT conditions

Complementary slackness implies that the MLE K̂−1 = Σ̂ satisfies
(Σ̂uv − Suv ) K̂uv = 0 ∀u 6= v

Linear algebra: If M is an M-matrix, then (M−1)ij ≥ 0 for all i , j

Graphical model: Ĝ (support of K̂ ) is in general sparse!!!
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Ultrametric matrices and inverse M-matrices

U is ultrametric: Uii ≥ Uij = Uji ≥ min(Uik ,Ujk) ≥ 0 for all i , j , k.

Theorem (Dellacherie, Martinez and San Martin, 2014)

Let U be an ultrametric matrix with strictly positive entries on the
diagonal. Then U is non-singular if and only if no two rows are equal.
Moreover, if U is non-singular, then U−1 is an M-matrix.

Theorem (Slawski and Hein, 2015)

The MLE in a Gaussian MTP2 model exists with probability 1 when n ≥ 2.

New proof: Construct primal & dual feasible point by single-linkage clustering

S =


1 0.7 0.6 0.2 0.1

0.7 1 0.5 0.1 −0.5
0.6 0.5 1 −0.3 0.1
0.2 0.1 −0.3 1 0.4
0.1 −0.5 0.1 0.4 1

 →


1 0.7 0.6 0.2 0.2

0.7 1 0.6 0.2 0.2
0.6 0.6 1 0.2 0.2
0.2 0.2 0.2 1 0.4
0.2 0.2 0.2 0.4 1



 8/7/16  

34

21

34

21

43

21

3

d+2

2

1

d+1

1 2 3 4 5

0.8

0.6

0.4

0.2

0.0

1.0
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Density estimation

Given i.i.d. samples X = {x1, . . . , xn} ⊂ Rm from an unknown distribution
on Rm with density p, can we estimate p?

parametric: assume p lies in some parametric family

finite-dimensional optimization problem (estimate parameters)

restrictive: real-world distribution might not lie in specified family

non-parametric: assume that p lies in a non-parametric family:

infinite-dimensional optimization problem

need constraints that are:

strong enough so that there is no spiky behavior

weak enough so that function class is large
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Shape-constrained density estimation

monotonically decreasing densities: [Grenander 1956, Rao 1969]

convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]

log-concave densities: [Cule, Samworth, and Stewart 2010]

generalized additive models with shape constraints: [Chen and Samworth

2016]

Maximum liklihood estimation under MTP2: Given i.i.d. samples
X = {x1, ..., xn} ⊂ Rm,

maximizep

n∑
i=1

log(p(xi ))

s.t. p is an MTP2 density.

p log-concave.
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Log-concave density estimation

Log-concavity is natural assumption: ensures density is continuous
and includes many distributions: Gaussian, Uniform(a, b),
Gamma(k, θ) for k ≥ 1, Beta(a, b) for a, b ≥ 1, etc.

Theorem (Cule, Samworth and Stewart, 2008)

When n ≥ m + 1, a log-concave MLE p̂ exists and is unique with
probability 1. Moreover, log(p̂) is a tent-function supported on the convex
hull of the data. Finite-dimensional optimization problem!

Log-concave density estimation 3

Fig. 1. The ‘tent-like’ structure of the graph of the logarithm of the maximum likelihood estimator for bivariate
data.

(2009) have studied its theoretical properties. Rufibach (2007) compared di↵erent algorithms for
computing the univariate estimator, including the iterative convex minorant algorithm (Groeneboom
and Wellner, 1992; Jongbloed, 1998), and three others. Dümbgen, Hüsler and Rufibach (2007)
also present an Active Set algorithm, which has similarities with the vertex direction and vertex
reduction algorithms described in Groeneboom, Jongbloed and Wellner (2008). Walther (2010)
provides a nice recent review article on inference and modelling with log-concave densities. Other
recent related work includes Seregin and Wellner (2009), Schuhmacher, Hüsler and Dümbgen (2010),
Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.
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Schuhmacher and Dümbgen (2010) and Koenker and Mizera (2010). For univariate data, it is also
well-known that there exist maximum likelihood estimators of a non-increasing density supported on
[0,1) (Grenander, 1956) and of a convex, decreasing density (Groeneboom, Jongbloed and Wellner,
2001).

Figure 1 gives a diagram illustrating the structure of the maximum likelihood estimator on the
logarithmic scale. This structure is most easily visualised for two-dimensional data, where one can
imagine associating a ‘tent pole’ with each observation, extending vertically out of the plane. For
certain tent pole heights, the graph of the logarithm of the maximum likelihood estimator can be
thought of as the roof of a taut tent stretched over the tent poles. The fact that the logarithm of
the maximum likelihood estimator is of this ‘tent function’ form constitutes part of the proof of its
existence and uniqueness.

In Sections 3.1 and 3.2, we discuss the computational problem of how to adjust the n tent pole
heights so that the corresponding tent functions converge to the logarithm of the maximum likelihood
estimator. One reason that this computational problem is so challenging in more than one dimension
is the fact that it is di�cult to describe the set of tent pole heights that correspond to concave
functions. The key observation, discussed in Section 3.1, is that it is possible to minimise a modified
objective function that is convex (though non-di↵erentiable). This allows us to apply the powerful
non-di↵erentiable convex optimisation methodology of the subgradient method (Shor, 1985) and a
variant called Shor’s r-algorithm, which has been implemented by Kappel and Kuntsevich (2000).

As an illustration of the estimates obtained, Figure 2 presents plots of the maximum likelihood
estimator, and its logarithm, for 1000 observations from a standard bivariate normal distribution.

Caroline Uhler (MIT) MTP2 distributions Berkeley, May 2019 14 / 23



ML estimation under log-concavity and MTP2 / LLC

Questions:

When does the MLE under log-concavity and MTP2 / LLC exist? Is
it unique?

What is the shape of the MLE under log-concavity and MTP2 / LLC?

Is the MLE always exp(tent function)?

Can we compute the MLE?
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Log-L\-concave (LLC) functions

A function f : Rm → R is MTP2 if

f (x)f (y) ≤ f (x ∧ y) f (x ∨ y) for all x , y ∈ Rm.

A function f : Rm → R is log-L\-concave (LLC) if

f (x)f (y) ≤ f ((x + α1)∧ y) f (x ∨ (y − α1)) ∀α ≥ 0 and x , y ∈ Rm.

Theorem (Murota, 2008)

A function f : Zm → R is LLC if and only if it is log-concave, i.e.,

f (x)f (y) ≤ f
(⌊x + y

2

⌋)
f
(⌈x + y

2

⌉)
for all x , y ∈ Zm.

Ex.: A Gaussian distribution with covariance matrix Σ is LLC if and only if
K = Σ−1 is a diagonally dominant M-matrix, i.e.,

Kij ≤ 0 for all i 6= j and
∑m

j=1 Kij ≥ 0 for all i = 1, . . .m.
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Existence and uniqueness of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let X1, . . . ,Xn be i.i.d samples from a distribution with density f0
supported on a full-dimensional subset of Rm. The following hold with
probability one:

If n ≥ 3, the MTP2 log-concave MLE exists and is unique.

If n ≥ 2, the LLC log-concave MLE exists and is unique.

This result is in contrast with existence of the MLE under
log-concavity, where n ≥ m + 1 samples are needed for existence

Proof uses convergence properties for log-concave distributions, and
does not shed light on the shape of the MLE.
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Support of the MLE

Under MTP2 we need the density to be nonzero at additional points:

=⇒ ”Min-max convex hull” of X

MM(X ) := smallest min-max closed set S containing X , i.e.
x , y ∈ S ⇒ x ∧ y , x ∨ y ∈ S

MMconv(X ) := smallest min-max closed & convex set containing X

Is it always true that MMconv(X ) = conv(MM(X ))?

Lemma

If X ⊆ R2 or X ⊆ {0, 1}m, then MMconv(X ) = conv(MM(X )).
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Support of the MLE in higher dimensions

Ex: Consider X = {(0, 0, 0), (6, 0, 0), (6, 4, 0), (8, 4, 2)} ⊆ R3.

(0, 0, 0) (6, 0, 0)

(8, 4, 2)

(6, 4, 0)

(0, 0, 0) (6, 0, 0)

(8, 4, 2)
(6, 4, 1.5)

(6, 4, 0)

MM(X ) = X

But conv(MM(X )) is not min-max closed!

(6, 4, 3/2) = max{(6, 4, 0), (6, 3, 3/2)} 6∈ conv(MM(X )).

Theorem (The 2-D Projections Theorem)

Let πij : Rm → R, x 7→ (xi , xj). Then for any finite subset X ⊆ Rm,

MMconv(X ) =
⋂

1≤i<j≤m
π−1
ij (conv(πij(MM(X ))) .
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Exponentials of tent functions hX ,y

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let X ⊂ Rm be a finite set of points. The exponential of a tent function
hX ,y is MTP2 if and only if all of the walls of the subdivision h induces are
bimonotone.

A linear inequality a·x+b ≤ 0 is bimonotone
if it has the form aixi + ajxj + b ≤ 0, where
aiaj ≤ 0.

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 0) (1, 1) (1, 0) (1, 1)
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Shape of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

If X ⊆ R2 or X ⊆ {0, 1}m (X ⊆ Qm), then the MTP2 (LLC) MLE is of
the form exp(tent function) and the set of MTP2 (LLC) tent pole heights
define a convex polytope.

=⇒ We can use the conditional gradient method to compute the MLE
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Conclusions

We conjecture that the MTP2-MLE is always the exponential of a
tent function (we provide conjectured tent pole locations)

LLC estimate provides an MTP2 estimate (might not be the MLE)

Total positivity constraints are often implicit and reflect real processes

ferromagnetism

latent tree models

Total positivity represents interesting shape constraint for
non-parametric density estimation: broad enough class to be of
interest in applications, constrained enough to obtain good density
estimates with few samples

MTP2 / LLC is well-suited for high-dimensional applications
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