The complexity of ground states

Zeph Landau
Ground State

condensed matter

structure gap algorithm

many body

Area Law

AGSP entanglement viable set

Local Hamiltonian
The difficulty of understanding many-body physics

Each particle in a d-dimensional space—Cd n particles = tensor the individual spaces together = space of dimension d^n. H = (Cd) ⊗ n.

System described by a state: a unit vector |v⟩ ∈ H.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics: Exponential Dimensional Space. So even describing a state requires exponential amount of information.
The difficulty of understanding many-body physics

Each particle a d dimensional space—\mathbb{C}^d

Exponential Dimensional Space

So even describing a state requires exponential amount of information.
The difficulty of understanding many-body physics

Each particle a d dimensional space— \mathbb{C}^d

n particles = tensor the individual spaces together
The difficulty of understanding many-body physics

- Each particle a d dimensional space—\mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n\[\mathcal{H} = (\mathbb{C}^d)^\otimes n. \]
The difficulty of understanding many-body physics

- Each particle a d dimensional space—\mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n \[\mathcal{H} = (\mathbb{C}^d)^\otimes n. \]
- System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space
The difficulty of understanding many-body physics

- Each particle a d dimensional space— \mathbb{C}^d
- n particles = tensor the individual spaces together
- = space of dimension d^n, $\mathcal{H} = (\mathbb{C}^d)^\otimes n$.
- System described by a state: a unit vector $|v\rangle \in \mathcal{H}$.

The same property that leads to the power of quantum computation is the major barrier for understanding many-body physics:

Exponential Dimensional Space

So even describing a state requires exponential amount of information.
A Basic Question

Can we develop a better understanding of a class of relevant states?
A Basic Question

Can we develop a better understanding of a class of relevant states?

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?
A Basic Question

All states

Physically relevant states

Can we develop a better understanding of a class of relevant states?

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?
Physically Relevant States: Ground States of Local Hamiltonians

Local Term: H_i is a linear operator. (self-adjoint). Acts "locally": non-trivial on only a few particles.

Local Hamiltonian: $H = \sum_i H_i$ is an operator formed from the sum of local terms.

Ground State: The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.

Gap: The distance between the lowest two eigenvalues.

Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.

Ground State
- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.

[Diagram of a grid with connected dots, possibly representing a lattice]
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.

Ground State
- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.
- Gap = distance between the lowest two eigenvalues.
Physically Relevant States: Ground States of Local Hamiltonians

Local term:
- H_i linear operator. (self-adjoint).
- acts "locally": non-trivial on only a few particles.

Local Hamiltonian
- $H = \sum_i H_i$ an operator formed from the sum of local terms.

Ground State
- The ground state $|\Gamma\rangle$ is the smallest eigenvector of H.
- Gap = distance between the lowest two eigenvalues.
- Focus on unique ground state and constant gap.

Ground states model the state of the system at low temperatures.
Fundamental Connection: Local Hamiltonians and Constraint Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability
Fundamental Connection: Local Hamiltonians and Constraint Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

- Each region can be one of three colors,
Fundamental Connection: Local Hamiltonians and Constraint Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

- Each region can be one of three colors,
- Regions that share a boundary cannot be the same color,
Fundamental Connection: Local Hamiltonians and Constraint Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

- Each region can be one of three colors,
- Regions that share a boundary cannot be the same color,
- Each edge encodes the \textbf{constraint} that neighbors can’t be the same color.
Fundamental Connection: Local Hamiltonians and Constraint Satisfaction Problems.

Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

- Each region can be one of three colors,
- Regions that share a boundary cannot be the same color,
- Each edge encodes the **constraint** that neighbors can’t be the same color.

Interested in assignments that satisfy as many constraints as possible.
Classical Constraint Satisfaction Problems (CSP’s).
Example: 3 colorability

- Each region can be one of three colors,
- Regions that share a boundary cannot be the same color,
- Each edge encodes the constraint that neighbors can’t be the same color.

Interested in assignments that satisfy as many constraints as possible.

Solving, classifying, and understanding the structure of the solutions of CSP’s at the heart of complexity theory.
Local Hamiltonians = non-commutative CSP’s

Complexity Theory

Constraint Satisfaction Problems

non-commutative generalization

Condensed Matter Physics

Local Hamiltonians

Number of colors \leftrightarrow Dimension of single particle

Local constraint diagonal only \leftrightarrow Local term H_i

Assignment that violates fewest constraints \leftrightarrow Ground state: lowest eigenvalue

Least number of constraints violated \leftrightarrow Lowest eigenvalue

CSP constraints correspond to H_i that are diagonal in the standard basis. In particular they all commute.
Local Hamiltonians = non-commutative CSP’s

Complexity Theory

Constraint Satisfaction Problems

non-commutative generalization

Condensed Matter Physics

Local Hamiltonians

Number of colors ↔ Dimension of single particle

Local constraint diagonal only ↔ Local term

Assignment that violates fewest constraints ↔ Ground state: lowest eigenvalue

Least number of constraints violated ↔ Lowest eigenvalue

CSP constraints correspond to H_i that are diagonal in the standard basis. In particular they all commute.
Local Hamiltonians = non-commutative CSP’s

Complexity Theory

Constraint Satisfaction Problems

non-commutative generalization

Condensed Matter Physics

Local Hamiltonians

Number of colors ↔ Dimension of single particle

CSP constraints correspond to \(H_i \) that are diagonal in the standard basis. In particular they all commute.
Local Hamiltonians = non-commutative CSP’s

Complexity Theory

Constraint Satisfaction Problems

Condensed Matter Physics

Local Hamiltonians

non-commutative generalization

Number of colors ↔ Dimension of single particle

Local constraint diagonal only ↔ Local term H_i arbitrary

Assignment that violates fewest constraints ↔ Ground state: lowest eigenvalue

Least number of constraints violated ↔ Lowest eigenvalue

CSP constraints correspond to H_i that are diagonal in the standard basis. In particular they all commute.
Local Hamiltonians = non-commutative CSP’s

Complexity Theory → Condensed Matter Physics

Constraint Satisfaction Problems → Local Hamiltonians

non-commutative generalization

Number of colors ↔ Dimension of single particle
Local constraint diagonal only ↔ Local term H_i arbitrary
Assignment that violates fewest constraints ↔ Ground state: lowest eigenvalue
Least number of constraints violated ↔ Lowest eigenvalue
Local Hamiltonians = non-commutative CSP’s

Complexity Theory

Constraint Satisfaction Problems

Condensed Matter Physics

Local Hamiltonians
generalization

Number of colors

Local constraint diagonal only
Assignment that violates fewest constraints
Least number of constraints violated

Dimension of single particle
Local term H_i arbitrary
Ground state: lowest eigenvalue
Lowest eigenvalue

CSP constraints correspond to H_i that are diagonal in the standard basis. In particular they all *commute.*
The Fundamental Quest: understanding ground states

For (gapped) 1D systems: yes
For higher dimensions: ?
The Fundamental Quest: understanding ground states

Do they have a special structure?
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?

Spoiler: For (gapped) 1D systems: yes. For higher dimensions: ?
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

Spoiler:
- For (gapped) 1D systems: yes
The Fundamental Quest: understanding ground states

- Do they have a special structure?
- Does that structure allow for meaningful short descriptions?
- Does that structure allow us to compute various properties of them?

Spoiler:

- For (gapped) 1D systems: yes
- For higher dimensions: ?
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?

[92, White] Density Matrix Renormalization Group (DMRG):

1D – remarkably successful in practice.
2D – open.
However not a great understanding of what is going on.
Sure you can do it in practice . . .
but can you do it in theory?
"In theory, there is no difference between theory and practice. In practice, there is."

Density Matrix Renormalization Group (DMRG):

1D – remarkably successful in practice.

2D – open.

However not a great understanding of what is going on.

Sure you can do it in practice . . .

but can you do it in theory?
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?

[‘92, White] Density Matrix Renormalization Group (DMRG):

1D – remarkably successful in practice.
2D – open.

However not a great understanding of what is going on.
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?

[’92, White] Density Matrix Renormalization Group (DMRG):

- 1D – remarkably successful in practice.
- 2D – open.

However not a great understanding of what is going on.

Sure you can do it in practice . . .
Understanding ground states of local Hamiltonians: A journey

"In theory, there is no difference between theory and practice. In practice, there is."

How do you do Physics?

[’92, White] Density Matrix Renormalization Group (DMRG):

- 1D – remarkably successful in practice.
- 2D – open.

However not a great understanding of what is going on.

Sure you can do it in practice . . . but can you do it in theory?
Quantum Complexity Theory viewpoint

[’97, Kitaev]:
- Introduction of QMA—quantum analogue of NP.
- Finding ground states of general quantum systems is QMA complete.

[’05, Oliveira, Terhal, ’06, Kempe, Kitaev, Regev]: Finding solutions to 2D systems is QMA hard.
[’07, Aharonov, Gottesman, Irani, Kempe]: Solutions to 1D systems are also hard.
Quantum Complexity Theory viewpoint

['97, Kitaev]:
- Introduction of QMA—quantum analogue of NP.
- Finding ground states of general quantum systems is QMA complete.

['05, Oliveira, Terhal, ’06, Kempe, Kitaev, Regev]:
- Finding solutions to 2D systems is QMA hard.
Quantum Complexity Theory viewpoint

[’97, Kitaev]:
- Introduction of QMA—quantum analogue of NP.
- Finding ground states of general quantum systems is QMA complete.

[’05, Oliveira, Terhal, ’06, Kempe, Kitaev, Regev]:
- Finding solutions to 2D systems is QMA hard.
Quantum Complexity Theory viewpoint

[’97, Kitaev]:
- Introduction of QMA—quantum analogue of NP.
- Finding ground states of general quantum systems is QMA complete.

[’05, Oliveira, Terhal, ’06, Kempe, Kitaev, Regev]:
- Finding solutions to 2D systems is QMA hard.

[’07, Aharonov, Gottesman, Irani, Kempe]
- Solutions to 1D systems are also hard.
Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary.

...
Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary. . .

"Complexity of system should depend only on the size of the boundary"

Became known as an Area Law.
Area Law formulation

Folklore concept motivated by the Holographic Principle in Cosmology:

- Total amount of information in a black hole resides on the boundary.

"Complexity of system should depend only on the size of the boundary"

Became known as an Area Law.

[’01, Vidal, Latorre, Rico, Kitaev] Area Law formalized in terms of entanglement entropy.

- Effect on DMRG: speedup, simplification, better understanding of the heuristics used.
Area Law in 1D systems

1D Area law proved [Hastings ’07].

- Established that many 1D solutions (constant gap) satisfy an area law and are in NP rather than QMA-complete.
1D Area law proved [Hastings ’07].

- Established that many 1D solutions (constant gap) satisfy an area law and are in NP rather than QMA-complete.
1D Area law proved [Hastings ’07].

- Established that many 1D solutions (constant gap) satisfy an area law and are in NP rather than QMA-complete.

"All is well . . . Area Law structure provides the proper dichotomy between easy and hard in 1D."
Area Law in 1D systems

1D Area law proved [Hastings ’07].
- Established that many 1D solutions (constant gap) satisfy an area law and are in NP rather than QMA-complete.

"All is well . . . Area Law structure provides the proper dichotomy between easy and hard in 1D."

[’08, Cirac, Schuch, Verstraete] Example of finding a solution that satisfies the area law that is NP-hard.
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.

- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- P’s complexity across a cut proportional to number of terms acting across the cut.
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.
- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- P’s complexity across a cut proportional to number of terms acting across the cut.

How to generalize this idea?
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.
- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- P’s complexity across a cut proportional to number of terms acting across the cut.

How to generalize this idea?

Approximate Ground State Projection (AGSP)

Properties:

The complexity of ground states
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.
- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- P’s complexity across a cut proportional to number of terms acting across the cut.

How to generalize this idea?

Approximate Ground State Projection (AGSP)

Properties:
- It "approximately" projects onto one vector you want (ground state).
The birth of Approximate Ground State Projections

"If there is a problem you can’t solve, then there is an easier problem you can’t solve: find it." - George Polya

A special case: frustration-free commuting case.
- Can assume H_i are projections.
- $P = \prod_i (1 - H_i)$ projects onto the ground space.
- P’s complexity across a cut proportional to number of terms acting across the cut.

How to generalize this idea?

Approximate Ground State Projection (AGSP)

Properties:
- It "approximately" projects onto one vector you want (ground state).
- It isn’t too complex.
New blood: Approximate Ground State Projections (AGSPs)

Two new results:

[11',12', Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which \to a sub-exponential time algorithm for finding solutions.

New blood: Approximate Ground State Projections (AGSPs)

Two new results:

- ['11,’12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
Two new results:

- [''11,''12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- [''13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.
New blood: Approximate Ground State Projections (AGSPs)

Two new results:

- ['11,'12, Arad, Kitaev, Landau, Vazirani] Exponential improvement in parameters of the 1D area law which → a sub-exponential time algorithm for finding solutions.
- ['13 Landau, Vazirani, Vidick] Polynomial time algorithm for finding solutions to constant gapped 1D systems.
Current view of 1D local Hamiltonians

From AGSP’s:
- exponential improvement on the constants for the 1D Area Law algorithm for 1D,
- gives insight as to what is going on,
- tools for attacking the 2D questions.

Zeph Landau ()
The complexity of ground states
Current view of 1D local Hamiltonians

From AGSP’s:

- exponential improvement on the constants for the 1D Area Law
- algorithm for 1D,
- gives insight as to what is going on,
- tools for attacking the 2D questions.
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

\[|v> \]

Ground State
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

$|v>$

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.
Role of AGSP in proof of Area Law I

Two main steps:

1. Find a not very complex state that has constant overlap with the ground state.

2. Repeatedly apply an AGSP to that state to rapidly get a good approximation to the ground state.

Both steps use AGSPs— the first is much more delicate.
A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_{i=1}^{C} a_i \otimes b_i$ will be said to have entanglement rank C.

Entanglement rank behavior

Multiplicative for operators applied to states or product of operators.

Additive for sums of states or operators.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

- Multiplicative for operators applied to states or product of operators.
Measure of Complexity: Entanglement rank

A state on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C a_i \otimes b_i$ will be said to have entanglement rank C.

An operator on $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the form $\sum_1^C A_i \otimes B_i$ will be said to have entanglement rank C.

Entanglement rank behavior

- Multiplicative for operators applied to states or product of operators.
- Additive for sums of states or operators.
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

1. It approximately projects onto the ground state:
2. It has small entanglement rank:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

![Diagram of ground state and eigenvalues]

- It has small entanglement rank:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

- It has small entanglement rank:
AGSP: almost projection with small entanglement rank

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:

- It has small entanglement rank:

\[
\begin{align*}
\text{Ground state} & \downarrow \\
\Delta & \\
\text{Eigenvalues of AGSP} & \\
\Delta & \\
\text{Eigenvalues of H} & \\
\end{align*}
\]

Critical threshold $D\Delta < 1.$
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:
- Start with an unentangled state $|v\rangle$.

AGSP definition uses notions: truncation away from cut, Chebyshev polynomials. Requires careful analysis to bound complexity. (See arxiv, find me, or future workshop).
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:
- Start with an unentangled state $|v\rangle$.
- Apply AGSP to get $|w\rangle = \frac{K|v\rangle}{||K|v\rangle||}$.

AGSP definition uses notions: truncation away from cut, Chebyshev polynomials. Requires careful analysis to bound complexity. (See arxiv, find me, or future workshop).
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:

- Start with an unentangled state $|v\rangle$.
- Apply AGSP to get $|w\rangle = \frac{K|v\rangle}{||K|v\rangle||}$.
- New $|w\rangle$ has better overlap with ground state (factor $\frac{1}{\Delta}$).
Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:

- Start with an unentangled state $|v\rangle$.
- Apply AGSP to get $|w\rangle = \frac{K|v\rangle}{||K|v\rangle||}$.
- New $|w\rangle$ has better overlap with ground state (factor $\frac{1}{\Delta}$).
- At least one of the D pieces of $|w\rangle$ will have better overlap than $|v\rangle$.
Role of AGSP in proving Area Law cont.

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:

- Start with an unentangled state $|v\rangle$.
- Apply AGSP to get $|w\rangle = \frac{K|v\rangle}{||K|v\rangle||}$.
- New $|w\rangle$ has better overlap with ground state (factor $\frac{1}{\Delta}$).
- At least one of the D pieces of $|w\rangle$ will have better overlap than $|v\rangle$.

AGSP definition uses notions: truncation away from cut, Chebyshev polynomials.
Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D\Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.

Proof:

- Start with an unentangled state $|v\rangle$.
- Apply AGSP to get $|w\rangle = \frac{K|v\rangle}{||K|v\rangle||}$.
- New $|w\rangle$ has better overlap with ground state (factor $\frac{1}{\Delta}$).
- At least one of the D pieces of $|w\rangle$ will have better overlap than $|v\rangle$.

AGSP definition uses notions: truncation away from cut, Chebyshev polynomials. Requires careful analysis to bound complexity. (See arxiv, find me, or future workshop).
Finding the ground state of 1D systems: solving a large convex program

finding the minimal energy state

\[\min_{\rho} \text{tr}(\rho H) \]
\[\text{with the conditions} \]
\[\rho \succeq 0 \]
\[\text{tr}(\rho) = 1. \]

Exponential size space is too costly. What we'll need:
- A restriction of the convex program to a polynomial size subspace,
- A succinct description of the elements of that subspace that allows us to perform linear algebra efficiently.
Finding the ground state of 1D systems: solving a large convex program

finding the minimal energy state

\[\min \text{tr}(\rho H), \quad \text{with the conditions} \]
\[\begin{align*}
\rho &\geq 0 \\
\text{tr}(\rho) &= 1.
\end{align*} \]

Exponential size space is too costly. What we’ll need:
Finding the ground state of 1D systems: solving a large convex program

finding the minimal energy state

\[\min \text{tr} (\rho H), \quad \text{with the conditions} \]

\[\rho \geq 0 \]

\[\text{tr} (\rho) = 1. \]

Exponential size space is too costly. What we’ll need:

- A restriction of the convex program to a **polynomial size subspace**,
Finding the ground state of 1D systems: solving a large convex program

finding the minimal energy state

⇓

solving a convex program

- \(\min tr(\rho H) \), with the conditions
 - \(\rho \geq 0 \)
 - \(tr(\rho) = 1. \)

Exponential size space is too costly. What we’ll need:

- A restriction of the convex program to a **polynomial size subspace**,
- A **succinct** description of the elements of that subspace that allows us to perform linear algebra efficiently.
The algorithm: a bird’s eye view

A sequence of spaces S_i termed **viable sets**:

- all **polynomial** size
- all with **succinct** descriptions that allow efficient linear algebra,
- each containing a good approximation of the "left" side of the ground state.

$$|\Gamma\rangle \approx \sum_j |a_j\rangle |b_j\rangle \text{ with each } |a_j\rangle \in S_i.$$
The algorithm: a bird’s eye view

Key components:

- **Splitting**: 1D structure allows reduction of convex program to left side by iterating over a net of boundary conditions. **Structural result allows this net to be fixed polynomial size.**
The algorithm: a bird’s eye view

Key components:

- **Splitting**: 1D structure allows reduction of convex program to left side by iterating over a net of boundary conditions. **Structural result allows this net to be fixed polynomial size.**

- **AGSP**: allows for essential reduction in errors along the way.
The algorithm: a bird’s eye view

Key components:

- **Splitting**: 1D structure allows reduction of convex program to left side by iterating over a net of boundary conditions. **Structural result allows this net to be fixed polynomial size.**

- **AGSP**: allows for essential reduction in errors along the way.

Arxiv, find me, later workshop.
Where do we go from here?

AGSP

Structure

Simulation

Quantum Many-Body Systems

A 2D area law?
A more local 1D algorithm?
Degenerate ground space?
Different questions?

"The future ain't what it used to be." – Yogi Berra

Zeph Landau ()
Where do we go from here?

AGSP

Structure

Simulation

Quantum Many–Body Systems

- A 2D area law?
Where do we go from here?

AGSP
Structure
Simulation

Quantum Many-Body Systems

- A 2D area law?
- A more local 1D algorithm?
Where do we go from here?

- A 2D area law?
- A more local 1D algorithm?
- Degenerate ground space?

“*The future ain't what it used to be.*” – Yogi Berra

Zeph Landau ()
The complexity of ground states
Where do we go from here?

- A 2D area law?
- A more local 1D algorithm?
- Degenerate ground space?
- Different questions?
Where do we go from here?

- A 2D area law?
- A more local 1D algorithm?
- Degenerate ground space?
- Different questions?

"The future ain’t what it used to be." – Yogi Berra
AGSP construction: norm reduction

Looking for low entanglement operators that look like:

\[
f(x) \Delta \varepsilon ||H||
\]

Smaller \(||H|| \) would be better but we don’t want to lose the local structure around the cut.

Solution: Replace \(H = \sum_i H_i \) with \(H' = H_L + H_1 + H_2 + \cdots + H_s + H_R \).
AGSP construction: Chebyshev polynomials

Chebyshev polynomials: small in an interval:

The desired AGSP is a dilation and translation of the Chebyshev polynomial:

\[K = C_l(H') \]
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j)\].

For a single term:
- Across some cut, an average number of terms are involved → \(d^{2\ell/s}\).
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).
\]

For a single term:

- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s}\).
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:
- Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.
- Roundtrip cost of going and coming back from center cut: $\rightarrow d^s$.

Cost d^s

Cost $d^{2\ell/s}$

\[\ldots\]
AGSP complexity: Entanglement rank analysis

\[(H')^\ell = \sum (\text{product of } H_j)\].

For a single term:

- Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.
- Roundtrip cost of going and coming back from center cut: $\rightarrow d^s$.

Total: $d^{2\ell/s} + s$
Problem: Too many \((s^\ell)\) terms in naive expansion of \((H^\prime)^\ell\).
Problem: Too many \((s^\ell)\) terms in naive expansion of \((H')^\ell\).

Need to group terms in a nice way but it all works out with total entanglement increase of the same order as the single term.
Putting things together: Area Law for H'

Chebyshev $C_\ell(H')$ has $\Delta \approx e^{-O(\ell/\sqrt{s})}$:

Entanglement analysis yields $D \approx O(d^{\ell/s} + s)$.

Choosing $\ell = s^2$ yields $D\Delta \approx e^{-s^{3/2} + s \log d} < 1$ for appropriate choice of $s \approx \log^2 d$.