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First-Order Methods (FOM’s)

convex function

. “step size”
min f($> o closed convex set T _p (ZC — g )
st. 1€ Q k+1 ; Q\LEk kYk
orthogonal projection gradient (or subgradient)
onto Q) of f at =g

Unless (Q is a simple set, the bottleneck is orthogonal projection.

“Proximal” methods replace orthogonal projection with a different operation,
but all sets for which that operation can be done efficiently are simple.

In the context of differentiable objective functions,
it is usually assumed that f is “smooth”,
meaning there exists a constant L satisfying

|Vf(z)—Vf(y)|| < L|jx—yl| for all x,y in an open neighborhood of Q.

Then choosing oy = 1/L, and letting € be a positive scalar,

k> Ldist(a:o,/g(*)Q/(Ze) =  flzg) < f"+e€

set of optimal solutions optimal objective value
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In the context of differentiable objective functions,
it is usually assumed that f is “smooth”,
meaning there exists a constant L satisfying

|Vf(z)—Vf(y)|| < L|jx—yl| for all x,y in an open neighborhood of Q.

For Nesterov’s (first) accelerated method,

kZQdist(mo,?(*)\/L/e = flax) < ff+e
/

set of optimal solutions optimal objective value
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Orp1 =2 (1+/1+462)
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First-Order Methods (FOM’s)

convex function

. “step size”
min f($> o closed convex set T _p (ZC — g )
st. 1€ Q k+1 ; Q\LEk kYk
orthogonal projection gradient (or subgradient)
onto Q) of f at =g

Unless (Q is a simple set, the bottleneck is orthogonal projection.

“Proximal” methods replace orthogonal projection with a different operation,
but all sets for which that operation can be done efficiently are simple.

gradient accelerated subgradient
method method method

O (% dist(xo,X*)2> O <\/§ dist(:z;o,X*)> O ((%)Qdist(:co,X*f)



Hyperbolicity Cones

£ finite-dimensional Euclidean space with inner product (, ) and norm || ||
ICC £ hyperbolicity cone with hyperbolic polynomial p: £ — R

Thus, p is homogeneous, nonzero on int(K), zero on bdy(K),
and for each e € int(K) and x € &,
the univariate polynomial A — p(x — Ae) has only real roots.

Fix e € int(K) and denote the roots as {\;(x)}'_; where n is the degree of p

|%||co := max; [A;(z)| a seminorm on & a norm if K is regular

closed ball of radius 1 . .
= largest set both contained in I

Boo(e, 1) and centrally symmetric around e

Amin (%) := min; A\;(x) a concave function in x

Amin () — Amin(¥)| < ||z — y|loo  for all z,y € €

i.e., Lipschitz constant =1 w.r.t. the norm || ||

Consequently, Amin(Z) — Amin ()| < % | — g < Buclidean norm

where 7. is the largest radius of a Euclidean ball centered at e
and contained in K
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Hyperbolic Programming

min (c, x)

st. Axr =0
r e K
Trivially, the objective function is smooth, Tes1 = Polar — axc)
so gradient and accelerated methods can be applied: where Q = {z € K | Az = b}

For high-dimensional problems,
the orthogonal projection is impractical except in special cases.

Are there practical ways of applying FOM’s to solve hyperbolic programs?

the point we fixed in int (k) In other words

Assume e satisfies Ae = b assume we know
a strictly feasible point e

Assume the hyperbolic program has an optimal solution.

Fix a scalar z satisfying z < (¢, e) and consider the optimization problem

max  Amin ()
t Ar — b Here the feasible region is an affine space,
S.L. L = and so computing orthogonal projections is easy

(c,x) =z

Claim: A point x is optimal for the eigenvalue optimization problem
if and only if 7(z) is optimal for the hyperbolic program.



min (¢, z)
s.t. Ar=20>
xr ek

Think of this 2-dimensional plane
as being the slice of €
cut out by {x | Ax = b}
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Assume the objective function = — (¢, ) is constant on horizontal slices.



optimal solution

Assume the objective function = — (¢, ) is constant on horizontal slices.
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{x| Az =1
and (c,x) = z}
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X

{x| Az =1
and (c,x) = z}

I
e—|—1_>\1 (x —e)

min (QL’)

(e, (@) = (e, €) + 15t (e 2) — (ere))



X

{x| Az =1
and (c,x) = z}

i
e + 1_)\1 (x —e)

min (QL’)

(e, 7(2)) = () + T (6 2) — (e €))
= (c,e) + 1_>\riin(33) Sz — {(c,e))

7

TV
a negative constant



min (¢, ) max  Amin ()
s.t. Ax =0 s.t. Ax =0
x e K (c,x) = 2

Applying the subgradient method
— rather, supgradient method —
results in a sequence xq, T1,...

for which
¢ > (dist(zo, X7)/(re))

=4 rilgzc )\min(xk) > A

2

* —

min €
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By relying on an approach which makes use
of a sequence of values zU) for the optimization problem on the right,
we are able to devise an algorithm with the desired property,
except for error being measured relatively rather than absolutely:















— if Amin(zg) > 1, then let zy < 7(xy)





















— = level set

Diam := supremum of diameters of level sets for objective values < ¢ - xg
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Applying the subgradient method
— rather, supgradient method —
results in a sequence xq, T1,...

for which

¢ > (dist(zo, X:)/(%»Q

* —
min

But what we would like is z,

for which (¢, w(xy)) < 2* + €,

where z* is the optimal value
of the hyperbolic program.

=> max Amin (Tx) > A

€

By relying on an approach which makes use
of a sequence of values zU) for the optimization problem on the right,
we are able to devise an algorithm with the desired property,
except for error being measured relatively rather than absolutely:

. 2
Diam 1 1 (c,e) — z*
{>8 =+ -1o ’ +1
28 () (5 + Coms (=) +1)
—  min <Ca W(xk» — 2" error measurement is relative
k<t <C, 6> — ¥ rather than absolute

Subsequently, PhD student Ben Grimmer designed a more attractive algorithm
and obtained a bound with the same dependence on e,
but nicer in other regards.



Smoothing

Motivated by work of Nesterov pertaining to SDP,
we rely on the concave function

fu(x) = —pIn)  exp(=A;(z)/p) (for fixed p > 0)
Easy to see:  Amin(z) —plnn < f,(z) < Amin(2)

— thus, if g =¢€/(2Inn) then Ayuin(z) — § < fu(®) < Anin(2)

Prop: fisanalytic and |Vf,(z)—Vf.(y)|i < %HZC — Yoo

Pf: Thanks to Nesterov, Helton, Vinnikov and an old analysis result. []

Cor: ||[Vfu(z)—Vi.(y)| < ﬁ |z — | (Euclidean norm)

In some important cases (e.g., R") the value 7. is easily computed,
but it not realistic to assume r. is easily computable
when I is a general hyperbolicity cone.

Thus we rely on a“universal” accelerated method by Nesterov
which requires only a guess of the Lipschitz constant



c,m(xg)) — 2*
Thm: Obtain iterate x; satisfying < <C(€>k)_> o < €

with the number of gradient evaluations
being only of order

: . 1
Diam [Inn N <1 T log, (c,€) zo ) | + Diama /27 4
€ Te <C7 €> _ Z< ) Te

LO
log, A

)

The paper also gives focus to showing that
if values and gradients can be efficiently computed for p,
then they can be computed efficiently for f,

This is made explicit for cones which are intersections of quadratic cones.



Two facts helpful in motivating what follows:

1) For SDP,
computing V f,,(X) requires a full eigen-decomposition of the matrix X,
whereas for computing a supgradient of the function X — Ay (X),
it suffices to compute (to high precision) an eigenvector only for Ay, (X).

exp(—=A1(X)/n)

" exp(=An(X)/ 1)

A1(X)
where () [ ] Q7T is an eigendecomposition of X
An (X)
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2) For a generic set of SDP’s, there is a unique optimal solution X*,
and the objective function at feasible points in a neighborhood of X*
grows quadratically in the distance to X*:

X feasible and || X — X*|| <0 = (C,X) > pllX — X*|?
This fact has been available for almost 20 years,

but recently PhD student Lijun Ding was the first
to provide characterizations of u and ¢ in terms natural to the SDP literature.
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This fact has been available for almost 20 years,

but recently PhD student Lijun Ding was the first
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max  Amin ()
st. Ax=0b>

(c,x) =2

From (2) follows for each of the generic SDP’s
that there exist positive ¢, and u, for which

r feasible and ||z — 2%|| <9, =  Amin(@) — Amin() > ]|z — 23|



Now return to the setting for which the talk began

convex function

. “step size”
min f($> o closed convex set T _p (le — g )
st. 1€ Q k+1 ; Q\LEk kYk
orthogonal projection gradient (or subgradient)
onto Q) of f at =g

For non-differentiable f, we relied on the subgradient method,
in which ay = €/||gr||?

¢ > (Mdist(:co,X*)/e)2 =  ming<y f(ar) < f*+¢
/

set of optimal solutions optimal objective value

When € is small and f(xq) > f*,
the step size o, = €/]|gx||> makes slow progress,
leading to 1/€? in the complexity bound.

Idea:
Apply, in parallel, subgradient methods with stepsizes

e/lgkll? 2¢/llgrll?, 2%¢/llgrll?, .. . 2Ve/llgill*  where N & logy(1/€)



subgrad, 74 = Po(z —[2"¢lg/||gl*)

Let X be a feasible point known to the user.
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convex function

. “step size”
min f($> o closed convex set T _p (ZC — g )
st. 1€ Q k+1 ; Q\LEk kYk
orthogonal projection gradient (or subgradient)
onto Q) of f at =g

Now assume f possesses quadratic growth:

x feasible and dist(z, X*) <6 = f(x)— f*> ,LbdiSt(SU,X*)z

Then for the parallel scheme, O (1 log, <1> ) subgradient evaluations suffice
€ €

to compute x € Q satisfying f(x) — f* <e€
hiding everything besides €
in the big-O



By applying the parallel scheme to solving the eigenvalue optimization problem,
it is possible to devise a method which within

1 1
0, (— log (—) ) subgradient evaluations,

‘ ‘ (e, m(zp)) — 2*

(c,e) — z*

computes a feasible symmetric matrix xj satisfying

lots is being hidden in the big-O
ots 15 beig udden 1n the big here the big-O is relatively nice,

and applies to all SDP’s
with bounded level sets

: : 1 : :
Recall, by contrast, the smoothing approach requires O <—) gradient evaluations
€

But a subgradient evaluation requires only
computing an eigenvector for Ayin (),
whereas in the smoothed setting,
a gradient requires a full eigendecomposition of x.

It’s not clear. However, the answer is clear
in the special case of linear programs.

Which approach is “best”?

For every polyhedral cone K,
max  Amin () . . .
st. Ar—=b the convex function = — Ay () is piecewise linear

(c,2) = 2 and thus possesses “linear growth”:

x feasible = Apin(2) — Amin(z) > podist(x, X7)

1

2
For the parallel scheme, O <1og (—) ) subgradient evaluations suffice
€



min (¢, ) max  Amin ()
s.t. Ax =0 s.t. Ax =0
x e K (c,x) = 2

“Efficitent” subgradient methods for general convexr optimization

Accelerated first-order methods for hyperbolic programming

with Ben Grimmer:
A simple nearly-optimal restart scheme for speeding-up first order methods

Ben Grimmer: Radial subgradient method



