First-Order Methods and Hyperbolic Programming Jim Renegar Cornell ORIE

Unless Q is a simple set, the bottleneck is orthogonal projection.

"Proximal" methods replace orthogonal projection with a different operation, but all sets for which that operation can be done efficiently are simple.

In the context of differentiable objective functions, it is usually assumed that f is "smooth", meaning there exists a constant L satisfying $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ for all x, y in an open neighborhood of Q.

Then choosing $\alpha_k = 1/L$, and letting ϵ be a positive scalar,

$$k \ge L \operatorname{dist}(x_0, X^*)^2/(2\epsilon) \Rightarrow f(x_k) \le f^* + \epsilon$$
set of optimal solutions optimal objective value

min f(x) closed convex set s.t. $x \in Q$ closed convex set $x_{k+1} = P_Q(x_k - \alpha_k g_k)$ orthogonal projection gradient (or subgradient) onto Q of f at x_k

Unless Q is a simple set, the bottleneck is orthogonal projection.

"Proximal" methods replace orthogonal projection with a different operation, but all sets for which that operation can be done efficiently are simple.

In the context of differentiable objective functions, it is usually assumed that f is "smooth", meaning there exists a constant L satisfying $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ for all x, y in an open neighborhood of Q.

For Nesterov's (first) accelerated method,

$$k \geq 2 \operatorname{dist}(x_0, X^*) \sqrt{L/\epsilon} \quad \Rightarrow \quad f(x_k) \leq f^* + \epsilon$$
set of optimal solutions optimal objective value

$$x_{k+1} = P_Q(y_k - \frac{1}{L}\nabla f(y_k))$$

$$\theta_{k+1} = \frac{1}{2}(1 + \sqrt{1 + 4\theta_k^2})$$

$$y_{k+1} = x_{k+1} + \frac{\theta_k - 1}{\theta_{k+1}}(x_{k+1} - x_k)$$

Unless Q is a simple set, the bottleneck is orthogonal projection.

"Proximal" methods replace orthogonal projection with a different operation, but all sets for which that operation can be done efficiently are simple.

In the context of non-differentiable objective functions, it is usually assumed that f is Lipschitz, that is, there exists a constant M satisfying $|f(x) - f(y)| \leq M||x - y||$ for all x, y in an open neighborhood of Q.

Then choosing
$$\alpha_k = \epsilon/\|g_k\|^2$$
,
$$\ell \geq \left(M \operatorname{dist}(x_0, X^*)/\epsilon\right)^2 \quad \Rightarrow \quad \min_{k \leq \ell} f(x_k) \leq f^* + \epsilon$$
set of optimal solutions optimal objective value

min
$$f(x)$$
 closed convex set $x_{k+1} = P_Q(x_k - \alpha_k g_k)$ orthogonal projection Q of f at x_k

Unless Q is a simple set, the bottleneck is orthogonal projection.

"Proximal" methods replace orthogonal projection with a different operation, but all sets for which that operation can be done efficiently are simple.

gradient accelerated subgradient method method
$$O\left(\frac{L}{\epsilon}\operatorname{dist}(x_0, X^*)^2\right) \qquad O\left(\sqrt{\frac{L}{\epsilon}}\operatorname{dist}(x_0, X^*)\right) \qquad O\left(\left(\frac{M}{\epsilon}\right)^2\operatorname{dist}(x_0, X^*)^2\right)$$

 ${\mathcal E}$ finite-dimensional Euclidean space – with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $\|x\|_{\infty} := \max_i |\lambda_i(x)|$ a seminorm on \mathcal{E} a norm if \mathcal{K} is regular $ar{B}_{\infty}(e,1)$ largest set both contained in \mathcal{K} and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

 $|\lambda_{\min}(x) - \lambda_{\min}(y)| \le ||x - y||_{\infty}$ for all $x, y \in \mathcal{E}$ i.e., Lipschitz constant = 1 w.r.t. the norm $|| \cdot ||_{\infty}$

Consequently, $\lambda_{\min}(x) - \lambda_{\min}(y) \le \frac{1}{r_e} ||x - y||$ Euclidean norm

where r_e is the largest radius of a Euclidean ball centered at e and contained in K

E finite-dimensional Euclidean space with inner product $\langle \ , \ \rangle$ and norm $\| \ \| \mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$ Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

Fix $e \in \operatorname{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p $\|x\|_{\infty} := \max_i |\lambda_i(x)|$ a seminorm on \mathcal{E} a norm if \mathcal{K} is regular

 $\|x\|_{\infty} := \max_i |\lambda_i(x)|$ a seminorm on \mathcal{E} a norm if \mathcal{K} is regular $ar{B}_{\infty}(e,1)$ largest set both contained in \mathcal{K} and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

 ${\mathcal E}$ finite-dimensional Euclidean space with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E} a norm if \mathcal{K} is regular

closed ball of radius 1 $ar{B}_{\infty}(e,1)$

largest set both contained in \mathcal{K} and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

e

finite-dimensional Euclidean space with inner product \langle , \rangle and norm $\| \|$

with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$ hyperbolicity cone $\mathcal{K} \subset \mathcal{E}$

> Thus, p is homogeneous, nonzero on $int(\mathcal{K})$, zero on $bdy(\mathcal{K})$, and for each $e \in \text{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

Fix $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E}

a norm if \mathcal{K} is regular

closed ball of radius 1 $B_{\infty}(e,1)$

largest set both contained in Kand centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

 ${\mathcal E}$ finite-dimensional Euclidean space—with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E}

a norm if K is regular

closed ball of radius 1 $ar{B}_{\infty}(e,1)$

largest set both contained in \mathcal{K} and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

For $x \in \mathcal{E}$, consider the half-line with endpoint e and containing x:

$$\{e+t(x-e):t\geq 0\}$$

 ${\mathcal E}$ finite-dimensional Euclidean space—with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E}

a norm if K is regular

closed ball of radius 1 $ar{B}_{\infty}(e,1)$

largest set both contained in K and centrally symmetric around e

For $x \in \mathcal{E}$, consider the half-line with endpoint e and containing x:

$$\{e + t(x - e) : t \ge 0\}$$

The half-line intersects $\mathrm{bdy}(\mathcal{K})$ iff $\lambda_{\min}(x) < 1$, in which case the point of intersection is

$$\pi(x) := e + \frac{1}{1 - \lambda_{\min}(x)} (x - e)$$

"the radial projection of x to $bdy(\mathcal{K})$ "

finite-dimensional Euclidean space with inner product \langle , \rangle and norm $\| \|$

with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$ $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone

> Thus, p is homogeneous, nonzero on $int(\mathcal{K})$, zero on $bdy(\mathcal{K})$, and for each $e \in \text{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

Fix $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E}

a norm if \mathcal{K} is regular

closed ball of radius 1

largest set both contained in K $B_{\infty}(e,1)$ and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

For $x \in \mathcal{E}$, consider the half-line with endpoint e and containing x:

$$\{e+t(x-e):t\geq 0\}$$

The half-line intersects $\mathrm{bdy}(\mathcal{K})$ iff $\lambda_{\min}(x) < 1$, in which case the point of intersection is

$$\pi(x) := e + \frac{1}{1 - \lambda_{\min}(x)} (x - e)$$

"the radial projection of x to $bdy(\mathcal{K})$ "

 $\pi(x)$

 ${\mathcal E}$ finite-dimensional Euclidean space with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E}

a norm if K is regular

closed ball of radius 1 $ar{B}_{\infty}(e,1)$

largest set both contained in K and centrally symmetric around e

For $x \in \mathcal{E}$, consider the half-line with endpoint e and containing x:

$$\{e + t(x - e) : t \ge 0\}$$

The half-line intersects $\mathrm{bdy}(\mathcal{K})$ iff $\lambda_{\min}(x) < 1$, in which case the point of intersection is

$$\pi(x) := e + \frac{1}{1 - \lambda_{\min}(x)} (x - e)$$

"the radial projection of x to $bdy(\mathcal{K})$ "

 $\pi(x)$

 ${\mathcal E}$ finite-dimensional Euclidean space with inner product $\langle \; , \; \rangle$ and norm $\| \; \|$

 $\mathcal{K} \subset \mathcal{E}$ hyperbolicity cone with hyperbolic polynomial $p: \mathcal{E} \to \mathbb{R}$

Thus, p is homogeneous, nonzero on $\operatorname{int}(\mathcal{K})$, zero on $\operatorname{bdy}(\mathcal{K})$, and for each $e \in \operatorname{int}(\mathcal{K})$ and $x \in \mathcal{E}$, the univariate polynomial $\lambda \mapsto p(x - \lambda e)$ has only real roots.

<u>Fix</u> $e \in \text{int}(\mathcal{K})$ and denote the roots as $\{\lambda_i(x)\}_{i=1}^n$ where n is the degree of p

 $||x||_{\infty} := \max_{i} |\lambda_{i}(x)|$ a seminorm on \mathcal{E} a norm if \mathcal{K} is regular

closed ball of radius 1 $ar{B}_{\infty}(e,1)$

largest set both contained in K and centrally symmetric around e

 $\lambda_{\min}(x) := \min_i \lambda_i(x)$ a concave function in x

For $x \in \mathcal{E}$, consider the half-line with endpoint e and containing x: $\{e+t(x-e): t \geq 0\}$

The half-line intersects $\mathrm{bdy}(\mathcal{K})$ iff $\lambda_{\min}(x) < 1$, in which case the point of intersection is

$$\pi(x) := e + \frac{1}{1 - \lambda_{\min}(x)} (x - e)$$

"the radial projection of x to $bdy(\mathcal{K})$ "

Hyperbolic Programming

$$\begin{array}{ll}
\min & \langle c, x \rangle \\
\text{s.t.} & Ax = b \\
& x \in \mathcal{K}
\end{array}$$

Trivially, the objective function is smooth, so gradient and accelerated methods can be applied:

$$x_{k+1} = P_Q(x_k - \alpha_k c)$$

where $Q = \{x \in \mathcal{K} \mid Ax = b\}$

For high-dimensional problems,

the orthogonal projection is impractical except in special cases.

Are there practical ways of applying FOM's to solve hyperbolic programs?

Assume e satisfies Ae = b

In other words, assume we know a strictly feasible point e

Assume the hyperbolic program has an optimal solution.

Fix a scalar z satisfying $z < \langle c, e \rangle$ and consider the optimization problem

$$\max_{\text{s.t.}} \lambda_{\min}(x)$$

$$Ax = b$$

$$\langle c, x \rangle = z$$

Here the feasible region is an affine space, and so computing orthogonal projections is easy

Claim: A point x is optimal for the eigenvalue optimization problem if and only if $\pi(x)$ is optimal for the hyperbolic program.

$$\begin{array}{ll}
\min & \langle c, x \rangle \\
\text{s.t.} & Ax = b \\
& x \in \mathcal{K}
\end{array}$$

Think of this 2-dimensional plane as being the slice of \mathcal{E} cut out by $\{x \mid Ax = b\}$

Think of this 2-dimensional plane as being the slice of \mathcal{E} cut out by $\{x \mid Ax = b\}$

Think of this 2-dimensional plane as being the slice of \mathcal{E} cut out by $\{x \mid Ax = b\}$

Assume the objective function $x \mapsto \langle c, x \rangle$ is constant on horizontal slices.

Assume the objective function $x \mapsto \langle c, x \rangle$ is constant on horizontal slices.

$$\langle c, \pi(x) \rangle = \langle c, e \rangle + \frac{1}{1 - \lambda_{\min}(x)} (\langle c, x \rangle - \langle c, e \rangle)$$

$$\langle c, \pi(x) \rangle = \langle c, e \rangle + \frac{1}{1 - \lambda_{\min}(x)} (\langle c, x \rangle - \langle c, e \rangle)$$

$$= \langle c, e \rangle + \frac{1}{1 - \lambda_{\min}(x)} \underbrace{(z - \langle c, e \rangle)}_{\text{a negative constant}}$$

Applying the subgradient method – rather, supgradient method – results in a sequence x_0, x_1, \ldots for which

$$\ell \ge \left(\operatorname{dist}(x_0, X_z^*)/(r\epsilon)\right)^2$$

$$\Rightarrow \max_{k \le \ell} \lambda_{\min}(x_k) \ge \lambda_{\min}^* - \epsilon$$

But what we would like is x_k for which $\langle c, \pi(x_k) \rangle \leq z^* + \epsilon$, where z^* is the optimal value of the hyperbolic program.

Applying the subgradient method – rather, supgradient method – results in a sequence x_0, x_1, \ldots for which

$$\ell \ge \left(\operatorname{dist}(x_0, X_z^*)/(r\epsilon)\right)^2$$

$$\Rightarrow \max_{k \le \ell} \lambda_{\min}(x_k) \ge \lambda_{\min}^* - \epsilon$$

$$\begin{array}{lll}
\min & \langle c, x \rangle & \max & \lambda_{\min}(x) \\
\text{s.t.} & Ax = b & \equiv & \text{s.t.} & Ax = b \\
& x \in \mathcal{K} & \langle c, x \rangle = z
\end{array}$$

But what we would like is x_k for which $\langle c, \pi(x_k) \rangle \leq z^* + \epsilon$, where z^* is the optimal value of the hyperbolic program.

Applying the subgradient method – rather, supgradient method – results in a sequence x_0, x_1, \ldots for which

$$\ell \ge \left(\operatorname{dist}(x_0, X_z^*)/(r\epsilon)\right)^2$$

$$\Rightarrow \max_{k \le \ell} \lambda_{\min}(x_k) \ge \lambda_{\min}^* - \epsilon$$

By relying on an approach which makes use of a sequence of values $z^{(j)}$ for the optimization problem on the right, we are able to devise an algorithm with the desired property, except for error being measured relatively rather than absolutely:

= level set

Diam := supremum of diameters of level sets for objective values $\leq c \cdot x_0$

$$\begin{array}{lll}
\min & \langle c, x \rangle & \max & \lambda_{\min}(x) \\
\text{s.t.} & Ax = b & \equiv & \text{s.t.} & Ax = b \\
& x \in \mathcal{K} & \langle c, x \rangle = z
\end{array}$$

But what we would like is x_k for which $\langle c, \pi(x_k) \rangle \leq z^* + \epsilon$, where z^* is the optimal value of the hyperbolic program.

Applying the subgradient method – rather, supgradient method – results in a sequence x_0, x_1, \ldots for which

$$\ell \ge \left(\operatorname{dist}(x_0, X_z^*)/(r\epsilon)\right)^2$$

$$\Rightarrow \max_{k \le \ell} \lambda_{\min}(x_k) \ge \lambda_{\min}^* - \epsilon$$

By relying on an approach which makes use

of a sequence of values $z^{(j)}$ for the optimization problem on the right, we are able to devise an algorithm with the desired property, except for error being measured relatively rather than absolutely:

$$\ell \geq 8 \left(\frac{\text{Diam}}{r_e} \right)^2 \cdot \left(\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \log_{4/3} \left(\frac{\langle c, e \rangle - z^*}{\langle c, e \rangle - z^{(0)}} \right) + 1 \right)$$

$$\Rightarrow \min_{k \leq \ell} \frac{\langle c, \pi(x_k) \rangle - z^*}{\langle c, e \rangle - z^*} \leq \epsilon \quad \text{error measurement is relative rather than absolute}$$

Subsequently, PhD student Ben Grimmer designed a more attractive algorithm and obtained a bound with the same dependence on ϵ , but nicer in other regards.

Smoothing

Motivated by work of Nesterov pertaining to SDP, we rely on the concave function

$$f_{\mu}(x) := -\mu \ln \sum_{j} \exp(-\lambda_{j}(x)/\mu)$$
 (for fixed $\mu > 0$)

Easy to see: $\lambda_{\min}(x) - \mu \ln n \le f_{\mu}(x) \le \lambda_{\min}(x)$ - thus, if $\mu = \epsilon/(2 \ln n)$ then $\lambda_{\min}(x) - \frac{\epsilon}{2} \le f_{\mu}(x) \le \lambda_{\min}(x)$

Prop: f is analytic and $\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\|_{\infty}^* \leq \frac{1}{\mu} \|x - y\|_{\infty}$

Pf: Thanks to Nesterov, Helton, Vinnikov and an old analysis result. \square

Cor: $\|\nabla f_{\mu}(x) - \nabla f_{\mu}(y)\| \le \frac{1}{r_e^2 \mu} \|x - y\|$ (Euclidean norm)

In some important cases (e.g., \mathbb{R}^n_+) the value r_e is easily computed, but it not realistic to assume r_e is easily computable when \mathcal{K} is a general hyperbolicity cone.

Thus we rely on a "universal" accelerated method by Nesterov which requires only a guess of the Lipschitz constant ...

Thm: Obtain iterate x_k satisfying $\frac{\langle c, \pi(x_k) \rangle - z^*}{\langle c, e \rangle - z^*} \leq \epsilon$

$$\frac{\langle c, \pi(x_k) \rangle - z^*}{\langle c, e \rangle - z^*} \le \epsilon$$

with the number of gradient evaluations being only of order

$$\frac{\operatorname{Diam}}{\epsilon} \sqrt{\frac{\ln n}{r_e}} + \left(1 + \log_2 \frac{\langle c, e \rangle - z^*}{\langle c, e \rangle - z^{(0)}}\right) \left(1 + \operatorname{Diam} \sqrt{\frac{\ln n}{r_e}} + \left|\log_2 \frac{L^{\bullet}}{L}\right|\right)$$

The paper also gives focus to showing that if values and gradients can be efficiently computed for p, then they can be computed efficiently for f_{μ}

This is made explicit for cones which are intersections of quadratic cones.

Two facts helpful in motivating what follows:

1) For SDP,

computing $\nabla f_{\mu}(X)$ requires a full eigen-decomposition of the matrix X, whereas for computing a supgradient of the function $X \mapsto \lambda_{\min}(X)$, it suffices to compute (to high precision) an eigenvector only for $\lambda_{\min}(X)$.

$$\nabla f_{\mu}(X) = \frac{1}{\sum_{j=1}^{n} \exp(-\lambda_{j}(X)/\mu)} Q \begin{bmatrix} \exp(-\lambda_{1}(X)/\mu) & & \\ & \ddots & \\ & \exp(-\lambda_{n}(X)/\mu) \end{bmatrix} Q^{T}$$

where
$$Q\begin{bmatrix} \lambda_1(X) \\ \ddots \\ \lambda_n(X) \end{bmatrix}Q^T$$
 is an eigendecomposition of X

Two facts helpful in motivating what follows:

- 1) For SDP, computing $\nabla f_{\mu}(X)$ requires a full eigen-decomposition of the matrix X, whereas for computing a supgradient of the function $X \mapsto \lambda_{\min}(X)$, it suffices to compute (to high precision) an eigenvector only for $\lambda_{\min}(X)$.
- 2) For a generic set of SDP's, there is a unique optimal solution X^* , and the objective function at feasible points in a neighborhood of X^* grows quadratically in the distance to X^* :

X feasible and
$$||X - X^*|| \le \delta \implies \langle C, X \rangle \ge \mu ||X - X^*||^2$$

This fact has been available for almost 20 years, but recently PhD student Lijun Ding was the first to provide characterizations of μ and δ in terms natural to the SDP literature. Two facts helpful in motivating what follows:

- 1) For SDP, computing $\nabla f_{\mu}(X)$ requires a full eigen-decomposition of the matrix X, whereas for computing a supgradient of the function $X \mapsto \lambda_{\min}(X)$, it suffices to compute (to high precision) an eigenvector only for $\lambda_{\min}(X)$.
- 2) For a generic set of SDP's, there is a unique optimal solution X^* , and the objective function at feasible points in a neighborhood of X^* grows quadratically in the distance to X^* :

$$X$$
 feasible and $||X - X^*|| \le \delta \quad \Rightarrow \quad \langle C, X \rangle \ge \mu ||X - X^*||^2$

This fact has been available for almost 20 years, but recently PhD student Lijun Ding was the first to provide characterizations of μ and δ in terms natural to the SDP literature.

 $\max_{\text{s.t.}} \lambda_{\min}(x)$ Ax = b $\langle c, x \rangle = z$

From (2) follows for each of the generic SDP's that there exist positive δ_z and μ_z for which

 $x \text{ feasible and } ||x - x_z^*|| \le \delta_z \quad \Rightarrow \quad \lambda_{\min}(x_z^*) - \lambda_{\min}(x) \ge \mu_z ||x - x_z^*||^2$

Now return to the setting for which the talk began ...

convex function
$$\min_{\substack{f(x)\\\text{s.t.}}} f(x) = \lim_{\substack{\text{closed convex set}\\\text{orthogonal projection}\\\text{onto } Q}} x_{k+1} = P_Q(x_k - \alpha_k g_k)$$

For non-differentiable f, we relied on the subgradient method, in which $\alpha_k = \epsilon/||g_k||^2$

$$\ell \ge \left(M \operatorname{dist}(x_0, X^*)/\epsilon\right)^2 \Rightarrow \min_{k \le \ell} f(x_k) \le f^* + \epsilon$$
set of optimal solutions optimal objective value

When ϵ is small and $f(x_0) \gg f^*$, the step size $\alpha_k = \epsilon/||g_k||^2$ makes slow progress, leading to $1/\epsilon^2$ in the complexity bound.

Idea:

Apply, in parallel, subgradient methods with stepsizes

$$\epsilon/\|g_k\|^2$$
, $2\epsilon/\|g_k\|^2$, $2^2\epsilon/\|g_k\|^2$, ..., $2^N\epsilon/\|g_k\|^2$ where $N \approx \log_2(1/\epsilon)$

. . .

 $\operatorname{subgrad}_{\underline{n}} \quad x_{+} = P_{Q}(x - 2^{n} \epsilon g / \|g\|^{2})$ Let $\bar{\mathbf{x}}$ be a feasible point known to the user. $subgrad_{4}$ $f(\mathbf{\bar{x}})$ $subgrad_{\overline{3}}$ $f(\mathbf{\bar{x}})$ $subgrad_{2}$ $f(\mathbf{\bar{x}})$ $subgrad_{\overline{1}}$ $f(\mathbf{\bar{x}})$

extstyle ext

$$\operatorname{subgrad}_{\overline{n}} \quad x_+ = P_Q(x - 2^n \epsilon g / \|g\|^2)$$

$$\verb|subgrad|_1 \\ \longleftarrow 2^1 \epsilon \longrightarrow$$

$$\operatorname{subgrad}_{\overline{0}}$$

min
$$f(x)$$
 closed convex set s.t. $x \in Q$

$$x_{k+1} = P_Q(x_k - \alpha_k g_k)$$
orthogonal projection gradient (or subgradient) onto Q of f at x_k

Now assume f possesses quadratic growth:

$$x$$
 feasible and $\operatorname{dist}(x, X^*) \leq \delta \quad \Rightarrow \quad f(x) - f^* \geq \mu \operatorname{dist}(x, X^*)^2$

Then for the parallel scheme,
$$O\left(\frac{1}{\epsilon}\log_2\left(\frac{1}{\epsilon}\right)\right)$$
 subgradient evaluations suffice to compute $x \in Q$ satisfying $f(x) - f^* \le \epsilon$

hiding everything besides ϵ in the big-O

By applying the parallel scheme to solving the eigenvalue optimization problem, it is possible to devise a method which within

$$O\left(\frac{1}{\epsilon}\log\left(\frac{1}{\epsilon}\right)\right)$$
 subgradient evaluations, computes a feasible symmetric matrix x_k satisfying $\frac{\langle c, \pi(x_k) \rangle - z^*}{\langle c, e \rangle - z^*} \leq \epsilon$

$$\frac{\langle c, \pi(x_k) \rangle - z^*}{\langle c, e \rangle - z^*} \le \epsilon$$

lots is being hidden in the big-O

here the big-O is relatively nice, and applies to all SDP's

Recall, by contrast, the smoothing approach requires $O\left(\frac{1}{\epsilon}\right)$ gradient evaluations

But a subgradient evaluation requires only

computing an eigenvector for $\lambda_{\min}(x)$,

whereas in the smoothed setting,

a gradient requires a full eigendecomposition of x.

Which approach is "best"?

It's not clear. However, the answer is clear in the special case of linear programs.

$$\max_{s,t} \quad \lambda_{\min}(x)$$

s.t.
$$Ax = b$$

 $\langle c, x \rangle = z$

For every polyhedral cone \mathcal{K} ,

the convex function $x \mapsto \lambda_{\min}(x)$ is piecewise linear and thus possesses "linear growth":

$$x \text{ feasible} \implies \lambda_{\min}(x_z^*) - \lambda_{\min}(x) \ge \mu_z \operatorname{dist}(x, X_z^*)$$

For the parallel scheme, $O\left(\log\left(\frac{1}{\epsilon}\right)^2\right)$ subgradient evaluations suffice

 $\hbox{\it ``Efficient'' subgradient methods for general convex optimization''}$

Accelerated first-order methods for hyperbolic programming

with Ben Grimmer:

A simple nearly-optimal restart scheme for speeding-up first order methods

Ben Grimmer: Radial subgradient method