# Certifying polynomial nonnegativity via hyperbolic optimization 

James Saunderson

Electrical and Computer Systems Engineering, Monash University, Australia

Simons Institute, 30 April, 2019

Problem: If $f$ is a polynomial of degree $2 d$ in $n$ variables, decide whether $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$

Polynomial nonnegativity


Hyperbolic optimization


This talk: Find tractable sufficient conditions for nonnegativity of $f$ based on hyperbolic programming

## Hyperbolic polynomials

A polynomial $p$ homogeneous of degree $d$ in $n$ variables is hyperbolic with respect to $e \in \mathbb{R}^{n}$ if

- $p(e)>0$
- for all $x \in \mathbb{R}^{n}$, all roots of $t \mapsto p(x-t e)$ are real

$p(x, y, z)=-x^{2}-y^{2}+z^{2}$
$p(x, y, z)=-x^{4}-y^{4}+z^{4}$
hyperbolic w.r.t. $e=(0,0,1)$
not hyperbolic


## Hyperbolic polynomials

A polynomial $p$ homogeneous of degree $d$ in $n$ variables is hyperbolic with respect to $e \in \mathbb{R}^{n}$ if

- $p(e)>0$
- for all $x \in W$, all roots of $t \mapsto p(x-t e)$ are real


$$
p(x, y, z)=-x^{2}-y^{2}+z^{2}
$$

$$
p(x, y, z)=-x^{4}-y^{4}+z^{4}
$$

hyperbolic w.r.t. $e=(0,0,1)$
not hyperbolic

## Hyperbolicity cones

If $p$ is hyperbolic w.r.t. $e \in \mathbb{R}^{n}$ define hyperbolicity cone as
$\Lambda_{+}(p, e)=\left\{x \in \mathbb{R}^{n}:\right.$ all roots of $t \mapsto p(t e-x)$ non-negative $\}$

Theorem (Gårding 1959)
If $p$ is hyperbolic w.r.t. e then $\Lambda_{+}(p, e)$ is convex.

Example

$$
p(x, y, z)=-x^{2}-y^{2}+z^{2}
$$

- hyperbolic w.r.t. $e=(0,0,1)$
- Hyperbolicity cone is


## Hyperbolic programming

$$
\text { minimize }_{x}\langle c, x\rangle \text { subject to }\left\{\begin{array}{l}
A x=b \\
x \in \Lambda_{+}(p, e)
\end{array}\right.
$$

Theorem (Güler 1997)
$-\log _{e}(p)$ is a self-concordant barrier for $\Lambda_{+}(p, e)$

Consequence: if can evaluate $p$, get 'efficient' algorithms Special cases

- Linear programming: $p(x)=x_{1} x_{2} \cdots x_{n}, e=\mathbf{1}$
- Second-order cone programming
- Semidefinite programming: $p(X)=\operatorname{det}(X), e=$ Identity


## Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues

$$
\left[H_{p, e}(x)\right]_{i j}=\sum_{\ell=1}^{d}\left(-\lambda_{\ell}(x)\right)^{i+j-2}
$$

Netzer-Plaumann-Thom (2013): $p$ hyperbolic with respect to $e \Longleftrightarrow H_{p, e}(x) \succeq 0$ for all $x$
(See Dey-Plaumann (2018) for more tests for hyperbolicity)

## Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues

$$
\left[H_{p, e}(x)\right]_{i j}=\sum_{\ell=1}^{d}\left(-\lambda_{\ell}(x)\right)^{i+j-2}=h_{i+j-1}(x)
$$

Netzer-Plaumann-Thom (2013):
$p$ hyperbolic with respect to $e \Longleftrightarrow H_{p, e}(x) \succeq 0$ for all $x$
(See Dey-Plaumann (2018) for more tests for hyperbolicity)
Alternative view: Expand univariate rational function at infinity

$$
\frac{D_{e} p(x+t e)}{p(x+t e)}=\sum_{i=1}^{d} \frac{1}{t+\lambda_{i}(x)}=\sum_{k \geq 1} h_{k}(x) t^{-k}
$$

Corresponding Hankel matrix is $H_{p, e}(x)$.

## Characterization of hyperbolicity cones

For any $u \in \mathbb{R}^{n}$

$$
\frac{D_{u} p(x+t e)}{p(x+t e)}=\sum_{k \geq 1} h_{k}(x)[u] t^{-k}
$$

Corresponding Hankel matrix:

$$
\left[H_{p, e}(x)[u]\right]_{j j}=h_{i+j-1}(x)[u]
$$

If $p$ hyperbolic w.r.t. $e$ then

$$
H_{p, e}(x)[u] \succeq 0 \text { for all } x \quad \Longleftrightarrow \quad u \in \Lambda_{+}(p, e)
$$

- Equivalent formulation in terms of

Bézoutian of $D_{u} p(x+t e)$ and $p(x+t e)$

- Very closely related to Kummer-Plaumann-Vinzant (2015)


## Example: symmetric determinant

$$
\begin{aligned}
& \text { If } p(X)=\operatorname{det}(X) \text { and } e=I \\
& \qquad H_{p, e}(X)[U]_{i j}=\operatorname{tr}\left((-X)^{i+j-2} U\right)
\end{aligned}
$$

## Example: symmetric determinant

If $p(X)=\operatorname{det}(X)$ and $e=I$

$$
H_{p, e}(X)[U]_{i j}=\operatorname{tr}\left((-X)^{i+j-2} U\right)
$$

- $U \succeq 0$ get Gram matrix

$$
H_{p, e}(X)[U]_{i j}=\left\langle(-X)^{i-1} U^{1 / 2},(-X)^{j-1} U^{1 / 2}\right\rangle
$$

- $U \nsucceq 0$, explicitly construct y s.t.

$$
y^{\top} H_{p, e}(U)[U] y=\lambda_{\min }(U)<0
$$

## Example: symmetric determinant

If $p(X)=\operatorname{det}(X)$ and $e=1$

$$
H_{p, e}(X)[U]_{i j}=\operatorname{tr}\left((-X)^{i+j-2} U\right)
$$

- $U \succeq 0$ get Gram matrix

$$
H_{p, e}(X)[U]_{i j}=\left\langle(-X)^{i-1} U^{1 / 2},(-X)^{j-1} U^{1 / 2}\right\rangle
$$

- $U \nsucceq 0$, explicitly construct y s.t.

$$
y^{\top} H_{p, e}(U)[U] y=\lambda_{\min }(U)<0
$$

Can use this to prove general case via Helton-Vinnikov theorem

## Hyperbolicity cones $\longrightarrow$ non-negative polynomials

If $p$ hyperbolic with respect to $e$ define

$$
\phi_{p, e}(x, y)[u]=y^{\top} H_{p, e}(x)[u] y
$$

(polynomial in $x, y$, linear in $u$ )

- Globally nonnegative if and only if $u$ in hyperbolicity cone
- Convex set of nonnegative polynomials that is
linearly isomorphic to hyperbolicity cone

$$
\left\{\phi_{p, e}(x, y)[u]: u \in \Lambda_{+}(p, e)\right\}
$$

## Hyperbolic certificates of nonnegativity

Suppose

- $p$ is hyperbolic with respect ot $e \in \mathbb{R}^{n}$
- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ polynomial
- $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ polynomial

If there exists $u \in \Lambda_{+}(p, e)$ such that

$$
q(z)=\phi_{p, e}(f(z), g(z))[u] \quad \text { for all } z
$$

say $q$ has hyperbolic certificate of nonnegativity
Get convex set of non-negative polynomials:

$$
\left\{\phi_{p, e}(f(z), g(z))[u]: u \in \Lambda_{+}(p, e)\right\}
$$

- Is projection of the hyperbolicity cone
- Can search over these using hyperbolic programming


## Sum-of-squares certificates of nonnegativity

If can write $q$ as a sum of squares (SOS)

$$
q(z)=\sum_{i=1}^{n}\left[q_{i}(z)\right]^{2} \quad \text { then } q(z) \geq 0 \text { for all } z
$$

## Sum-of-squares certificates of nonnegativity

If can write $q$ as a sum of squares (SOS)

$$
q(z)=\sum_{i=1}^{n}\left[q_{i}(z)\right]^{2} \quad \text { then } q(z) \geq 0 \text { for all } z
$$

Can search for SOS certificate via semidefinite optimization

- $q$ polynomial of degree $2 d$ in $n$ variables
- $m_{d}(z)$ vector of monomials of degree at most $d$

$$
\begin{gathered}
q(z) \text { is a sum of squares } \\
\Longleftrightarrow \\
\exists Q \succeq 0 \text { such that } q(z)=m_{d}(z)^{T} Q m_{d}(z)
\end{gathered}
$$

## Hyperbolic certificates capture sums of squares

$$
q \text { SOS: } \quad q(z)=m_{d}(z)^{T} Q m_{d}(z) \quad \text { with } Q \succeq 0
$$

Data for hyperbolic certificates

$$
\text { - } p(X)=\operatorname{det}(X), e=\text { identity }
$$

$$
f(z)=\left[\begin{array}{cc}
0 & m_{d}(z)^{T} \\
m_{d}(z) & 0
\end{array}\right] \quad g(z)=\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0
\end{array}\right]^{T}
$$

Using these choices. . .

$$
\phi_{p, e}(f(z), g(z))\left[\begin{array}{cc}
0 & 0 \\
0 & Q
\end{array}\right]=\operatorname{tr}\left(f(z)^{2}\left[\begin{array}{cc}
0 & 0 \\
0 & Q
\end{array}\right]\right)=m_{d}(z)^{T} Q m_{d}(z) .
$$

## Can we go beyond sums of squares?

In general: is $\phi_{p, e}(x, y)[u]$ always a sum of squares?

Definition: $p$ is SOS-hyperbolic w.r.t. e
if $\phi_{p, e}(x, y)[u]$ is a sum of squares whenever $u \in \Lambda_{+}(p, e)$

For which $n, d$ are there hyperbolic polynomials that are not SOS-hyperbolic?

## 'Bad' news

If a power of $p$ has a definite determinantal representation then $p$ is SOS hyperbolic
(common generalization of Kummer-Plaumann-Vinzant 2015 and Netzer-Plaumann-Thom 2013)

Defnite determinantal representation:

$$
p(x)=\operatorname{det}\left(A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{n} x_{n}\right)
$$

where

- $A_{1}, \ldots, A_{n}$ are $d \times d$ symmetric
- $\sum_{i} A_{i} e_{i} \succ 0$ (definite)


## ‘Bad' news

If a power of $p$ has a definite determinantal representation then $p$ is SOS hyperbolic
(common generalization of Kummer-Plaumann-Vinzant 2015 and Netzer-Plaumann-Thom 2013)
$\Longrightarrow$ hyperbolic polynomials in 3 vars are SOS-hyperbolic (using Helton-Vinnikov 2007, or via a direct argument)
$\Longrightarrow$ hyperbolic quadratics are SOS-hyperbolic (using Netzer-Thom 2011, or via direct argument)
$\Longrightarrow$ hyperbolic cubics in 4 vars are SOS-hyperbolic (using Buckley-Košir 2007, direct argument??)

## ‘Good' news

Theorem (S. 2018)
There are hyperbolic, but not SOS-hyperbolic, polynomials of degree $d$ in $n$ variables whenever

- $d \geq 4$ and $n \geq 4$
- $d=3$ and $n \geq 43$
- Case of cubics in $5 \leq n \leq 42$ variables open
- Two key examples:
- $n=d=4$
- $d=3$ and $n=43$
- Constructions to increase $d$ or $n$ and
preserve being not SOS-hyperbolic


## Quartic example: specialized Vámos polynomial

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= \\
& \quad x_{3}^{2} x_{4}^{2}+4\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}\right)
\end{aligned}
$$

Can show:

- $p$ is hyperbolic w.r.t. $e=(0,0,1,1)$
- $u=(0,0,0,1) \in \Lambda_{+}(p, e)$
- $\phi_{p, e}(x, y)[u]$ not SOS


Special case of construction due to Amini and Brändén

## Hyperbolic cubics

Renaissance fact (16th century):
$t^{3}-3 a t+2 b$ has real roots if and only if $a^{3}-b^{2} \geq 0$

- Recover this from determinant of

Bézoutian/Hermite matrix of $p$ and $p^{\prime}$

- Focus on cubics in $n+1$ variables of the form

$$
p\left(x_{0}, x\right)=x_{0}^{3}-3 x_{0}\|x\|^{2}+2 q(x)
$$

## Hyperbolic cubics $\longleftrightarrow$ extreme values on sphere

Consequence:
Homogeneous cubic in $n+1$ variables of the form

$$
p\left(x_{0}, x\right)=x_{0}^{3}-3 x_{0}\|x\|^{2}+2 q(x)
$$

is hyperbolic with respect to $e_{0}=(1,0, \ldots, 0)$

$$
\Longleftrightarrow q(x)^{2} \leq\|x\|^{6} \quad \forall x \in \mathbb{R}^{n}
$$

$$
\Longleftrightarrow \max _{\|x\|^{2}=1} q(x) \leq 1
$$



## Hardness of deciding hyperbolicity

Given graph $G=(V, E)$ define cubic $q_{G}(x, y)=\sum_{(i, j) \in E} x_{i} x_{j} y_{i j}$
Nesterov 2003: if $\omega(G)$ is size of maximum clique in $G$

$$
\max _{\|x\|^{2}+\|y\|^{2}=1} q_{G}(x, y)=\sqrt{\frac{2}{27}} \sqrt{1-\frac{1}{\omega(G)}}
$$

Corollary: Given $G=(V, E)$ and a positive integer $k$

$$
p\left(x_{0}, x\right)=\frac{2 k}{k-1} x_{0}^{3}-x_{0}\|x\|^{2}+q_{G}(x, y)
$$

is hyperbolic w.r.t. $e_{0}$ if and only if $\omega(G) \leq k$.
$\Longrightarrow$ co-NP hard to decide hyperbolicity of cubics

## Necessary condition for SOS-hyperbolicity

Homogeneous cubic in $n+1$ variables of the form

$$
p\left(x_{0}, x\right)=x_{0}^{3}-3 x_{0}\|x\|^{2}+2 q(x)
$$

Recall:
$p$ hyperbolic w.r.t. $e_{0} \Longleftrightarrow\|x\|^{6}-q(x)^{2} \geq 0$ for all $x$

Turns out:
$p$ SOS-hyperbolic w.r.t. $e_{0} \Longrightarrow\|x\|^{6}-q(x)^{2}$ is SOS

## A hyperbolic cubic that is not SOS-hyperbolic

If $G=(V, E)$ is the icosahedral graph,

$$
p\left(x_{0}, x, y\right)=x_{0}^{3}-3 x_{0}\left(\|x\|^{2}+\|y\|^{2}\right)+9 \sum_{(i, j) \in E} x_{i} x_{j} y_{i j}
$$

is not SOS-hyperbolic

$|V|=12,|E|=30$
20 maximum cliques

## A hyperbolic cubic that is not SOS-hyperbolic

If $G=(V, E)$ is the icosahedral graph,

$$
p\left(x_{0}, x, y\right)=x_{0}^{3}-3 x_{0}\left(\|x\|^{2}+\|y\|^{2}\right)+9 \sum_{(i, j) \in E} x_{i} x_{j} y_{i j}
$$

is not SOS-hyperbolic


> Corollary: Explicit hyperbolic cubic no power of which has definite determinantal rep.
$|V|=12,|E|=30$
20 maximum cliques

## A hyperbolic cubic that is not SOS-hyperbolic

If $G=(V, E)$ is the icosahedral graph,

$$
p\left(x_{0}, x, y\right)=x_{0}^{3}-3 x_{0}\left(\|x\|^{2}+\|y\|^{2}\right)+9 \sum_{(i, j) \in E} x_{i} x_{j} y_{i j}
$$

is not SOS-hyperbolic


Corollary: Explicit hyperbolic cubic no power of which has definite determinantal rep.
$|V|=12,|E|=30$
Conjecture: There is hyp. cubic in 5 variables that is not SOS-hyperbolic

20 maximum cliques

## Hyperbolic certificates

Strange 'certificates'

- Proof of nonnegativity relies on proof of hyperbolicity
- But proof of hyperbolicity may not be simple!
- Different from SOS in this regard

Many choices

- Possibility to tailor to problem class
- Too many choices: where to start?

Are these features or bugs?

## Summary

- Sufficient conditions for polynomial nonnegativity that can search for via hyperbolic programming
- Hyperbolic polynomials
- all SOS-hyperbolic if $n=3$ or $d=2$ or $(n, d)=(4,3)$
- possibly not SOS-hyperbolic if

$$
d \geq 4 \text { and } n \geq 4 \text { or } d=3 \text { and } n \geq 43
$$

- Unknown: cubics with $5 \leq n \leq 42$
- On the way...
- co-NP hard to decide hyperbolicity of cubics
- example of hyperbolic cubic such that no power has definite determinatal rep.

Step toward generic way to obtain hyperbolic programming relaxations of polynomial optimization problems

Preprint:

- 'Certifying polynomial nonnegativity via hyperbolic optimization' https://arxiv.org/abs/1904.00491

THANK YOU!

