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About the six-vertex model



History

Introduced by Linus Pauling (1935) to describe
the properties of ice H2O

• Each O has four nearest neighbors with
O-H-O bonds

• Each H is in two possible positions (closer
to one O or another)

• Each O must be surrounded by two H’s near
to it and two on the far side —
the ice condition

Graphics by Mark Peplow



History

Elliott Lieb (1967a) considered “square ice”
• Two-dimensional version of real ice
• Defined by the same ice condition applied
to the square lattice

Lieb’s square ice constant
N — number of O’s
Z — the partition function
Lieb found the exact solution as

W = lim
N→∞Z1/N =

(
4

3

)3/2

≈ 1.5396007 . . .

Graphics by Mark Peplow



Definition

1 2 3 4 5 6

• States are Eulerian orientations on 4-regular graphs
O — vertices, H — arrows

• Six permitted types of local configurations around a vertex
— six possible weights w1, . . . , w6

• Under arrow reversal symmetry,
w1 = w2 = a,w3 = w4 = b,w5 = w6 = c

• Partition function Z(G;a, b, c) =
∑

τ∈EO(G)

an1+n2bn3+n4cn5+n6



Original motivation

In addition to water ice with (a, b, c) = (1, 1, 1), several other real
crystals with hydrogen bonds satisfy the ice model.

The KDP model
{ a = b > 1, c = 1 }

The Rys F model
{ a = b = 1, c > 1 }

Exact solutions for these models (Elliott Lieb 1967b, 1967c) and some
other generalized models (Sutherland 1967, Yang 1967, Nagle 1969,
etc.) have been obtained.



Exact computational complexity

Computing (unweighted) #Eulerian orientations is #P-complete on

• general Eulerian graphs (Mihail and Winkler, 1992)
• even degree regular graphs (Huang and Lu, 2012)
• planar 4-regular graphs (Guo and Williams, 2013)

For the six-vertex model under complex weights

• Cai, Fu, and Xia (2018) proved a complexity dichotomy for general
4-regular graphs

• Cai, Fu, and Shao (2017) proved a complexity trichotomy for
planar 4-regular graphs

In both two works, cancellation plays an important role for P-time
computable cases.



Exact computational complexity

Under our setting with arrow reversal symmetry and a, b, c being
nonnegative

• Tractable
{

two of a, b, c are 0’s
one of a, b, c is 0 and the other two are equal

• Planar Tractable
{

c2 = a2 + b2

one of a, b is 0

• #P-hard otherwise

We study the approximate computational complexity of calculating
Z(a, b, c) on general 4-regular graphs for nonnegative a, b, c.



Approximate counting and sampling

All previous results are on the unweighted point (a, b, c) = (1, 1, 1)

• Mihail and Winkler (1992): an FPRAS for #Eulerian orientations
on general Eulerian graphs

• Luby, Randall, and Sinclair (1995): rapid mixing of a Markov chain
that leads to a FPAUS for Eulerian orientations on rectangular
regions of the square lattice with fixed boundaries

• Randall and Tetali (1998): improve to the rapid mixing of the
single-site Glauber dynamics

• Goldberg, Martin, and Paterson (2002): improve to the free
boundary case

We give the first results for weighted cases.
Our results conform to the phase transition phenomenon in physics.



Phase transition and
approximate complexity



Phase transition

Described by Rodney Baxter (1982) in his
famous book “Exactly Solved Models in
Statistical Mechanics” —

On the square lattice, the weights (a, b, c)

determine the relative probabilities of states,
and thus can influence the macroscopic
behavior of the system.



Phase transition

a a b b c c

On a square lattice region with its side length approaching infinity

a > b+ c (FE: ferroelectric phase)

b > a+ c (also FE) — symmetric to the above case



Phase transition

a a b b c c

c > a+ b (AFE: anti-ferroelectric phase)
two types of “saddle” configurations alternate

c ⩽ a+ b, b ⩽ a+ c, and a ⩽ b+ c (DO: disordered phase)
the system is disordered



Our results

Theorem (Jin-Yi Cai, L., and Pinyan Lu, 2017)
There is an FPRAS for Z(G;a, b, c) if a2 ⩽ b2 + c2, b2 ⩽ a2 + c2, and
c2 ⩽ a2 + b2 (the blue region).
There is no FPRAS for Z(G;a, b, c) if a > b+ c or b > a+ c or
c > a+ b (the FE/AFE region), unless RP = NP.



Proof sketch — fpras



Counting via sampling: Markov chain Monte Carlo

Directed-loop algorithm (MD)

State space: Eulerian orientations and near-Eulerian orientations
Transitions: Metropolis moves between neighboring states —
creating, shifting, and merging of two “defects” on the edges

Used by Rahman and Stillinger (1972), Yanagawa and Nagle (1979),
Barkema and Newman (1998), Syljuåsen and Zvonarev (2004), etc.

Depicts the Bjerrum defects happening in real ice (BN’98).



Technical lemma

Z0: total weight of Eulerian orientations (the partition function)
Z2: total weight of near-Eulerian orientations

Lemma
If Z2

Z0
is polynomially upper bounded, then MD is rapidly mixing

when a2 ⩽ b2 + c2, b2 ⩽ a2 + c2, and c2 ⩽ a2 + b2 (the blue region).

• Proved by a canonical path argument
• Can also be derived by techniques of McQuillian (2013)
(windable framework)

We show that Z2

Z0
is polynomially upper bounded in the whole DO

phase (a ⩽ b+ c, b ⩽ a+ c, c ⩽ a+ b)
and the following structural lemma plays a crucial role.



Closure properties — a structural lemma

A 4-ary construction: a 4-regular graph having 4 “external” edges

• defines a constraint function — for a particular input, the value
is the weighted sum of all valid internal configurations
consistent with the input

• also satisfies the ice rule and the arrow reversal symmetry for
some a ′, b ′, c ′ — can be viewed as a virtual vertex



Closure properties — a structural lemma

Lemma
The set of 4-ary constraint functions lying in the DO phase
(a ⩽ b+ c, b ⩽ a+ c, c ⩽ a+ b) is closed under 4-ary constructions.

The lemma is important not only for its crucial role in giving the
FPRAS, but also reveals a structural difference between the two sides
of the phase transition threshold.



Decomposition of Eulerian orientations

Decompose one Eulerian orientation of G into 2|V | circuit partitions
by pairing incoming edges to outgoing edges in two possible ways.

Configurations Weight

a 0 1 1

b 1 0 1

c 1 1 0



Decomposition of Eulerian orientations

The idea of decomposition also works for 4-ary constructions

• We can put weight w(·) on local pairings at vertices
• Define the weight of a circuit decomposition to be the product
of weights on vertices

• Define the weight W(·) of global pairings for the 4-ary
construction as a virtual vertex, e.g. W( ) = weighted sum of all
circuit decompositions where {e1, e2} {e3, e4} are paired up



Closure properties — proof idea

Under weighted decomposition
{

a=w( )+w( )

b=w( )+w( )

c=w( )+w( )

• Constraint function (a, b, c) ∈ DO at every vertex ⇐⇒

• Weights of pairings w( ), w( ), w( ) ⩾ 0 at every vertex ⇐⇒

• Weights of circuit partitions of the 4-ary construction are
nonnegative =⇒

• Induced weight function W(·) of the global pairings of the 4-ary
construction are nonnegative ⇐⇒

• Constraint function of the 4-ary construction (a ′, b ′, c ′) ∈ DO



Proof sketch — hardness
(skipped)



The eight-vertex model



Definition

1 2 3 4 5 6 7 8

• Allows “sink” and “source” with weight w7 = w8 = d

• The six-vertex model is the special case when d = 0

• States are even orientations
• Z(G;a, b, c, d) =

∑
τ∈Oe(G)

an1+n2bn3+n4cn5+n6dn7+n8



Phase transition

1 2 3 4 5 6 7 8

On a square lattice region with its side length approaching infinity

• Ferroelectric/Anti-ferroelectric phase (FE/AFE):
a > b+ c+ d, b > a+ c+ d, c > a+ b+ d, or d > a+ b+ c

• Disordered phase (DO):


a ⩽ b+ c+ d

b ⩽ a+ c+ d

c ⩽ a+ b+ d

d ⩽ a+ b+ c



Our results (Cai, L., Lu, and Yu, 2018)



Notation

SQ-SUM = { (a, b, c, d) |


a2 ⩽ b2 + c2 + d2

b2 ⩽ a2 + c2 + d2

c2 ⩽ a2 + b2 + d2

d2 ⩽ a2 + b2 + c2

}.

Remark
SQ-SUM ⊂ DO.



Our results (Cai, L., Lu, and Yu, 2018)



Notation

d-SUM = { (a, b, c, d) |


a+ d ⩽ b+ c

b+ d ⩽ a+ c

c+ d ⩽ a+ b

}.

Remark
d-SUM ⊂ DO.



Our results (Cai, L., Lu, and Yu, 2018)



Decomposition of even orientations

Decompose one even orientation into 3|V | annotated circuit partitions
by pairing edges in all three possible ways (instead of two!).

Configurations Weight Sign

a - + +

b + - +

c + + -

d - - -



An even orientation and its decomposition

τ Φ(τ)



Another even orientation and its decomposition

τ Φ(τ)



Closure properties for the eight-vertex model

Lemma
The set of 4-ary constraint functions lying in the DO phase is closed
under 4-ary constructions.

— again reveals a structural difference between the two sides of the
phase transition threshold.

Proof idea: Under weighted decomposition


a=w( −)+w( +)+w( +)

b=w( +)+w( −)+w( +)

c=w( +)+w( +)+w( −)

d=w( −)+w( −)+w( −)

• (a, b, c, d) ∈ DO ⇐⇒ there exists a nonnegative w(·) =⇒

• Induced weight function W(·) of pairings of the 4-ary
construction as a virtual vertex are nonnegative ⇐⇒

• Constraint function (a ′, b ′, c ′, d ′) ∈ DO



Closure properties for the eight-vertex model

Lemma
The set of 4-ary constraint functions lying in the d-SUM region is
closed under 4-ary constructions.

— directly indicates that Z2

Z0
is polynomially upper bounded.

Proof idea: Under weighted decomposition


a=w( −)+w( +)+w( +)

b=w( +)+w( −)+w( +)

c=w( +)+w( +)+w( −)

d=w( −)+w( −)+w( −)

• (a, b, c, d) ∈ d-SUM ⇐⇒
{

w( +) ⩾ w( −)

w( +) ⩾ w( −)

w( +) ⩾ w( −)
=⇒

• Induced weight function W(·) has
{

W( +) ⩾ W( −)

W( +) ⩾ W( −)

W( +) ⩾ W( −)
⇐⇒

• Constraint function (a ′, b ′, c ′, d ′) ∈ d-SUM



Our results (Cai, L., Lu, and Yu, 2018)



Our results (Cai and L., 2019a)



Our results (Cai and L., 2019a)



Counting Perfect Matchings and Matchgates

A k-ary matchgate: a graph with k external edges

• external edges are labelled i1, . . . , ik

• each non-external edge e has a nonnegative weight we

• defines a constraint function f on the k external edges, where
f(b1, . . . , bk) for (b1, . . . , bk) ∈ {0, 1}k is the sum, over perfect
matchings, of the product of the weight of edges with
assignment 1, where the dangling edge ij is assigned bj, and the
empty product has weight 1

In order to show #PM-easiness, we show that every eight-vertex
constraint function represented by (a, b, c, d) ∈ SQ-SUM can be
implemented by a 4-ary matchgate.



A 4-ary matchgate for the eight-vertex model

a ′
1 = w12 +w15w26 +w25w16,

a ′
2 = w34 +w35w46 +w45w36,

b ′
1 = w14 +w15w46 +w45w16,

b ′
2 = w23 +w25w36 +w35w26,

c ′
1 = w13 +w15w36 +w35w16,

c ′
2 = w24 +w25w46 +w45w26,

d ′
1 = (w12w34 +w14w23 +w13w24)+

(w35w46 +w45w36)w12 + (w15w26 +w25w16)w34+

(w25w36 +w35w26)w14 + (w15w46 +w45w16)w23+

(w25w46 +w45w26)w13 + (w15w36 +w35w16)w24

d ′
2 = w56.



A geometric lemma

Lemma
Let
U = {(x, y, z) ∈ R3

>0 | x ⩽ y+z+1, y ⩽ x+z+1, z ⩽ x+y+1, 1 ⩽ x+y+z},
V = {(x, y, z) ∈ R3

>0 | x+ y+ z = 1}, and
W = {(x, y, z) ∈ R3

>0 | x ⩽ y+ z, y ⩽ x+ z, z ⩽ x+ y}. Then U is the
Minkowski sum of V and W, namely, U consists of precisely those
points u ∈ R3, such that u = v+w for some v ∈ V and w ∈ W.



Our results (Cai and L., 2019a)



Our results (Cai and L., 2019a)

Our result is tight: no (a, b, c, d) outside SQ-SUM can be implemented
by a matchgate (Bulatov, Goldberg, Jerrum, Richerby, and Živný, 2017).

In fact, we have a theorem of independent interest

• It is open for several years what are the constraint functions
that can be implemented by nonnegatively weighted k-ary
matchgates for k > 3.

• We give the characterization for 4-ary matchgates (they are

essentially those satisfying


a1a2 ⩽ b1b2 + c1c2 + d1d2

b1b2 ⩽ a1a2 + c1c2 + d1d2

c1c2 ⩽ a1a2 + b1b2 + d1d2

d1d2 ⩽ a1a2 + b1b2 + c1c2.

)



Our results (Cai, L., Lu, and Yu, 2018) and (Cai and L., 2019b)



Open problems



Thank you!
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