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Quantum vs Classical Computation

Open problem: Are quantum computers more powerful than classical computers?

Progress: Using approximate counting methods (which underlies the complexity of quantum computing).

Recent success in rigorously identifying complexity transitions in statistical physics models.
Independence polynomial (Jan and Ivona’s talks).
Matching polynomial (Leslie’s talk).
(Heng’s talk).
(Piyush and Guus’ talks and this talk).

Can we apply these techniques to quantum physics models? typically complex-valued.

Recent techniques of [Barvinok 15+] and [Patel and Regts 17] allow us to study complex-valued models.



What does a quantum computer do?

1) Prepare some initial state |0")
e.g. |0%).

2) Apply quantum gates U|0™)
e.g. HO*DH®4|0%).

3) Measure Pr[x] := [(x|U|0™)]%.
e.g. with probability A example quantum computation.

| H®4DH®4|0%)|*.



) = Xk i |P)

A unit vector in a complex Hilbert space.
Its adjoint is given by (Y] = X}y o (Pl

Inner product: (¢

V)

Probability amplitude for observing |¢) given |).

The probability is

(dlY)?.

(1) ® |d))ij= Y p;

States compose via the tensor product.

A state is entangled if it cannot be
written as a composition.

.8 [)ap =75 (100411)5 + 11)410)5).



The fundamental object in quantum computing is the
qubit
1Y) = a|0) + B|1),

where {|0), |1)} are the computational basis states,

0) i= (3) 1) = (;’)

Typically, we write an n-qubit state as

Yy= ) alx),

x€{0,1}"

where [x) == [X1) @ - & [|xp).
We have Pr[x] := |[{(x|Y)|? = |a,|?.



Quantum
State
Evolution

A unitary operator G € SU(2°).

Quantum circuit: A sequence of gates acting on n qubits
U — G]_GZ Gpoly(n) € SU(ZTL)

A set of gates {G;} is universal if it
generates a dense subset of SU(2°¢).

Density implies efficiency, i.e.
. GG : — <
||G11G12 'o(log*(1/6) U” = &

The Hamiltonian picture: U = e ~tHt,

H is a Hermitian operator (self-adjoint).

[Y(6)) = e[ (0)).



The Hadamard
Test

The Hadamard test is an efficient quantum algorithm for
producing a random variable Z with

1
Pr+] := — (1 + Re(0"|U]0"))).

Therefore,
E(Z) :== Re({0™|U[0™)).

By the Chernoff-Hoeffding bound, we can efficiently
approximate Re({0™|U|0™)), such that w.h.p.,
1

|A —Re((0"|U]07™))] <

poly(n)

We can apply a similar argument for Im({0™|U|0™)).



Complexity of Quantum Computing

What is the complexity of (0™|U|0™)? PH: Polynomial

Hierarchy.

Exact: GapP-hard.

NP: Non-
The closure of #P under subtraction.

deterministic
Polynomial time.

Relative error: GapP-hard.

BPP: Bounded-error
Probabilistic

Additive error: BQP-hard. Polynomial time.
The quantum equivalent of BPP.
P: Polynomial time.

Can we use this to separate quantum and

° ° ? .
classical computation? Factoring.



Quantum
Computation
and
Approximate

Counting

For any g € GapP, there’s a polynomial-time quantum
circuit C, such that
g(x )

(071C(0)|0") = ==

Efficient quantum algorithm for approximating any
problem in GapP (and #P),

|A—gx)| <

n

poly(n)

Conjecture: No efficient classical algorithm.

Nature can solve really hard problems... but we can’t
directly access the solution.



Complexity of
Random
Quantum
Sampling

Line of work initiated by [Aaronson and Arkhipov 11]
and [Bremner, Montanaro, and Shepherd 15].

Approximately sample from Pry[x] := [{x|U|0™)|?
for random U. Close in [; norm.

Conjecture: {x|U|0™) is GapP-hard to approximate
(relative error) on average.

Assume conjecture is true. Then there is no
efficient classical algorithm unless the Polynomial
Hierarchy collapses, i.e., BPP + BQP.

Conjecture is still open. See [Bouland et al. 18] for some
recent progress on this.



The Ising Model

Described by a weighted graph ¢ = (V, E).
Vertices: Two-state spins {—1, +1}.
Edges: Interactions between them. Uc

Vertex weights Y = {v, },ey: Characterise external
fields.

Edge weights () = {w, }.cr: Characterise interaction
strengths. W4 5)

Configuration: Assignment of each spin to one of two

possible states {—1, +1}. Uy




The Ising Model Partition Function

The Ising model partition function is a weighted sum
over all possible configurations

Ziing GOV = ) w(o),

oe{—-1,+1}V

W(1,5}

where

w(o) == exp Z W{y 1} Oy Oy +Zvv gy, |. o
{u;v}EE vev {4,5}

Ferromagnetic: w, > 0.

Anti-ferromagnetic: w, < 0.



The IQP Model

IQP — Instantaneous Quantum Polynomial time.

Can be defined by an Ising Hamiltonian over a
graph G = (V,E),

HG = z a){l’]}XlX] + z Uka,
{i,j}€E kev

where
[0 1

11 ok

X
An example IQP circuit.

Circuits are of the form C = HO"DH®" for
some diagonal matrix D.

Vertices: Qubits.

Vertex weights: One-qubit gates e " WiXik

Edge weights: Two-qubit gates e "W pXiXj



p t f Probability amplitudes are equivalent to Ising model
roperties o partition functions with imaginary weights,

|QP CIrCUItS <O|V||e_iHG|()|V|> _ leing(g;iﬂ, iY).

|IQP circuits are universal under post selection

[Bremner, Jozsa, and Shepherd 10].

Implies approximating Zising(G; if), iY) up to additive
error is BQP-hard (even for bounded-degree graphs).




Motivating
Complex-Valued
Ising Model
Partition

Functions

e GapP-hard to compute exactly and approximate (relative
error) [Goldberg and Guo 14].

 Natural extension to the real case.

Statistical Physics

* Physical phase transitions are the real limit points of the
complex zeros.

* Probability amplitudes are proportional to partition
functions with imaginary temperature.

* Nature is described by complex-valued Ising models.
 BQP-hard to approximate (additive error).



Random IQP
Sampling

Approximately sample from a random IQP circuit.

Complete graph or sparse graphp = 0O (lo‘c’lrglvl)) with

weights chosen from %T {0, ...,7}.

Conjecture: Zising is GapP-hard to approximate up to
relative error on a constant fraction of instances.

Assume conjecture is true. Then there is no efficient
classical algorithm unless the Polynomial Hierarchy
collapses.

Complexity of random complex-valued leing IS

important for separating quantum and classical
computation.



Approximating the Partition Function
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Statement of
Results:
Approximation
Algorithm

Deterministic polynomial-time algorithm for

approximating complex-valued Zigi,o on graphs of
maximum degree A when |1 — ei“)e| < Op4q and
1— eJ—’“”| < 5A+1'

on = ma,fon 5) o7 |
A *— mMax |SIN{—=|)COS|— .
O<a<:2))—7AT 2 2

Radius of zero-free disc 6, comes from [Barvinok’s
monograph].

This gives 6; = 0.18, 6, = 0.13, 65 = 0.11, and in
general, 6, = Q(1/4).



Statement of
Results:
Quantum

Simulation and

Hardness

Efficient classical simulation of probability amplitudes of
the form (0Vl|e~t#¢|0lV1), for graphs of maximum

degree A when |w,|, |v,| < Zarcsin( A2+1)'

Up to /23 rotations.
Square lattice: Up to m/29 rotations
Up to 1(1/A) rotations.

Algorithm is almost optimal!

For |w,| < 0(1/A),

GapP-hard: relative-error.
BQP-hard: for additive-error.



Reduction to the pinned graph homomorphism partition

Ap P roximation function (allows external fields).
Algorithm |

Let G = (V, E) be a graph with the m X m symmetric
matrices A = { afﬁ}geeE assigned to its edges, then

. — {uv}
Hom(G; A) = Z 1_[ A ()b (v) *

¢:V-[m] {u,v}eE

Barvinok and Soberon 17: quasi-polynomial time
approximation algorithm for Hom(G; A), when

|1 — aiej| < Q(1/A) (using Bervinekinterpolation).

Barvinok’s philosophy

: .7: Improvement to polynomial time
(expressing coefficients as connected induced subgraph
counts).




Approximation
Algorithm |l

Apply slight extension of the Patel and Regts approach to
the pinned Hom(G; A).

Zero-free region:
When |1 — al-ej| < 6, then pinned Hom(G; A) # 0.

Polynomial time approximation scheme for Zjsipg
when |1 — ei“)e| < Op4q and |1 — eJ—’UV| < Opyq-

Reduction increases maximum degree by one.



Hardness

Sketch of proof:

GapP-hard/BQP-hard on grai)hs of maximum degree 3 with
imaginary weights |w| < /2.

Let G be a worst-case graph and Gy the k-thickening of G.
Allowing |w| < m/(2k) = 31 /(2A) on Gy.

Then we can choose weightings so that
ZIsing(Gk) = ZIsing(G)-

Implies GapP/BQP-hardness of Zi5ins(Gi) with |w| < 3m/(24).




Implication of
Results

, " 1
Quantum complexity transition at |w,| < 0 (Z)

P to BQP-hard.
Relative: P to GapP-hard.

Classical FPTAS for short time evolved Hamiltonians, i.e.,
e Ht fort < 0 (i)

Quantum circuits with bounded interference, i.e.,
(0™|U|0™) = 0.

Quantum circuits with limited teleportation (no X gates).

Formal relationship between the geometry of zeros and
complexity of quantum computing.



Does this apply to other probability amplitudes, i.e.,
Other

Probabilities?

(x|U|0™)?

Not obvious, we require X gates,
(x|ulo™) = (0™|X;"“u|om),
But for U = I,

(0]X[0) = i<0 lexp (- X)) 0> = (1]0) = 0.

Implies Zging = 0 (we get a zero).

(Can we use decay of correlations?)




Open Problems

Identify exact quantum complexity transition point.

Probe transition point.
(entanglement dynamics?)

Extend arguments to other probabilities/sampling problems.
(Decay of correlation methods?)

Apply these techniques to many-body physics.

Relationship to other methods: Markov-chain Monte Carlo, decay of correlations, tensor
network methods, stabiliser rank, etc.



Lovasz Local
Lemma

Let {A} be a sequence of independent events with
Pr[Ak] < 1, then Pr[/\k Ak] > 0.

Lovasz extended this to the dependent case.

Lovasz Local Lemma:

Let {A; } be a sequence of events with Pr[A;] < p and
each event depends on at most A other events.

- =0 (%) then Pr[A, A, ] > 0.

Provided p < cAiD)

Useful in existence proofs.



Quantum Lovasz Local Lemma

Our Scheme:
Event A;: Measuring outcome 1 on qubit k.
Dependence: Maximum degree A.

Provided |w,|, |v,| £ O (%), then Pr[0"] > 0.
(Pr[/\k Ak] > O)

When can you decide if interference cancels out
an event? (NP-hard in general).

Applications: Existence in quantum physics?

Note: There are other versions of a quantum
Lovasz Local Lemma with a different flavour.

Quantum Field Theory

(Image: CERN).

Is there a non-zero probability of detecting a
certain particle?



End.



