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Quantum vs Classical Computation

Open problem: Are quantum computers more powerful than classical computers?

Progress: Using approximate counting methods (which underlies the complexity of quantum computing).

Recent success in rigorously identifying complexity transitions in statistical physics models.

Independence polynomial (Jan and Ivona’s talks).

Matching polynomial (Leslie’s talk).

Hypergraph colourings (Heng’s talk).

Ising model (Piyush and Guus’ talks and this talk).

Can we apply these techniques to quantum physics models? typically complex-valued.

Recent techniques of [Barvinok 15+] and [Patel and Regts 17] allow us to study complex-valued models.



What does a quantum computer do?

1) Prepare some initial state |0𝑛⟩

e.g. |04⟩.

2) Apply quantum gates 𝑈|0𝑛⟩

e.g.  H⊗4DH⊗4|04⟩.

3) Measure 𝐏𝐫[𝑥] ≔ ⟨𝑥 𝑈 0𝑛⟩ 2.

e.g. 0110 with probability

⟨0110|H⊗4DH⊗4|04⟩
2

.

A example quantum computation.

Time



Quantum
States

Pure state: 𝜓 ≔ σ𝑘 𝛼𝑘|𝜓𝑘⟩
A unit vector in a complex Hilbert space.
Its adjoint is given by ⟨ψ| ≔ σkαk

∗ ψk .

Inner product: ⟨𝜙|𝜓⟩
Probability amplitude for observing |𝜙⟩ given |𝜓⟩.
The probability is ϕ ψ 2.

Composition: ( 𝜓 ⊗ |𝜙⟩)𝑖𝑗≔ 𝜓𝑖𝜙𝑗
States compose via the tensor product.

Entanglement: A state is entangled if it cannot be 
written as a composition.

E.g. 𝜓 𝐴𝐵 ≔
1

2
( 0 𝐴 1 𝐵 + 1 𝐴 0 𝐵).



Quantum
Bits

The fundamental object in quantum computing is the 
qubit

𝜓 ≔ 𝛼 0 + 𝛽 1 ,

where { 0 , 1 } are the computational basis states,

0 ≔
1

0
, 1 ≔

0

1
.

Typically, we write an n-qubit state as

𝜓 ≔ ෍

𝑥∈ 0,1 𝑛

𝛼𝑥 𝑥 ,

where 𝑥 ≔ x1 ⊗⋯⊗ |𝑥𝑛⟩.

We have 𝐏𝐫 𝑥 ≔ 𝑥 𝜓 2 = |𝛼𝑥|
2.



Quantum
State

Evolution

Quantum gate: A unitary operator 𝐺 ∈ SU(2𝑐).

Quantum circuit: A sequence of gates acting on n qubits
𝑈 = G1G2…Gpoly 𝑛 ∈ SU(2𝑛).

Universality: A set of gates {𝐺𝑖} is universal if it 
generates a dense subset of SU 2𝑐 .

Theorem[Solovay Kitaev]: Density implies efficiency, i.e.
Gi1Gi2 …Gi

O log4 1/ϵ
− U ≤ ϵ.

The Hamiltonian picture: 𝑈 = 𝑒−𝑖𝐻𝑡.
H is a Hermitian operator (self-adjoint).
𝜓 𝑡 = e−iHt|𝜓 0 ⟩.



The Hadamard 
Test

The Hadamard test is an efficient quantum algorithm for 
producing a random variable 𝒁 with

𝐏𝐫 ± ≔
1

2
1 ± 𝐑𝐞 0𝑛 𝑈 0𝑛 .

Therefore,
𝔼 𝒁 ≔ 𝐑𝐞 0𝑛 𝑈 0𝑛 .

By the Chernoff-Hoeffding bound, we can efficiently 
approximate 𝐑𝐞 0n U 0n , such that w.h.p.,

𝐴 − 𝐑𝐞 0𝑛 𝑈 0𝑛 ≤
1

poly 𝑛
.

We can apply a similar argument for 𝐈𝐦 0𝑛 𝑈 0𝑛 .



Complexity of Quantum Computing

What is the complexity of 0𝑛 𝑈 0𝑛 ? 

Exact: GapP-hard.

The closure of #P under subtraction.

Relative error: GapP-hard.

Additive error: BQP-hard.

The quantum equivalent of BPP.

Can we use this to separate quantum and 
classical computation?

PH: Polynomial 
Hierarchy.

NP: Non-
deterministic                   
Polynomial time.

BPP: Bounded-error 
Probabilistic 
Polynomial time.

P: Polynomial time.

Factoring.

𝐏𝐆𝐚𝐩𝐏

PH

BQP

NP

BPP P



Quantum 
Computation 

and 
Approximate 

Counting

Theorem[Fenner et al. 98]:
For any 𝑔 ∈ 𝐆𝐚𝐩𝐏, there’s a polynomial-time quantum 
circuit 𝐶, such that

0n 𝐶 𝑥 0n =
𝑔 𝑥

2n
.

Efficient quantum algorithm for approximating any 
problem in GapP (and #P),

𝐴 − 𝑔 𝑥 ≤
2𝑛

poly 𝑛
.

Conjecture: No efficient classical algorithm. 

Nature can solve really hard problems… but we can’t 
directly access the solution.



Complexity of
Random
Quantum 
Sampling

Line of work initiated by [Aaronson and Arkhipov 11]
and [Bremner, Montanaro, and Shepherd 15].

Task: Approximately sample from 𝐏𝐫U 𝑥 ≔ 𝑥 𝑈 0𝑛 2

for random 𝑈. Close in 𝑙1 norm.

Conjecture: 𝑥 𝑈 0𝑛 is GapP-hard to approximate 
(relative error) on average.

Theorem: Assume conjecture is true. Then there is no 
efficient classical algorithm unless the Polynomial 
Hierarchy collapses, i.e., 𝐁𝐏𝐏 ≠ 𝐁𝐐𝐏.

Conjecture is still open. See [Bouland et al. 18] for some 
recent progress on this.



The Ising Model 

Described by a weighted graph 𝐺 = 𝑉, 𝐸 .

Vertices: Two-state spins {−1,+1}. 

Edges: Interactions between them. 

Vertex weights Υ = 𝜐𝑣 𝑣∈𝑉: Characterise external 
fields. 

Edge weights Ω = 𝜔𝑒 𝑒∈𝐸: Characterise interaction 
strengths.

Configuration: Assignment of each spin to one of two 
possible states {−1,+1}.

𝜐5

𝜐4

𝜐1

𝜐3

𝜐2

𝜔{4,5}

𝜔{3,4}

𝜔{1,5} 𝜔{1,2}

𝜔{2,3}



The Ising Model Partition Function

The Ising model partition function is a weighted sum 
over all possible configurations

𝑍Ising 𝐺;Ω, Υ ≔ ෍

𝜎∈ −1,+1 𝑉

𝑤 𝜎 ,

where

𝑤 𝜎 ≔ exp ቍቌ ෍

𝑢,𝑣 ∈E

𝜔 𝑢,𝑣 𝜎𝑢𝜎𝑣 +෍

𝑣∈V

𝜐𝑣 𝜎𝑣 .

Ferromagnetic: 𝜔𝑒 > 0.

Anti-ferromagnetic: 𝜔𝑒 < 0.
𝜐4 𝜐3

𝜐2

𝜔{4,5}

𝜔{3,4}

𝜔{1,5} 𝜔{1,2}

𝜔{2,3}



The IQP Model

IQP – Instantaneous Quantum Polynomial time.

Can be defined by an Ising Hamiltonian over a 
graph 𝐺 = 𝑉, 𝐸 ,

𝐻𝐺 = ෍

𝑖,𝑗 ∈E

𝜔 𝑖,𝑗 𝑋𝑖𝑋𝑗 +෍

𝑘∈𝑉

𝑣𝑘𝑋𝑘 ,

where

𝑋 =
0 1
1 0

.

Vertices: Qubits.

Vertex weights: One-qubit gates 𝑒−𝑖𝑣𝑘𝑋𝑘

Edge weights: Two-qubit gates 𝑒−𝑖𝑤 𝑖,𝑗 𝑋𝑖𝑋𝑗.

An example IQP circuit.

Circuits are of the form 𝐶 = 𝐻⊗𝑛DH⊗𝑛 for 
some diagonal matrix 𝐷.



Properties of 
IQP Circuits

Probability amplitudes are equivalent to Ising model 
partition functions with imaginary weights,

0|𝑉| 𝑒−𝑖𝐻𝐺 0|𝑉| =
𝑍Ising(𝐺; 𝑖Ω, 𝑖Υ)

2𝑛
.

IQP circuits are universal under post selection

[Bremner, Jozsa, and Shepherd 10].

Implies approximating 𝑍Ising(𝐺; 𝑖Ω, 𝑖Υ) up to additive 
error is BQP-hard (even for bounded-degree graphs).

When can we classically approximate 𝒁𝐈𝐬𝐢𝐧𝐠?



Motivating 
Complex-Valued

Ising Model 
Partition 

Functions

Computer Science

• GapP-hard to compute exactly and approximate (relative 
error) [Goldberg and Guo 14].

• Natural extension to the real case.

Statistical Physics

• Physical phase transitions are the real limit points of the 
complex zeros.

Quantum Physics

• Probability amplitudes are proportional to partition 
functions with imaginary temperature.

• Nature is described by complex-valued Ising models.

• BQP-hard to approximate (additive error).



Random IQP 
Sampling

Task: Approximately sample from a random IQP circuit.

Complete graph or sparse graph 𝑝 = O
log V

V
with 

weights chosen from 
𝑖𝜋

8
0,… , 7 .

Conjecture: 𝑍Ising is GapP-hard to approximate up to 
relative error on a constant fraction of instances.

Theorem [Bremner, Montanaro, and Shepherd]: 

Assume conjecture is true. Then there is no efficient 
classical algorithm unless the Polynomial Hierarchy 
collapses.

Complexity of random complex-valued 𝑍Ising is 
important for separating quantum and classical 
computation.



Approximating the Partition Function

Approximations:

[JS93] Jerrum and Sinclair (FPRAS).

[SST14] Sinclair, Srivastava, and Thurley (FPTAS).

[LSS18] Liu, Sinclair, and Srivastava (FPTAS).

[BS17] Barvinok and Soberón (FQPTAS).

[PR17] Patel and Regts (FPTAS).

[MB18] This talk (FPTAS) (with field).

Hardness:

[SS14] Sly and Sun.

[GSV16] Galanis, Štefankovič, and Vigoda.

[MB] This talk.

𝐑𝐞

𝐈𝐦
Complexity(𝝎)

[JS93] 
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Statement of 
Results: 

Approximation 
Algorithm

Deterministic polynomial-time algorithm for 
approximating complex-valued 𝑍ising on graphs of 
maximum degree Δ when 1 − 𝑒±𝜔𝑒 < 𝛿Δ+1 and 
1 − 𝑒±𝜐𝑣 < 𝛿Δ+1.

𝛿Δ ≔ max
0<𝛼<

2𝜋
3Δ

sin
𝛼

2
cos

𝛼Δ

2
.

Radius of zero-free disc 𝛿Δ comes from [Barvinok’s
monograph].

This gives 𝛿3 = 0.18, 𝛿4 = 0.13, 𝛿5 = 0.11, and in 
general, 𝛿Δ = Ω(1/Δ).



Statement of 
Results:

Quantum 
Simulation and 

Hardness

Efficient classical simulation of probability amplitudes of 
the form 0|𝑉| 𝑒−𝑖𝐻𝐺 0 𝑉 , for graphs of maximum 

degree Δ when 𝜔𝑒 , 𝜐𝑣 < 2arcsin
𝛿Δ+1

2
.

Hexagonal lattice: Up to 𝜋/23 rotations.

Square lattice: Up to 𝜋/29 rotations

General: Up to Ω(1/Δ) rotations.

Algorithm is almost optimal!

Hardness Results: For 𝜔𝑒 ≤ 𝑂 1/Δ , 

GapP-hard: relative-error.
BQP-hard: for additive-error.



Approximation 
Algorithm I

Reduction to the pinned graph homomorphism partition 
function (allows external fields).

Graph Homomorphism Partition Function:

Let 𝐺 = 𝑉, 𝐸 be a graph with the 𝑚 ×𝑚 symmetric 
matrices 𝒜 = 𝑎𝑖𝑗

𝑒

𝑒∈𝐸
assigned to its edges, then

Hom 𝐺;𝒜 ≔ ෍

𝜙:𝑉→[𝑚]

ෑ

𝑢,𝑣 ∈𝐸

𝑎𝜙 𝑢 𝜙 𝑣
{𝑢,𝑣}

.

Barvinok and Soberón 17: quasi-polynomial time 
approximation algorithm for Hom 𝐺;𝒜 , when 

1 − 𝑎𝑖𝑗
𝑒 ≤ Ω(1/Δ) (using Barvinok interpolation).

Patel and Regts 17: Improvement to polynomial time 
(expressing coefficients as connected induced subgraph 
counts). 

Barvinok’s philosophy



Approximation 
Algorithm II

Sketch of proof:

Apply slight extension of the Patel and Regts approach to 
the pinned Hom 𝐺;𝒜 .

Zero-free region:

Lemma[Barvinok’s Monograph]: 

When 1 − 𝑎𝑖𝑗
𝑒 ≤ 𝛿Δ then pinned Hom 𝐺;𝒜 ≠ 0.

Result: Polynomial time approximation scheme for 𝑍ising
when 1 − 𝑒±𝜔𝑒 < 𝛿Δ+1 and 1 − 𝑒±𝜐𝑣 < 𝛿Δ+1.

Reduction increases maximum degree by one.



Hardness

Sketch of proof:

GapP-hard/BQP-hard on graphs of maximum degree 3 with 
imaginary weights 𝜔 ≤ 𝜋/2.

Let 𝑮 be a worst-case graph and 𝑮𝐤 the k-thickening of 𝑮. 

Allowing 𝜔 ≤ 𝜋/(2𝑘) = 3𝜋/(2Δ) on 𝑮𝐤.

Then we can choose weightings so that 

𝑍Ising 𝐆𝐤 = 𝑍Ising(𝑮).

Implies GapP/BQP-hardness of 𝑍Ising 𝐆𝐤 with 𝜔 ≤ 3𝜋/(2Δ).

𝑮

𝑮𝒌=𝟑

𝜔 ≤
𝜋

2
.

𝜔 ≤
𝜋

2𝑘

=
3𝜋

2Δ
.

Δ = 3𝑘.



Implication of 
Results

Quantum complexity transition at 𝜔𝑒 ≤ Θ
1

Δ

Additive: P to BQP-hard.

Relative: P to GapP-hard.

Classical FPTAS for short time evolved Hamiltonians, i.e.,  

𝑒−𝑖𝐻𝑡 for 𝑡 ≤ Ω
1

Δ
. 

Quantum circuits with bounded interference, i.e., 
0𝑛 𝑈 0𝑛 ≠ 0.

Quantum circuits with limited teleportation (no 𝑋 gates).

Formal relationship between the geometry of zeros and 
complexity of quantum computing.



Other 
Probabilities?

Does this apply to other probability amplitudes, i.e., 

𝑥 𝑈 0𝑛 ?

Not obvious, we require 𝑋 gates,
𝑥 𝑈 0𝑛 = 0𝑛 𝑋𝑖

𝑥𝑖𝑈 0𝑛 ,

But for 𝑈 = 𝐼,

0 𝑋 0 = 𝑖 0 exp −
𝑖𝜋

2
𝑋 0 = 1|0 = 0.

Implies 𝑍Ising = 0 (we get a zero).

(Can we use decay of correlations?)



Open Problems

Identify exact quantum complexity transition point.

Probe transition point.

(entanglement dynamics?)

Extend arguments to other probabilities/sampling problems. 

(Decay of correlation methods?)

Apply these techniques to many-body physics.

Relationship to other methods: Markov-chain Monte Carlo, decay of correlations, tensor 
network methods, stabiliser rank, etc.



Lovász Local
Lemma

Trivial Local Lemma:

Let 𝐴𝑘 be a sequence of independent events with 
𝐏𝐫 𝐴𝑘 < 1, then 𝐏𝐫 ∧𝑘 ҧ𝐴𝑘 > 0.

Lovász extended this to the dependent case.

Lovász Local Lemma:

Let 𝐴𝑘 be a sequence of events with 𝐏𝐫[𝐴𝑘] ≤ 𝑝 and 
each event depends on at most Δ other events.

Provided 𝑝 ≤
1

𝑒 𝛥+1
= Θ

1

Δ
, then 𝐏𝐫 ∧𝑘 ҧ𝐴𝑘 > 0.

Useful in existence proofs.



Quantum Lovász Local Lemma

Our Scheme:

Event 𝑨𝒌: Measuring outcome 1 on qubit 𝑘.

Dependence: Maximum degree Δ.

Provided 𝜔𝑒 , 𝜐𝑣 ≤ O
1

Δ
, then Pr 0𝑛 > 0.  

(𝐏𝐫 ∧𝑘 ҧ𝐴𝑘 > 0).

When can you decide if interference cancels out 
an event? (NP-hard in general).

Applications: Existence in quantum physics?

Note: There are other versions of a quantum 
Lovász Local Lemma with a different flavour.

Quantum Field Theory

(Image: CERN).

Is there a non-zero probability of detecting a 
certain particle?



End.


