
Privately Learning High-
Dimensional Distributions

Gautam Kamath

Simons Institute  University of Waterloo

Data Privacy: From Foundations to Applications

March 8, 2019

With: 
Jerry Li (Microsoft Research Redmond)
Vikrant Singhal (Northeastern University)
Jonathan Ullman (Northeastern University)



Algorithms vs. Statistics

M

𝑋1

𝑋2

⋮

𝑋𝑛

𝑌

“utility” 
𝑈(𝑋, 𝑌)

M

𝑋1

𝑋2

⋮

𝑋𝑛

𝑌

“utility” 
𝑈(𝑝, 𝑌)

Distribution
𝑝 random

sampling

Algorithms

Statistics



Privacy in Statistics

Desiderata:

1. Algorithm is accurate (with high probability over 𝑋 ∼ 𝑝)
• May require assumptions about 𝑝 to hold
• Today: “Estimate” 𝑝

2. Algorithm is private (always)

• Today: 
𝜀2

2
-concentrated differential privacy

What is the additional cost of privacy?
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An Example

• Given female heights 𝑋1, … , 𝑋𝑛, 
compute the average height
• 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝐷, compute 𝐸[𝐷]

• Laplace Mechanism

• 𝑍 = ∑𝑋𝑖 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒
Δ

𝜀
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• Δ =realmax!



An Example

• Given female heights 𝑋1, … , 𝑋𝑛, 
compute the average height
• 𝑋𝑖 ∼𝑖.𝑖.𝑑. 𝐷, compute 𝐸[𝐷]

• Laplace Mechanism

• 𝑍 = ∑𝑋𝑖 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒
Δ

𝜀

• A priori: most females between 120 
cm and 200 cm
• Clip/“Winsorize” data, Δ = 80
• 80/𝜀 is still large...

• Things get worse in high dimensions

• Goal: Minimize cost due to uncertainty



Background: Univariate Private Statistics

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which estimates the mean of a 

Bernoulli distribution up to ±𝛼, with 𝑛 = 𝑂
1

𝛼2
+

1

𝛼𝜀
samples.

• “Rate”: 𝑝 − Ƹ𝑝 ≤ 𝑂
1

𝑛
+

1

𝜀𝑛

• Non-private cost: 𝑂
1

𝛼2
samples

• Low-dimensional problems are now (reasonably) well-understood
• Univariate Gaussians [Karwa-Vadhan ’18]
• Univariate discrete distributions 

• Kolmogorov distance [Bun-Nissim-Stemmer-Vadhan ’15]
• Total variation distance [folklore, Diakonikolas-Hardt-Schmidt ’15]

• High dimensions?
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2
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Results: Multivariate Private Statistics

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which learns a Gaussian 

𝑁 𝜇, Σ in 𝐑𝑑 with 𝜇 2 ≤ 𝑅 and 𝐼 ≼ Σ ≼ 𝜅𝐼 to 𝛼 total variation 
distance with

𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝑑2

𝛼𝜀
+

𝑑3/2 log1/2 𝜅

𝜀
+

𝑑1/2 log1/2 𝑅

𝜀
samples.

• Non-private: 𝑂(𝑑2/𝛼2) samples – exponent in 𝑑 unchanged

• Mild dependence on “uncertainty” parameters 𝑅, 𝜅

• Some lower bounds

• Similar results for product distributions: 𝑛 = ෩Θ
𝑑

𝛼2
+

𝑑

𝛼𝜀
samples



Today’s talk: Gaussian Covariance Estimation

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which learns a Gaussian 

𝑁 0, Σ in 𝐑𝑑 with 𝐼 ≼ Σ ≼ 𝜅𝐼 to 𝛼 total variation distance with

𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝑑2

𝛼𝜀
+

𝑑3/2 log1/2 𝜅

𝜀
samples.

• If Σ were well-conditioned (𝜅 = 𝑂 1 ), problem is easy

• A private recursive method to reduce the condition number



Learning a Multivariate Gaussian

Given samples from 

𝑁(0, Σ), 𝐼 ≼ Σ ≼ 𝜅𝐼,

output ෠Σ, such that
Σ − ෠Σ

Σ
≤ 𝛼

↔

Σ−1/2 ෠ΣΣ−1/2 − 𝐼
F
≤ 𝛼.

Implies 

TV 𝑁 0, Σ , 𝑁 0, ෠Σ = 𝑂 𝛼 .

𝑁(0, Σ)

𝑁(0, ෠Σ)



Non-Private Covariance Estimation

• Given: 𝑋1, … , 𝑋𝑛 ∼ 𝑁 0, Σ

• Output: ෠Σ =
1

𝑛
∑𝑖𝑋𝑖𝑋𝑖

𝑇

• Accuracy: ෠Σ − Σ
Σ
= 𝑂

𝑑2

𝑛

• Learn in TV distance with 𝑛 = 𝑂(𝑑2/𝛼2)

• How to privatize?



Recap: Gaussian Mechanism

• 𝑓:𝐷𝑛 → 𝐑

• Sensitivity: Δ = max
𝑋,𝑋′:𝑑ℎ 𝑋,𝑋′ =1

𝑓 𝑋 − 𝑓 𝑋′

• Biggest difference on two neighboring datasets

• መ𝑓 𝑋 = 𝑓 𝑋 + 𝑁 0,
Δ

𝜀

2

• Privacy: መ𝑓 is 
𝜀2

2
-zCDP

• Accuracy: መ𝑓 𝑋 − 𝑓 𝑋 = 𝑂
Δ

𝜀



Recap: Gaussian Mechanism

• 𝑓:𝐷𝑛 → 𝐑𝑑×𝑑

• Sensitivity: Δ = max
𝑋,𝑋′:𝑑ℎ 𝑋,𝑋′ =1

𝑓 𝑋 − 𝑓 𝑋′
𝐹

• Biggest difference on two neighboring datasets

• መ𝑓 𝑋 = 𝑓 𝑋 + 𝑁 0,
Δ

𝜀

2 𝑑×𝑑

• Privacy: መ𝑓 is 
𝜀2

2
-zCDP

• Accuracy: መ𝑓 𝑋 − 𝑓 𝑋
𝐹
= 𝑂

Δ𝑑

𝜀



Private Covariance Estimation: Take 1

• Given: 𝑋1, … , 𝑋𝑛 ∼ 𝑁 0, Σ

• Output: ෠Σ =
1

𝑛
∑𝑖𝑋𝑖𝑋𝑖

𝑇 + 𝑁 0,
Δ

𝜀

2 𝑑×𝑑

• Accuracy: ෠Σ − Σ
Σ
= 𝑂

𝑑2

𝑛
+

Δ𝑑

𝜀

• Problem: What is the sensitivity?



Sensitivity of Empirical Covariance

෠Σ − Σ
Σ
= 𝑂

𝑑2

𝑛
+
∞ ⋅ 𝑑

𝜀

𝑛 = 𝑂 ∞ samples!



Limiting Sensitivity via Truncation

Σ ≼ 𝜅𝐼

𝐼 ≼ Σ



Private Covariance Estimation: Take 2

• “Truncate-then-empirical” method

• Given: 𝑋1, … , 𝑋𝑛 ∼ 𝑁 0, Σ , 𝐼 ≼ Σ ≼ 𝜅𝐼

• Remove points which don’t satisfy 𝑋𝑖 2
2 ≤ ෨𝑂 𝜅𝑑

• Δ = ෨𝑂(𝜅𝑑)

• Output: ෠Σ =
1

𝑛
∑𝑖𝑋𝑖𝑋𝑖

𝑇 + 𝑁 0,
෨𝑂(𝜅𝑑)

𝜀𝑛

2 𝑑×𝑑

• Accuracy: ෠Σ − Σ
Σ
= ෨𝑂

𝑑2

𝑛
+

𝜅𝑑2

𝜀𝑛

• 𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝜅𝑑2

𝛼𝜀
samples



Private Covariance Estimation, So Far...

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which learns a Gaussian 

𝑁 0, Σ in 𝐑𝑑 with 𝐼 ≼ Σ ≼ 𝜅𝐼 to 𝛼 TV distance with

𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝜅𝑑2

𝛼𝜀
samples.

• Optimal for 𝜅 = 𝑂(1)

• But 𝜅 can be very large...



What Went Wrong?

𝕀

𝜅𝐼

𝑁(0, Σ) 𝑁 0, ෠Σ

෠Σ = Σ + 𝑍

Z

If 𝑛 ≫ 𝜅𝑑2, noise 𝑍 is small...

Noised empirical covariance 
≈

true covariance

𝑍 = 𝑁 0,
෨𝑂 𝜅𝑑

𝜀𝑛

2 𝑑×𝑑



What Went Wrong?

If 𝑛 ≪ 𝜅𝑑2, noise 𝑍 is large...

Noised empirical covariance
is wrong in “short” directions!

𝑍 = 𝑁 0,
෨𝑂 𝜅𝑑

𝜀𝑛

2 𝑑×𝑑

𝕀

𝜅𝐼

Z

𝑁(0, Σ) 𝑁 0, ෠Σ

Goal: Discover and add less noise in “short” directions!

෠Σ = Σ + 𝑍



Private Recursive Preconditioning

• In directions where Σ is small, our noise outweighed our signal!

• Solution: Approximately learn Σ in all directions

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which finds a matrix መ𝐴

such that 𝐼 ≼ ෡AΣ෡A ≼ 100𝐼 with

𝑛 = ෨𝑂
𝑑3/2 log1/2 𝜅

𝜀
samples.



Preconditioning: An Illustration

𝕀

𝑂 1 𝐼

𝑁(0, ෡AΣ෡A)

𝑁 0, ෡A෠Σ෡A

𝕀

𝜅𝐼

𝑁(0, Σ)

𝐼 𝑍

𝑁 0, ෠Σ



Private Covariance Estimation: Take 3

• Given: 𝑋1, … , 𝑋𝑛 ∼ 𝑁 0, Σ , 𝐼 ≼ Σ ≼ 𝜅𝐼

1. Learn መ𝐴 such that 𝐼 ≼ ෡AΣ෡A ≼ 100𝐼

2. Let ෨Σ be output of truncate-then-empirical method on መ𝐴𝑋1, … , መ𝐴𝑋𝑛

3. Output ෠Σ = መ𝐴−1 ෨Σ መ𝐴−1

• Step 1: 𝑛 = ෨𝑂
𝑑3/2 log1/2 𝜅

𝜀
samples

• Step 2: 𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝜅𝑑2

𝛼𝜀
= ෨𝑂

𝑑2

𝛼2
+

𝑑2

𝛼𝜀
samples 

????



Recursive Private Preconditioning

• Reduce condition number by a factor of 𝑂(𝜅)



Recursive Private Preconditioning

• Reduce condition number by a factor of 𝑂(1), 𝑂 log 𝜅 times!

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which finds a matrix መ𝐴

such that 𝐼 ≼ ෡AΣ෡A ≼
3𝜅

4
𝐼 with

𝑛 = ෨𝑂
𝑑3/2

𝜀
samples.

• Composition of DP: use 𝑂
𝜀2

log 𝜅
-zCDP for each round



𝕀

𝜅𝐼

෠Σ = Σ + 𝑍

Z

Recursive Private Preconditioning

If 𝑛 ≪ 𝜅𝑑2, noise 𝑍 is large...

Noised empirical covariance
is wrong in “short” directions!

𝑍 = 𝑁 0,
෨𝑂 𝜅𝑑

𝜀𝑛

2 𝑑×𝑑

𝑁(0, Σ) 𝑁 0, ෠Σ



Recursive Private Preconditioning

• Recall: 𝑍 = 𝑁 0,
෨𝑂 𝜅𝑑

𝜀𝑛

2 𝑑×𝑑

• If 𝑛 = ෨𝑂(𝑑3/2/𝜀), 𝑍 2 ≤
𝜅

100

• In a given direction:

• If noised variance is large ≫
𝜅

2
, true variance is large

• 𝜅 is a good estimate for variance in this direction

• If noised variance is not large ≪
𝜅

2
, true variance is not large

• 𝜅 is too large an estimate for variance in this direction – reduce our estimate!

𝕀

𝜅𝐼

Z



Recursive Private Preconditioning

• Given: 𝑋1, … , 𝑋𝑛 ∼ 𝑁 0, Σ , 𝐼 ≼ Σ ≼ 𝜅𝐼

1. Remove points which don’t satisfy 𝑋𝑖 2
2 ≤ ෨𝑂 𝜅𝑑

2. Compute ෠Σ =
1

𝑛
∑𝑖𝑋𝑖𝑋𝑖

𝑇 + 𝑁 0,
෨𝑂(𝜅𝑑)

𝜀𝑛

2 𝑑×𝑑

3. Let 𝜆𝑖 , 𝑣𝑖 be eigenvalues/vectors of ෠Σ, ෠𝑉 ← span 𝑣𝑖: 𝜆𝑖 ≥
𝜅

2

4. Output መ𝐴 ←
1

4
Π෡𝑉 + Π𝑉

• If 𝑛 = ෨𝑂(𝑑3/2/𝜀), then 𝐼 ≼ ෡AΣ෡A ≼
3𝜅

4
𝐼

• 𝑂(log 𝜅) reps: If 𝑛 = ෨𝑂(𝑛3/2 log1/2 𝜅 /𝜀), then 𝐼 ≼ ෡AΣ෡A ≼ 𝑂(1)𝐼



Results: Multivariate Private Statistics

• Theorem: There exists a 
𝜀2

2
-zCDP algorithm which learns a Gaussian 

𝑁 𝜇, Σ in 𝐑𝑑 with 𝜇 2 ≤ 𝑅 and 𝐼 ≼ Σ ≼ 𝜅𝐼 to 𝛼 TV distance with

𝑛 = ෨𝑂
𝑑2

𝛼2
+

𝑑2

𝛼𝜀
+

𝑑3/2 log1/2 𝜅

𝜀
+

𝑑1/2 log1/2 𝑅

𝜀
samples.



Conclusions

• Algorithm for privately learning Gaussians and product distributions 
in high dimensions

• First high-dimensional algorithm with mild dependence on 
“uncertainty parameters”

• Privacy comes at small cost


