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Algorithms vs. Statistics
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Privacy in Statistics
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Desiderata:

1. Algorithm is accurate (with high probability over X ~ p)
* May require assumptions about p to hold

* Today: “Estimate” p
2. Algorithm is private (always)

2
e Today: %—concentrated differential privacy

What is the additional cost of privacy?



An Example

* Given female heights X4, ..., X},
compute the average height
* X; ~iiq D, compute E[D]

* Laplace Mechanism
« Z =)X; + Laplace (%)
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An Example

* Given female heights X4, ..., X},
compute the average height
* X; ~iiq D, compute E[D]

* Laplace Mechanism
« Z =)X; + Laplace (%)

e A =realmax!
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An Example

* Given female heights X4, ..., X,,,

Female heights

150

compute the average height
* Xi ~iia D, compute E[D]

e Laplace Mechanism
100

« Z =)X; + Laplace (%)
* A priori: most females between 120

cm and 200 cm
 Clip/“Winsorize” data, A = 80

frequency

50

* 80/¢ is still large...
* Things get worse in high dimensions
* Goal: Minimize cost due to uncertainty
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Background: Univariate Private Statistics

2

* Theorem: There exists a %—zCDP algorithm which estimates the mean of a

Bernoulli distribution up to +a, withn = 0 ( - + - ) samples.

) ) a2  ac
* “Rate”: [p — P| SO(\/_H_I__)

&n

: 1
* Non-private cost: 0 (?) samples

* Low-dimensional problems are now (reasonably) well-understood
e Univariate Gaussians [Karwa-Vadhan '18]

e Univariate discrete distributions
* Kolmogorov distance [Bun-Nissim-Stemmer-Vadhan '15]
* Total variation distance [folklore, Diakonikolas-Hardt-Schmidt ’15]

* High dimensions?



Results: Multivariate Private Statistics

2
* Theorem: There exists a %—zCDP algorithm



Results: Multivariate Private Statistics

2
* Theorem: There exists a %—zCDP algorithm which learns a Gaussian

N(u, ) in R4



Results: Multivariate Private Statistics

2
* Theorem: There exists a —-zCDP algorithm which learns a Gaussian

N(u, X) in R® with |||, < RandI <X <kl



Results: Multivariate Private Statistics
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* Theorem: There exists a —-zCDP algorithm which learns a Gaussian

N(u, X) in R® with |||, < Rand] < 3 < Kl to a total variation

distance with
~ ( d? = d3/21ogl/? K d1/210gl/2 R

E E

n=20 t—+

) samples.

* Non-private: O(dz/az) samples — exponent in d unchanged
* Mild dependence on “uncertainty” parameters R, k
* Some lower bounds

. L ~(d  d
 Similar results for product distributions: n = 0 (ﬁ + ag) samples



Today’s talk: Gaussian Covariance Estimation
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* Theorem: There exists a %—zCDP algorithm which learns a Gaussian

N(0,%) in R with I < I < kI to « total variation distance with
~ ( d?  d3/21ogl/?

n=~0 t—+

) samples.

&

* |If X were well-conditioned (K = 0(1)), problem is easy
* A private recursive method to reduce the condition number



Learning a Multivariate Gaussian

Given samples from N(0,%)
N(0,2),]I < X<kl
output £, such that
HZ—ﬂESa

L

|z71/28x712 — || < a.

N(0,%)

Implies

TV (N(o, %), N(0, 2)) - 0(a).




Non-Private Covariance Estimation

* Given: X4, ..., X,, ~ N(0,X)
e Output: & = %ZiXiXiT

* Accuracy: Hf — 2”2 =0 ( d—z)

n
e Learn in TV distance withn = 0(d?/a?)

* How to privatize?



Recap: Gaussian Mechanism

 f:D" >R
* Sensitivity: A = max X)) — X'
A= omaxIfX) —fO0)
* Biggest difference on two neighboring datasets

cFX) = F(X) +N (0, (%)2)
* Privacy: f IS gz—z-zCDP
A

+ Accuracy: [f(X) — FO0] = 0 (2)

&



Recap: Gaussian Mechanism

o f:Dn - Rdxd

« Sensitivity: A = X) - f(X"
ensitivity X,X’:dr}ll(%(),(X’)=1”f( ) — fXDIF

* Biggest difference on two neighboring datasets

<00 =0 +N (o (%)Z)M
e Privacy: f is SZ—Z-ZCDP
Ad

» Accuracy: ||[f(X) — f(X)HF =0 (_)

&



Private Covariance Estimation: Take 1

* Given: X4, ..., X,, ~ N(0,X)

dxd
A

e 1 T :
- Output: £ = %, X;X7 + N (0, (%)

&

e Accuracy: ||§ — ZHZ =0 ( @ + A—d)

n E

* Problem: What is the sensitivity?



Sensitivity of Empirical Covariance

A

" _0 d?2 oo-d
53, o [£+%

n = 0(o) samples!



Limiting Sensitivity via Truncation




Private Covariance Estimation: Take 2

* “Truncate-then-empirical” method
* Given: X1, ..., X, ~N(0,X),] S 2 < Kkl

* Remove points which don’t satisfy || X;||5 < O(kd)
e A = 0(xd)

N2 dxd
e Output: & = %ZiXiXiT + N (O, (O(K )) )

&n

* Accuracy: ||f — ZHE =0 (\/% + ’%2)

_ 2 2
°n=0(d2+m

a ac

) samples



Private Covariance Estimation, So Far...
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* Theorem: There exists a %—zCDP algorithm which learns a Gaussian

N(0,%) in R* with I < X < kI to a TV distance with
~ (d? = kd*

n=~0 (a2 + ae) samples.

* Optimal fork = 0(1)

* But k can be very large...




What Went Wrong?

N(0,Z)

Noised empirical covariance

~y
~

true covariance




What Went Wrong?

N(0,Z)

Noised empirical covariance
is wrong in “short” directions!

Goal: Discover and add less noise in “short” directions!




Private Recursive Preconditioning

* In directions where X is small, our noise outweighed our signal!

 Solution: Approximately learn X in all directions

2 A
* Theorem: There exists a %—ZCDP algorithm which finds a matrix A

such that I < AYA < 1007 with

~ (d3/%2 10g1/? k
n=0( Eg

) samples.



Preconditioning: An lllustration

N(0,AZA)




Private Covariance Estimation: Take 3

* Given: X4, ... ~N(0,%),] < X<kl
1. Learn A such thatI AYA < 1001

2. Let £ be output of truncate-then-empirical method on AXj, ... ,/TXn
3. Output ¥ = A"15471

~ d3/21 1/2
e Stepl:n =0 ( 05 K) samples 777

e Step2:n =0 (d—z + KLZ) =0 (d—2 + dz) samples

a2 aE



Recursive Private Preconditioning

* Reduce condition number by a factor of O (k)



Recursive Private Preconditioning

 Reduce condition number by a factor of 0(1), O(log k) times!

2 N
* Theorem: There exists a %—ZCDP algorithm which finds a matrix A

such that I < AYA < %"1 with

_ d3/2
n=0(

) samples.

&

)-zCDP for each round

2

M

 Composition of DP: use O (
log k



Recursive Private Preconditioning

N(0,Z)

Noised empirical covariance
is wrong in “short” directions!



Recursive Private Preconditioning

&n

) 5\ dxd
e Recall: Z =N (O, (O(Kd)) )

. — O(d3/2 K
fn = 0(d*?/e), |1ZIl; < —

* In a given direction:
* If noised variance is large (>> g), true variance is large
* K is a good estimate for variance in this direction

. . . K . .
* |f noised variance is not large (<< E)’ true variance is not large

* K is too large an estimate for variance in this direction — reduce our estimate!



Recursive Private Preconditioning

* Given: X4, ..., X;, ~N(0,X),] S X< Kkl
1. Remove points which don’t satisfy || X;||3 < O (xd)

dxd
2
2. Compute £ = %ZiXinT +N (O, (O(Kd)) )

en
3. Let (1;, v;) be eigenvalues/vectors of ¥, V « span {vl A = g}
4. Output A « —HV + 1y,

e Ifn=0(d3/?/¢), then I < AZA < ” Sy

* O(logk) reps: If n = 0(n3/?log!/? k /¢), then I < AZA < 0(1)I



Results: Multivariate Private Statistics
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* Theorem: There exists a —-zCDP algorithm which learns a Gaussian

N(u, X) in R® with |||, < Rand I < I < kl to a TV distance with

d2  d?  d3/%21ogl/2k  dl/?1ogl/2 R
n=0( 2

) samples.



Conclusions

 Algorithm for privately learning Gaussians and product distributions
in high dimensions

* First high-dimensional algorithm with mild dependence on
“uncertainty parameters”

* Privacy comes at small cost



