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Assignment
•A: universe of disjoint assignee populations


•M: assignment method (deterministic)


•O: outcome space

Query
a1
⋮
an

Q(a1) = (x1, y1)
⋮

Q(an) = (xn, yn)

o1
⋮
on

Assign 
M

Assignee population

a1 Anderson County

a2 Andrews County

a3 Angelina County

… …

an Zavala County

Outcome

☒ Qualified

☐ Not Qualified

☐ Not Qualified

…

☒ Qualified

Statistics

(123, 7483)

(598, 8341)

…

(382, 7937)

oi =
C q(ai)
∑ q(ai)

oi = {1, if q(ai) > T
0, otherwise



Assignment problems
Problem Assignee 

Populations
Population 
Statistics

Outcome 
space

Federal funds allocation states, counties, 

school districts, …

population counts
$

Congressional apportionment states resident

counts seats

Minority language voting 
rights benefit

voting districts voting-age 
citizens, limited 
English, and 
illiteracy.

{0,1}

Urban/Rural classification census tracts population

counts {0,1}

Redistricting tests districts population

counts {0,1}



Consequences of inaccuracy

Problem Consequence

Federal funds allocation funds misallocated

Congressional apportionment seats in house misallocated: unfair 
representation

Minority language voting rights benefit minority language voters disenfranchised; 
or jurisdictions waste money on 
unnecessary voting materials

Urban/Rural classification urban benefits misallocated

Redistricting tests valid district plans rejected; invalid district 
plans accepted



Alternatives for private assignment 

Non-private Query

(1) data publication,  
standard 

assignment

a1
⋮
an

Q(a1) = (x1, y1)
⋮

Q(an) = (xn, yn)

o1
⋮
on

Assign 
M

DP 
Query

a1
⋮
an

Q(a1) = (x̃1, ỹ1)
⋮

Q(an) = (x̃n, ỹn)

õ1
⋮
õn

Assign 
M

(2) data publication,  
noise-aware

assignment

DP 
Query

a1
⋮
an

Q(a1) = (x̃1, ỹ1)
⋮

Q(an) = (x̃n, ỹn)

õ1
⋮
õn

Assign 
M’

(3) custom DP  
assignment

DP 
Assignment

a1
⋮
an

õ1
⋮
õn

Privacy boundary

Focus of this talk



Common statistical agency practices

• Census tables based on surveys include estimates of 
sampling error (not the impact of disclosure limitation)


• Critical assignment problems may receive special treatment:


• Redistricting and apportionment: no disclosure limitation 
on some supporting statistics.


• Voting rights determinations: special variance reduction.


• In general, published tables treated as true for assignment 
problems. 



Social choice:  
accuracy vs. privacy loss

Figure 1: Solution to the Planner’s Problem

privacy loss parameterized by ". The vertical axis measures accuracy, parameter-

ized by I. We define both concepts in detail in Section 3. The line labeled PF rep-

resents the production function, which describes feasible combinations of privacy

loss and statistical accuracy available to the agency, given its endowment of data

and known mechanisms for publishing. The line labeled SWF is an indifference

curve from the social welfare function defined in Section 5. It describes aggregate

preferences for privacy loss and accuracy. The optimal combination of privacy

loss and accuracy is indicated by the open circle. At that point, the marginal rate

of transformation, which measures the cost of increased loss of privacy, matches

the social willingness to accept privacy loss, both measured in units of increased

statistical accuracy.

To date, this social choice framework has not been adapted to help guide sta-

tistical agencies in fulfilling their dual mandate. Our key insight is that formal

privacy systems developed in computer science can characterize the levels of pri-

vacy and accuracy available to a data custodian as a production function. In our

2

Abowd and Schmutte. An economic analysis of privacy 
protection and statistical accuracy as social choices. 

American Economic Review, 109(1), 2019.

Utilitarian 
social 

welfare: sum 
of individual 

utilities

Total Error



Accuracy disparity 
Given: 

• a fixed privacy loss budget and 

• the best available privacy mechanism 


Do assignee populations bear the burden of inaccuracy equally?

Assignee population True outcome Correct Classification

a1 Anderson County ☒ Qualified 54%

a2 Andrews County ☐ Not Qualified 85%

a3 Angelina County ☐ Not Qualified 95%

… … …

an Zavala County ☒ Qualified 89%



Social choice:  
accuracy vs. accuracy disparity

FOR A FIXED EPSILON:

Ac
cu

ra
cy

Accuracy Disparity

 Less overall 
accuracy,  

but more equality

Greater overall 
accuracy,  

but more inequality



Remainder of the talk
1.  Introduction


2.  Causes of accuracy disparities 

3.  Cases studies


•  Voting rights benefits


•  Title I education funding


4. Discussion and conclusion



Accuracy disparities
• Different groups may 

experience: 


• unequal error rates in 
estimated counts.


• bias in estimated counts


• unequal outcomes

• Algorithmic techniques that 
contribute to this: 

• post-processing ➞ bias


• data-adaptive algorithms ➞ 
bias


• optimizing total error on a 
workload ➞ unequal error


• threshold conditions in 
assignment ➞ unequal 
outcomes



Laplace mechanism

True sensitive data

eps=.1 Expected L1 per query error = 9.98



Alternative mechanisms

eps=.1

error=9.98
Laplace

error=7.67

Laplace w/ 
rounding

input data:



Data-adaptive mechanisms

DAWA

MWEM

• Private data reduction

• Workload-adaptive measurements

• Least-squares inference

• Uniform starting estimate

• Iterate: 

• measurement selection using 

Exponential Mechanism 

• Multiplicative weights inference

(a) True database x (b) Algorithm flow chart
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(c) Private output x̂

Figure 1: Overview and example execution for the DAWA mechanism.

Algorithm Overview

We give an overview to our new mechanism and an example below.
The Data-Aware/Workload-Aware (DAWA) mechanism is an ✏-

differentially-private algorithm that takes as input a workload of
range queries, W, and a database, x, represented as a vector of
counts. The output is an estimate x̂ of x, where the noise added
to achieve privacy is adapted to the input data and to the workload.
The DAWA algorithm consists of the following three steps, the first
two of which require private interactions with the database. To
ensure that the overall algorithm satisfies ✏-differential privacy, we
split the total ✏ budget into ✏1, ✏2 such that ✏1 + ✏2 = ✏ and use these
two portions of the budget on the respective stages of the algorithm.

Step 1: Private Partitioning
The first step selects a partition of the domain that fits the input
database. We describe (in Sec. 3) a novel differentially private al-
gorithm that uses ✏1 budget to select a partition such that within
each partition bucket, the dataset is approximately uniform. This
notion of uniformity is later formalized as a cost function but the
basic intuition is that if a region is uniform, then there is no benefit
in using a limited privacy budget to ask queries at a finer granularity
than these regions—the signal is too small to overcome the noise.
The output of this step is B, a partition of x into k buckets, without
counts for the buckets.

Step 2: Private Bucket Count Estimation
Given the partition B, the second step derives noisy estimates of
the bucket counts. Rather than simply adding Laplace noise to the
bucket counts, we use a workload-aware method. Conceptually, we
re-express the workload over the new domain defined by the par-
tition B, with the buckets in the partition taking the place of x.
Then we have a well-studied problem of selecting unbiased mea-
surements (i.e. linear functions of the bucket counts) in a manner
that is optimized for the workload. This problem has received con-
siderable attention in past work [6, 7, 15, 16, 23, 24]. We use the
basic framework of the matrix mechanism [15], but we propose a
new algorithm (described in Sec. 4) for efficiently approximating
the optimal measurements for the workload.

Given the selected measurements, we then use the ✏2 privacy
budget and Laplace noise to privately answer the measurement
queries, followed by least-squares inference to derive the output of
this step, a noisy estimate s for the buckets in B.

Step 3: Uniform Expansion
In the last step we derive an estimate for the n components of x
from the k components of the histogram (B, s). This is done by
assuming uniformity: the count si for each bucket bi is spread uni-
formly amongst each position of x that is contained in bi. The

result is the estimate x̂ for x. Strictly speaking, any range query
can be computed from x̂, but the noise is tuned to provide accuracy
for precisely the queries in the workload.

The following example illustrates a sample execution of DAWA.

EXAMPLE 1. For n = 10, Fig. 1 shows graphically a sample
data vector x = (2,3,8,1,0,2,0,4,2,4). A possible output of
Step 1 is B = {b1, b2, b3, b4} where b1 = [1,2], b2 = [3,3], b3 =[4,7], and b4 = [8,10]. This need not be the optimal partition, as
defined in Sec. 3, because the partition selection is randomized. For
the sample database x in the figure, the true bucket counts for the
partition would be (5,8,3,10). The result from Step 2 is a set of
noisy bucket counts, s = (6.3,7.1,3.6,8.4). Step 3 then constructs
x̂ by assuming a uniform distribution for values within each bucket.
As it is shown graphically in Fig. 1(c), the final output is

x̂ = (3.15,3.15,7.1, .9, .9, .9, .9,2.8,2.8,2.8).
The novelty of our approach consists of splitting the overall pri-

vate estimation problem into two phases: Step 1, which is data-
dependent, and Step 2, which is workload-aware. Our main tech-
nical contributions are an effective and efficient private solution to
the optimization problem underlying Step 1, and an effective and
efficient solution to the optimization problem underlying Step 2.
We also extend our methods to two-dimensional workloads using
spatial decomposition techniques.

A number of recently-proposed methods [3,6,21,22] share com-
monalities with one or more parts of our mechanism (as described
in Sec. 6). But each omits or simplifies an important step and/or
they use sub-optimal methods for solving related subproblems. In
Sec. 5, an extensive experimental evaluation shows that for work-
loads of 1- and 2-dimensional range queries, the DAWA algorithm
achieves lower error than all competitors on nearly every database
and setting of ✏ tested, often by a significant margin.

The paper is organized as follows. We review notation and pri-
vacy definitions in Sec. 2. The partitioning algorithm is presented
in Sec. 3, and the bucket count estimating algorithm is included in
Sec. 4. We extensively compare DAWA with state-of-the-art com-
peting mechanisms in Sec. 5. Related work is discussed in Sec. 6.
We conclude and mention future directions in Sec. 7.

2. BACKGROUND

In this section we review notation, basic privacy definitions, and
standard privacy mechanisms used throughout the paper.

2.1 Databases and Queries

The query workloads we consider consist of counting queries
over a single relation. Let the database I be an instance of a single-
relation schema R(A), with attributes A = {A1,A2, . . . ,Ak} each
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Figure 1: Overview and example execution for the DAWA mechanism.

Algorithm Overview

We give an overview to our new mechanism and an example below.
The Data-Aware/Workload-Aware (DAWA) mechanism is an ✏-

differentially-private algorithm that takes as input a workload of
range queries, W, and a database, x, represented as a vector of
counts. The output is an estimate x̂ of x, where the noise added
to achieve privacy is adapted to the input data and to the workload.
The DAWA algorithm consists of the following three steps, the first
two of which require private interactions with the database. To
ensure that the overall algorithm satisfies ✏-differential privacy, we
split the total ✏ budget into ✏1, ✏2 such that ✏1 + ✏2 = ✏ and use these
two portions of the budget on the respective stages of the algorithm.

Step 1: Private Partitioning
The first step selects a partition of the domain that fits the input
database. We describe (in Sec. 3) a novel differentially private al-
gorithm that uses ✏1 budget to select a partition such that within
each partition bucket, the dataset is approximately uniform. This
notion of uniformity is later formalized as a cost function but the
basic intuition is that if a region is uniform, then there is no benefit
in using a limited privacy budget to ask queries at a finer granularity
than these regions—the signal is too small to overcome the noise.
The output of this step is B, a partition of x into k buckets, without
counts for the buckets.

Step 2: Private Bucket Count Estimation
Given the partition B, the second step derives noisy estimates of
the bucket counts. Rather than simply adding Laplace noise to the
bucket counts, we use a workload-aware method. Conceptually, we
re-express the workload over the new domain defined by the par-
tition B, with the buckets in the partition taking the place of x.
Then we have a well-studied problem of selecting unbiased mea-
surements (i.e. linear functions of the bucket counts) in a manner
that is optimized for the workload. This problem has received con-
siderable attention in past work [6, 7, 15, 16, 23, 24]. We use the
basic framework of the matrix mechanism [15], but we propose a
new algorithm (described in Sec. 4) for efficiently approximating
the optimal measurements for the workload.

Given the selected measurements, we then use the ✏2 privacy
budget and Laplace noise to privately answer the measurement
queries, followed by least-squares inference to derive the output of
this step, a noisy estimate s for the buckets in B.

Step 3: Uniform Expansion
In the last step we derive an estimate for the n components of x
from the k components of the histogram (B, s). This is done by
assuming uniformity: the count si for each bucket bi is spread uni-
formly amongst each position of x that is contained in bi. The

result is the estimate x̂ for x. Strictly speaking, any range query
can be computed from x̂, but the noise is tuned to provide accuracy
for precisely the queries in the workload.

The following example illustrates a sample execution of DAWA.

EXAMPLE 1. For n = 10, Fig. 1 shows graphically a sample
data vector x = (2,3,8,1,0,2,0,4,2,4). A possible output of
Step 1 is B = {b1, b2, b3, b4} where b1 = [1,2], b2 = [3,3], b3 =[4,7], and b4 = [8,10]. This need not be the optimal partition, as
defined in Sec. 3, because the partition selection is randomized. For
the sample database x in the figure, the true bucket counts for the
partition would be (5,8,3,10). The result from Step 2 is a set of
noisy bucket counts, s = (6.3,7.1,3.6,8.4). Step 3 then constructs
x̂ by assuming a uniform distribution for values within each bucket.
As it is shown graphically in Fig. 1(c), the final output is

x̂ = (3.15,3.15,7.1, .9, .9, .9, .9,2.8,2.8,2.8).
The novelty of our approach consists of splitting the overall pri-

vate estimation problem into two phases: Step 1, which is data-
dependent, and Step 2, which is workload-aware. Our main tech-
nical contributions are an effective and efficient private solution to
the optimization problem underlying Step 1, and an effective and
efficient solution to the optimization problem underlying Step 2.
We also extend our methods to two-dimensional workloads using
spatial decomposition techniques.

A number of recently-proposed methods [3,6,21,22] share com-
monalities with one or more parts of our mechanism (as described
in Sec. 6). But each omits or simplifies an important step and/or
they use sub-optimal methods for solving related subproblems. In
Sec. 5, an extensive experimental evaluation shows that for work-
loads of 1- and 2-dimensional range queries, the DAWA algorithm
achieves lower error than all competitors on nearly every database
and setting of ✏ tested, often by a significant margin.

The paper is organized as follows. We review notation and pri-
vacy definitions in Sec. 2. The partitioning algorithm is presented
in Sec. 3, and the bucket count estimating algorithm is included in
Sec. 4. We extensively compare DAWA with state-of-the-art com-
peting mechanisms in Sec. 5. Related work is discussed in Sec. 6.
We conclude and mention future directions in Sec. 7.

2. BACKGROUND

In this section we review notation, basic privacy definitions, and
standard privacy mechanisms used throughout the paper.

2.1 Databases and Queries

The query workloads we consider consist of counting queries
over a single relation. Let the database I be an instance of a single-
relation schema R(A), with attributes A = {A1,A2, . . . ,Ak} each
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Data-adaptive mechanisms

(error=6.51)
DAWA

Laplace

(error=17.31)
MWEM

(error=9.98)
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Matrix mechanism: workload adaptivity
Matrix Mechanism (MM)


[Li et al, PODS 2010]

x ← vectorize(R)
W ← vectorize(W)
A ← OPTMM(W)
ΔA ← ||A||1
a ← Ax
y ← a + Lap(ΔA/ϵ)
x ← A+y

ans ← Wx

select a “good” A for W

Laplace mechanism on A}
Reconstruct answers to 
W from noisy A answers}

Given workload W, find strategy A that  
minimizes total squared error on W

➡ Unbiased answers to workload queries  
➡ Data-independent expected error 
➡ Expected error varies across workload

Key properties:



Geographic hierarchy

… States

Nation

Counties

Workload: counts (of some predicate) at county, state, and national level.

… 



Accuracy on state counts
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Threshold assignment
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Outline
1.  Introduction


2.  Causes of accuracy disparities


3.  Cases studies 

•  Voting rights benefits 

•  Title I education funding 

4. Discussion and conclusion



Minority language voting benefits

• Section 203 of the 1965 Voting Rights Act (U.S.) specified 
conditions under which jurisdictions must provide language 
assistance.


• A jurisdiction determined to be “covered” for language L must 
provide all election information (voter registration, ballots, and 
instructions) in the language L.


• Determinations made by the Census Bureau every 5 years, using 
published data. 


• Last determinations in 2016: 263 out of 8000 jurisdictions 
covered (across all languages).  21 million voters live in these 
jurisdictions. 



• For each jurisdiction j: 

• For each minority language L: 

• Define:


• qvac(aj) = voting age citizens in j speaking language L


• qlep(aj) = voting age citizens in j speaking language L and limited-English 
proficient.


• qlit(aj) = voting age citizens in j speaking language L and limited-English 
proficient and less than 5th grade education.


• If 


• Then aj is covered for language L 

Minority language voting benefits

(
qlep(aj)
qvac(aj)

> 0.05 ∨ qlep(aj) > 10000) ∧
qlit(aj)
qlep(aj)

> 0.0131



Covered jurisdictions
Fair Decision Making using Privacy-Protected Data Conference’17, July 2017, Washington, DC, USA

(a) The D-Laplace algorithm, � = {.01, .1, 1.0, 10.0} (b) The DAWA algorithm, � = {.01, .1, 1.0, 10.0} (c) distance to threshold, � = .1

Figure 1: Minority Language Determinations using D-Laplace and DAWA.

to classify accurately. As a particular example, consider Maricopa
county (Arizona) and Knox county (Texas), which are both covered
jurisdictions. Maricopa county is correctly classi�ed 100% of the
time by D-Laplace at � = .1, while Knox county is correctly classi-
�ed only 63% of the time. Because the D-Laplace algorithm produces
unbiased noise of equivalent magnitude to each jurisdiction, this
di�erence is fully explained by the distance to the classi�cation
threshold: Maricopa county is further from the threshold than Knox
county so it is more robust to the addition of noise. Additionally, the
distance to the classi�cation threshold is strongly correlated with
the population size, which is over 4,000,000 for Maricopa county,
but less than 4,000 for Knox county.

Thus, in this case, the signi�cant di�erences in the rate of suc-
cessful classi�cation across jurisdictions is a consequence of the
decision rule and its interaction with the noise added for privacy.

Although not shown in Figure 1, there are also signi�cant dis-
parities in classi�cation rates for the negative class (uncovered
jurisdictions). For example, the correct negative classi�cation rate
for D-Laplace at � = .1 ranges from 54% to 100%. Mistakes on the
negative class mean, in practice, that minority language materials
would be required of a jurisdiction which does not truly qualify,
resulting in an unnecessary administrative and �nancial burden.

Finding M2: While the DAWA algorithm o�ers equal or lower error
on the underlying statistics for small � , it exacerbates disparities
in classi�cation rates. Figure 1(b) shows a similar plot but for the
DAWA algorithm, however in this case the disparities are even
greater. The lowest classi�cation rates are zero, for both � = .01
and � = .1, implying that a few covered jurisdictions will de�nitely
be not-covered for every run of the algorithm. Even with higher �
values of 1.0 and 10.0, the lowest classi�cation rates are below 25%.
At the high end, for � = 10.0, 99% of the jurisdictions have a correct
classi�cation rate greater than 95%, while 87% do for � = 1.0, 61%
do for � = 0.1 and 22% do for � = .01.

It is important to note that the DAWA algorithm o�ers approxi-
mately equivalent error on the statistics X compared to D-Laplace
(at � = .1) and in fact o�ers 30% lower error at � = .01. This is
a critical �nding for designers of privacy algorithms: optimizing
for aggregate error on published statistics does not reliably lead to
more accurate or fair outcomes for a downstream decision problem.

Finding M3: A jurisdiction’s distance from the nearest threshold
explains classi�cation rates for D-Laplace but not DAWA. We plot
in Figure 1(c) a jurisdiction’s euclidean distance from the nearest
classi�cation threshold against the rate of correct classi�cation (for
� = 0.1). We see that the results for D-Laplace are well-explained:
correct classi�cation rate increases with distance from the threshold
and occurs in a fairly tight band for any given distance measure.

For the DAWA algorithm, however, we observe a di�erent result.
Jurisdictions very far from the threshold have high classi�cation
rates, as expected, presumably because there is simply not enough
noise to cause a failure for these cases. But for jurisdictions a smaller
distance from the threshold, there is a wide spread of classi�cation
rate and some jurisdictions reasonably far from the threshold have
very low classi�cation rates. This shows the impact of the bias
introduced in by DAWA: it sometimes groups together quali�ed ju-
risdictions with unquali�ed ones, causing them to be mis-classi�ed.

5 PROBLEM 2: TITLE I FUNDS ALLOCATION
We now turn our attention to the important class of funds allocation
problems. A recent study estimated that the annual distribution of
at least $675 billion dollars relies on data released by the Census
Bureau [18]. This includes funding for educational grants, school
lunch programs, highway construction, wildlife restoration, among
many others.

As an example of federal funds allocation, we consider Title I of
the Elementary and Secondary Education Act of 1965 [23]. This is
one of the largest U.S. programs o�ering educational assistance to
disadvantaged children. In �scal year 2015, Title I funding amounted
to a total of $14.4 billion, of which roughly $6.5 billion was given
out through “basic grants” which are our focus.

5.1 Problem De�nition
The federal allocation is divided among qualifying school districts
in proportion to a count of children in the district aged 5 to 17 who
live in families who fall below the poverty level or receive a form
of federal �nancial aid [23]. This proportion is then weighted by a
factor that re�ects the average per student educational expenditures
in the district’s state. The allocation formula is described formally
in Table 2, where the outcome represents the fraction of the total
allocation (which changes annually) the district will receive.

5

Laplace Mechanism

% jurisdictions with 
correct classification 

>95%

10.0 100% 95%
1.00 92% 55%
0.10 74% 39%
0.01 33% 37%

lowest correct 
classification rate

ϵ

2016 public-use data (treated as ground truth) 
“Hispanic” minority language group 
175 positively classified jurisdictions
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(a) The D-Laplace algorithm, � = {.01, .1, 1.0, 10.0} (b) The DAWA algorithm, � = {.01, .1, 1.0, 10.0} (c) distance to threshold, � = .1

Figure 1: Minority Language Determinations using D-Laplace and DAWA.

to classify accurately. As a particular example, consider Maricopa
county (Arizona) and Knox county (Texas), which are both covered
jurisdictions. Maricopa county is correctly classi�ed 100% of the
time by D-Laplace at � = .1, while Knox county is correctly classi-
�ed only 63% of the time. Because the D-Laplace algorithm produces
unbiased noise of equivalent magnitude to each jurisdiction, this
di�erence is fully explained by the distance to the classi�cation
threshold: Maricopa county is further from the threshold than Knox
county so it is more robust to the addition of noise. Additionally, the
distance to the classi�cation threshold is strongly correlated with
the population size, which is over 4,000,000 for Maricopa county,
but less than 4,000 for Knox county.

Thus, in this case, the signi�cant di�erences in the rate of suc-
cessful classi�cation across jurisdictions is a consequence of the
decision rule and its interaction with the noise added for privacy.

Although not shown in Figure 1, there are also signi�cant dis-
parities in classi�cation rates for the negative class (uncovered
jurisdictions). For example, the correct negative classi�cation rate
for D-Laplace at � = .1 ranges from 54% to 100%. Mistakes on the
negative class mean, in practice, that minority language materials
would be required of a jurisdiction which does not truly qualify,
resulting in an unnecessary administrative and �nancial burden.

Finding M2: While the DAWA algorithm o�ers equal or lower error
on the underlying statistics for small � , it exacerbates disparities
in classi�cation rates. Figure 1(b) shows a similar plot but for the
DAWA algorithm, however in this case the disparities are even
greater. The lowest classi�cation rates are zero, for both � = .01
and � = .1, implying that a few covered jurisdictions will de�nitely
be not-covered for every run of the algorithm. Even with higher �
values of 1.0 and 10.0, the lowest classi�cation rates are below 25%.
At the high end, for � = 10.0, 99% of the jurisdictions have a correct
classi�cation rate greater than 95%, while 87% do for � = 1.0, 61%
do for � = 0.1 and 22% do for � = .01.

It is important to note that the DAWA algorithm o�ers approxi-
mately equivalent error on the statistics X compared to D-Laplace
(at � = .1) and in fact o�ers 30% lower error at � = .01. This is
a critical �nding for designers of privacy algorithms: optimizing
for aggregate error on published statistics does not reliably lead to
more accurate or fair outcomes for a downstream decision problem.

Finding M3: A jurisdiction’s distance from the nearest threshold
explains classi�cation rates for D-Laplace but not DAWA. We plot
in Figure 1(c) a jurisdiction’s euclidean distance from the nearest
classi�cation threshold against the rate of correct classi�cation (for
� = 0.1). We see that the results for D-Laplace are well-explained:
correct classi�cation rate increases with distance from the threshold
and occurs in a fairly tight band for any given distance measure.

For the DAWA algorithm, however, we observe a di�erent result.
Jurisdictions very far from the threshold have high classi�cation
rates, as expected, presumably because there is simply not enough
noise to cause a failure for these cases. But for jurisdictions a smaller
distance from the threshold, there is a wide spread of classi�cation
rate and some jurisdictions reasonably far from the threshold have
very low classi�cation rates. This shows the impact of the bias
introduced in by DAWA: it sometimes groups together quali�ed ju-
risdictions with unquali�ed ones, causing them to be mis-classi�ed.

5 PROBLEM 2: TITLE I FUNDS ALLOCATION
We now turn our attention to the important class of funds allocation
problems. A recent study estimated that the annual distribution of
at least $675 billion dollars relies on data released by the Census
Bureau [18]. This includes funding for educational grants, school
lunch programs, highway construction, wildlife restoration, among
many others.

As an example of federal funds allocation, we consider Title I of
the Elementary and Secondary Education Act of 1965 [23]. This is
one of the largest U.S. programs o�ering educational assistance to
disadvantaged children. In �scal year 2015, Title I funding amounted
to a total of $14.4 billion, of which roughly $6.5 billion was given
out through “basic grants” which are our focus.

5.1 Problem De�nition
The federal allocation is divided among qualifying school districts
in proportion to a count of children in the district aged 5 to 17 who
live in families who fall below the poverty level or receive a form
of federal �nancial aid [23]. This proportion is then weighted by a
factor that re�ects the average per student educational expenditures
in the district’s state. The allocation formula is described formally
in Table 2, where the outcome represents the fraction of the total
allocation (which changes annually) the district will receive.
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(a) The D-Laplace algorithm, � = {.01, .1, 1.0, 10.0} (b) The DAWA algorithm, � = {.01, .1, 1.0, 10.0} (c) distance to threshold, � = .1

Figure 1: Minority Language Determinations using D-Laplace and DAWA.
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Title I funds allocation

• The allocation of at least $675 billion, annually, relies on 
Census data.


• Title I of the Elementary and Secondary Education Act of 
1965 gives educational funding to school districts in 
proportion to number of children in financial need.


• In 2015, $6.5 billion was given through Title I “Basic 
grants”



Title I funds allocation
• Given total allocation C


• For each U.S. school district d


• Define:


• qexp(ad) = average per student expenditure


• qeli(ad) = number of eligible students in district a.


• Allocate to district d: Cqexp(ad)qeli(ad)
Σiqexp(ai)qeli(ai)



Allocation error
State of Michigan, 888 districts

eps small 
districts

large 
districts

10.0 1.01x  ↑ 0.001%  ↓
0.10 10x ↑ 0.05%  ↓
0.001 500x ↑ 50%  ↓



Outline
1.  Introduction


2.  Causes of accuracy disparities


3.  Cases studies


•  Voting rights benefits


•  Title I education funding


4. Discussion and conclusion



Summary

• Assignee populations do not bear the utility cost of 
existing privacy mechanisms equally.


• Disparities have a variety of causes:


• minimizing total error, small counts biased up, counts 
near a decision boundary, those who get “asked about” 
less often, outliers biased towards neighbors…



Next steps?
• For what epsilons are disparities small enough to ignore? 


• Can we develop privacy mechanisms that allow us to 
target more complex utility notions?


• Can we remedy disparities through post-processing or by 
adjusting assignment functions?  Is this legally 
acceptable?


• Should individuals be able to choose how they weigh 
potential privacy harms against potential utility harms



Thank you

Results in this talk were made with 


https://github.com/ektelo/ektelo
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ABSTRACT
The adoption of di�erential privacy is growing but the complexity
of designing private, e�cient and accurate algorithms is still high.
We propose a novel programming framework and system, ������,
for implementing both existing and new privacy algorithms. For
the task of answering linear counting queries, we show that nearly
all existing algorithms can be composed from operators, each con-
forming to one of a small number of operator classes. While past
programming frameworks have helped to ensure the privacy of
programs, the novelty of our framework is its signi�cant support
for authoring accurate and e�cient (as well as private) programs.

After describing the design and architecture of the ������ sys-
tem, we show that ������ is expressive, allows for safer implemen-
tations through code reuse, and that it allows both privacy novices
and experts to easily design algorithms. We demonstrate the use of
������ by designing several new state-of-the-art algorithms.
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1 INTRODUCTION
As the collection of personal data has increased, many institutions
face an urgent need for reliable privacy protection mechanisms.
They must balance the need to protect individuals with demands
to use collected data for new applications, to model their users’
behavior, or share data with external partners. Di�erential privacy
[7, 8] is a rigorous privacy de�nition that o�ers a persuasive assur-
ance to individuals, provable guarantees, and the ability to analyze
the impact of combined releases of data. Informally, an algorithm
satis�es di�erential privacy if its output does not change too much
when any one record in the input database is added or removed.
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The research community has actively investigated di�erential
privacy and algorithms are known for a variety of tasks ranging
from data exploration to query answering to machine learning.
However, the adoption of di�erentially private techniques in real-
world applications remains rare. This is because implementing
programs that provably satisfy privacy and ensure su�cient utility
for a given task is still extremely challenging for non-experts in
di�erential privacy. In fact, the few real world deployments of di�er-
ential privacy – like OnTheMap [1, 13] (a U.S. Census Bureau data
product), RAPPOR [10] (a Google Chrome extension), and Apple’s
private collection of emoji’s and HealthKit data – have required
teams of privacy experts to ensure that implementations meet the
privacy standard and that they deliver acceptable utility. There
are three important challenges in implementing and deploying
di�erentially private algorithms.

The �rst and foremost challenge is the di�culty of designing
utility-optimal algorithms: i.e., algorithms that can extract the max-
imal accuracy given a �xed “privacy budget.” While there are a
number of general-purpose di�erentially private algorithms, such
as the Laplace Mechanism [7], they typically o�er suboptimal ac-
curacy if applied directly. A carefully designed algorithm can im-
prove on general-purpose methods by an order of magnitude or
more—without weakening privacy: accuracy is improved by careful
engineering and sophisticated algorithm design.

One might hope for a single dominant algorithm for each task,
but a recent empirical study [15] showed that the accuracy of ex-
isting algorithms is complex: no single algorithm delivers the best
accuracy across the range of settings in which it may be deployed.
The choice of the best algorithm may depend on the particular task,
the available privacy budget, and properties of the input data includ-
ing how much data is available or distributional properties of the
data. Therefore, to achieve state-of-the-art accuracy, a practitioner
currently has to make a host of complex algorithm choices, which
may include choosing a low-level representation for the input data,
translating their queries into that representation, choosing among
available algorithms, and setting parameters. The best choices will
vary for di�erent input data and di�erent analysis tasks.

The second challenge is that the tasks in which practitioners are
interested are diverse and may di�er from those considered in the
literature. Hence, existing algorithms need to be adapted to new
application settings, a non-trivial task. For instance, techniques
used by modern privacy algorithms include optimizing error over
multiple queries by identifying common sub-expressions, obtaining


