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Illustrative Example
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age child
race

household  
size

race 
householder 

12 white 3 white

9 asian 4 white

… … … …

Goal: Produce 2-way 
marginal between race 
of child and race of 
householder, 
computed under DP
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Which DP algorithm should I use?
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Analysis & Implementation
• Query: 2-way marginal between race of child and 

race of householder 

• Analyst calculates sensitivity 

• Analysts finds Laplace RNG 

• Friend (DP expert) warns, “Watch out for floating-
point precision attack.” [Mironov CCS12]
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age race household  
size

race 
householde

r 
12 white 3 white

29 asian 4 white

… … … …
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Challenges to deployment

• Conflicting empirical results 

• Lack of reference implementations 

• Risk of subtle bugs (analysis + implementation)
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Today’s talk

• Introduction 

• DPBench: principled empirical evaluations of 
accuracy 

• Ektelo: framework for private computation 

• PrivateSQL: differentially private SQL query engine

 6



Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Sound evaluation is hard
• Factors affecting performance: setting of epsilon, 

“amount” of data, tunable algorithm parameters, 
data pre-processing (cleaning, representation) 

• Algorithms can be data-dependent because they 
adapt or introduce statistical bias. 

• Examples: smooth sensitivity [Nissim STOC 2007], 
DAWA [Li VLDB 2014], Adaptive Grid [Qardaji ICDE 
2013], StructureFirst [Xu VLDBJ 2013]
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Principled evaluation of DP algorithms [SIGMOD16]
Companion website: dpcomp.org Joint work with Gerome Miklau, 

Ashwin Machanavajhalla, Dan 
Zhang, Yan Chen, George Bissias

Finding: no “universal” algorithms: 
best performance depends on 
task, input data, epsilon…

http://dpcomp.org
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Sound evaluation is important!

• How to incentivize community participation? 

• Benchmarks  
Successful in other communities TPC-H, Trec, MNIST 

• Contests 
NIST Differential Privacy Synthetic Data Challenge 

• Reproducibility requirements
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Outline

• Introduction 

• DPBench: principled empirical evaluations of 
accuracy 

• Ektelo: framework for private computation 

• PrivateSQL: differentially private SQL query engine
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Challenges of DP Deployment

• Successful deployments have required a team of 
privacy experts. 

• Limited resources available 
• Few libraries, reference implementations or re-usable tools. 
• Frameworks like PINQ ensure privacy safe computation, but 

little guidance on accuracy 
• Implementations often start from scratch in arbitrary PL. 

• Difficult for privacy non-experts to contribute.
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Challenges of DP Deployment

• Privacy: Many points of failure  
   ➡ Code must be carefully vetted. 

• Accuracy: Sophisticated algorithms needed  
    ➡ Need to think in new ways to get optimal error 

• Context: data analysis workflows are ad hoc  
    ➡ Need toolkits, not monolithic algorithms.
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εktelo execution framework
• Goal: simplify and accelerate development of 

efficient and accurate differentially private 
algorithms 

• Ektelo supports a library of vetted operators. 

• Operators encode (some) best practices from 
literature  

• Differentially private computation expressed as a 
plan: a sequence of operator calls
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Joint work with Gerome Miklau, Ashwin Machanavajhalla, 
Dan Zhang, Ryan McKenna, Ios Kotsogiannis
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

* Dan Kifer’s presentation “Consistency with 
External Knowledge: The TopDown Algorithm”
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Protected 
Kernel

API

Ektelo plan

Plan executed by client, 
with calls to protected 
kernel that manages 
sensitive data 
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Transformations
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Measurement Selection
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Measurement
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Inference (and other post-processing)
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persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
  geo_regions = SelectPartition(level)
  splits = persons.SplitByPartition(geo_regions)
  for persons_in_region in splits:
    x = persons_in_region.Vectorize()
    M = SelectMeasurementsHDMM(W)
    y = x.LaplaceMeasure(M, eps)
    x_hat = LeastSquares(M, y)
    ... additional post-processing ...

Top Down 
algorithm* 
implemented 

as Ektelo plan. 

(Artistic 
rendering)

Client-side;  
no impact on privacy

Runs in trusted environment.
Impacts sensitivity

Releases noisy measurements; 
Consumes privacy loss budget
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Operator classes
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Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

ID Cite Algorithm name Plan signature

1 [8] Identity SI LM

2 [39] Privelet SP LM LS

3 [17] Hierarchical (H2) SH2 LM LS

4 [34] Hierarchical Opt (HB) SHB LM LS

5 [22] Greedy-H SG LM LS

6 - Uniform ST LM LS

7 [15] MWEM I:( SW LM MW )

8 [42] AHP PA TR SI LM LS

9 [22] DAWA PD TR SG LM LS

10 [6] Quadtree SQ LM LS

11 [33] UniformGrid SU LM LS

12 [33] AdaptiveGrid SU LM LS TP[ SA LM] LS

13 NEW DAWA-Striped PS TP[ PD TR SG LM] LS

14 NEW HB-Striped PS TP[ SHB LM] LS

15 NEW PrivBayesLS SPB LM LS

16 NEW MWEM variant b I:( SW SH2 LM MW )

17 NEW MWEM variant c I:( SW LM NLS )

18 NEW MWEM variant d I:( SW SH2 LM NLS )

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].
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Algorithms as Ektelo plansOperators

Algorithms 
from DPBench  
[SIGMOD 16]

Novel 
algorithm 
variants

Benefits
• Reuse: existing algorithms implemented with reusable operators 
• Reduces code verification effort 
• Improved operator implementations  
• New variants of algorithm easy to construct (improved accuracy!)

https://ektelo.github.io/
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Architecture for Private Computation?

• Separate concerns:  
• Transformations 
• Measurement selection 
• Measurement 
• Post-processing (consistency, synthetic data, inference) 

• Benefits of modularity: 
• Reduce scope of privacy verification 
• Diverse contributors: relevant expertise differs by 

component

 24
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Outline

• Introduction 

• DPBench: principled empirical evaluations of 
accuracy 

• Ektelo: framework for private computation 

• PrivateSQL: differentially private SQL query engine

 25



Motivations for Private SQL

• Towards a declarative interface for query answering  

• Complex queries over multi-relational data 

• Privacy at multiple resolutions

Joint work with Gerome Miklau, Ashwin 
Machanavajhalla, Ios Kotsogiannis, Yuchao 

Tao, Xi He, Maryam Fanaeepour 



Population Statistics

Congressional Apportionment Redistricting

Fund allocations to schools

Minority Language 
Voting Rights



Statistics Released by US Census Bureau

ID Sex … HID

122 M … H6
123 F … H6
124 M … H7
125 M … H8
126 F … H8

HID … Geo

H6 … CA
H7 … FL
H8 … NC

Household

Person

Census Summary File 1 (SF-1) 
• “Number of  males between 18 and 21 years old”, …  
• “Number of  people living in owned houses of  size 3 where the 

householder is a married Hispanic male”, …  
At all levels of  geography (state, county, tract, block)



Complex Queries

• Linear queries on households 

SELECT COUNT(*)  
FROM ( SELECT hid, COUNT(*) AS CNT  
	 	 FROM Persons p, (SELECT hid  
	 	 	 	 	 	 	 FROM Persons p1, Persons p2  
	 	 	 	 	 	 	 WHERE p1.hid = p2.hid  
	 	 	 	 	 	 	 	 AND p1.Rel = ‘householder’  
	 	 	 	 	 	 	 	 AND p2.Rel = ‘spouse’  
	 	 	 	 	 	 	 	 AND ( (p1.sex= ‘M’ AND p2.sex = ‘F’)  
	 	 	 	 	 	 	 	 OR (p1.sex= ‘F’ AND p2.sex = ‘M’)) 
	 	 	 	 	 	 	 GROUP BY hid) AS h  
	 	 WHERE p.hid = h.hid AND p.Rel = ‘child’  
	 	 	 AND p.Age < 18  
	 	 GROUP BY hid)  
WHERE CNT >= 1

!29



Complex Queries

• Linear queries on households 

SELECT COUNT(*)  
FROM ( SELECT hid, COUNT(*) AS CNT  
	 	 FROM Persons p, (SELECT hid  
	 	 	 	 	 	 	 FROM Persons p1, Persons p2  
	 	 	 	 	 	 	 WHERE p1.hid = p2.hid  
	 	 	 	 	 	 	 	 AND p1.Rel = ‘householder’  
	 	 	 	 	 	 	 	 AND p2.Rel = ‘spouse’  
	 	 	 	 	 	 	 	 AND ( (p1.sex= ‘M’ AND p2.sex = ‘F’)  
	 	 	 	 	 	 	 	 OR (p1.sex= ‘F’ AND p2.sex = ‘M’)) 
	 	 	 	 	 	 	 GROUP BY hid) AS h  
	 	 WHERE p.hid = h.hid AND p.Rel = ‘child’  
	 	 	 AND p.Age < 18  
	 	 GROUP BY hid)  
WHERE CNT >= 1

!30

Count of  the number of  households  
 where the householder age in [15..64]  
 AND it’s a husband-wife family  
 AND there is at least one related child under 18.



Complex Queries

• Queries on people living in households 

SELECT COUNT(*) 
FROM Person p 
Where p.Age < 18 AND  
	 	 p.hID in (SELECT hID 
	 	 	 	 	 FROM Person p 
	 	 	 	 	 WHERE p.Rel = “householder” 
	 	 	 	 	 	 	 AND p.Race = “Asian”)	 	 	 	 	
	 	 	 	 	 	

!31



Complex Queries

• Queries on people living in households 

SELECT COUNT(*) 
FROM Person p 
Where p.Age < 18 AND  
	 	 p.hID in (SELECT hID 
	 	 	 	 	 FROM Person p 
	 	 	 	 	 WHERE p.Rel = “householder” 
	 	 	 	 	 	 	 AND p.Race = “Asian”)	 	 	 	 	
	 	 	 	 	 	

!32

Count of  the number of  people under 18  
 living in households with an Asian householder



Complex queries

• Degree distribution query or count of  count histogram 

SELECT cnt, COUNT(*) 
FROM (SELECT hID, COUNT(*) as cnt 
	 	  FROM Person p 
	 	 GROUP BY hID) 
GROUPBY cnt 
ORDER BY cnt

!33



Complex queries

• Degree distribution query or count of  count histogram 

SELECT cnt, COUNT(*) 
FROM (SELECT hID, COUNT(*) as cnt 
	 	  FROM Person p 
	 	 GROUP BY hID) 
GROUPBY cnt 
ORDER BY cnt

!34

For every household size,  
 release the number of  households of  that size



Motivations for Private SQL

• Complex queries over multi-relational data 

• Privacy at multiple resolutions



Privacy requirement

• Title 13 Section 9 

Neither the secretary nor any officer or employee … 
… make any publication whereby the data furnished  

by any particular establishment or individual  
under this title can be identified … 

• In some data products, only properties of  people need to 
be hidden, and in other products, properties of  households 
also need to be hidden. 



Privacy at multiple resolutions

Edge-privacy: hide the presence of  an edge 
Node-privacy: hide the presence of  a node 
and all edges incident to it.  

Person-privacy: hide properties of  people 
Household-privacy: hide properties of   
households and the people within them.

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person

Event-privacy: hide sensor reading 
Window-privacy: hide readings in (t-w, t] 
User-privacy: hide all sensor readings



Goals of  Private SQL

• Automatically generates differentially private code to 
accurately answer the queries specified in a high level 
language (SQL) 

• Ensures a fixed privacy budget across all queries posed by the 
analyst.  

• Enables privacy to be specified at multiple resolutions. 



Private Database Analyst

Query 
Workload

Query 1

1. Queries answered on live-DB  
    one at a time

Query 2

…

Example: FLEX [VLDB18]  
• Deployed at Uber.

Result 1

Result 2

DP 
Algorithm

DP 
Algorithm



Private Database Analyst

Query 
Workload

Query 1

1. Queries answered on live-DB  
    one at a time

Result 1

Query 2

Result 2 …
Unbounded Privacy Loss 
• Unless the system decides to shut off  future queries, the privacy loss keeps 

increasing.  
Inflexible privacy semantics (for Flex specifically) 
• Hides any row in DB, but this may not align with privacy in particular context.  

Other concerns: inconsistency between answers, side channel attacks

✗
DP 

Algorithm

DP 
Algorithm



Private Database Analyst

Query 
Workload

Query 1

2. Query answering on a synthetic 
   version of  base tables

…

Examples:  
HDMM [VLDB18], MWEM [NIPS12] … 
• Output a histogram tunes to query workload 
PrivBayes [SIGMOD14], Private Synthetic Data using GANs 
[NIST Challenge 18] 
• Generates a synthetic database in the same schema as input

Result 1
Query 2

Result 3



Private Database Analyst

Query 
Workload

Query 1

2. Query answering on a synthetic 
   version of  base tables

…

No support for multi-relational tables 

Joins computed on synthetic tables have very high error. 

Result 1
Query 2

Result 3

✗



Defining privacy at multiple resolutions

Edge-privacy: hide the presence of  an edge 
Node-privacy: hide the presence of  a node 
and all edges incident to it.  

Person-privacy: hide properties of  people 
Household-privacy: hide properties of   
households and the people within them.

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person



Multi-resolution privacy in PrivateSQL

• Policy: A specification of  the base relation that is the 
primary private object.  

• Neighboring Databases:  
– Add or remove a row r in the primary private relation 
– Add or remove all rows in other tables that transitively refer to the 

row r in the primary private relation 



Multi-resolution privacy in PrivateSQL

Person-privacy:  
• Person is the primary private relation 
• Adding or removing an person record does not affect the household table.  

Household-privacy:  
• Household is the primary private relation 
• Adding or removing a row r from household removes all rows in person that 

refer to r in household table. 

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person
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Analyst

Query 
Workload

The PrivateSQL system

ε
Private Database

Privacy 
Budget
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Analyst

Query 
Workload

The PrivateSQL system

ε

View Selector

Private Database

Example view

age race household  
size …

34 white 3 …

29 asian 4 …

… … … …

Views selected so that analyst 
queries are linear over views (no 

joins)
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Analyst

Query 
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is 

G
en
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or

Private Database
Synopsis may consist of  a 

tuples or histograms
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Analyst

Query 
Workload

The PrivateSQL system

ε

View Selector
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Split privacy budget across 
views
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Analyst

Query 
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is 

G
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Private Database
Bu
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 A
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r

Query 1

…

Result 1
Query 2

Result 3

Query 
Answeri

ng 
Engine

Purely postprocessing.  
No effect on privacy
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Analyst

Query 
Workload

The PrivateSQL system

ε
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Query 1

…

Result 1
Query 2

Result 3

Query 
Answeri

ng 
Engine

Quantifies the number of  rows 
that change in the view if  one 

row changes in the input
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Addressing view sensitivity
• View is complex SQL query; 

evaluation is hard  
[Arapinis et al. ICALP16] 

• Global sensitivity may be 
high / unbounded  

• Calculation depends on 
privacy resolution level 
(e.g., person vs. household)

 52

Rule-based sensitivity 
bound calculator  
(builds on PINQ, Flex, with 
new rules: joins on keys)

➡ 
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Addressing view sensitivity
• View is complex SQL query; 

evaluation is hard  
[Arapinis et al. ICALP16] 

• Global sensitivity may be 
high / unbounded  

• Calculation depends on 
privacy resolution level 
(e.g., person vs. household)
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Rule-based sensitivity 
bound calculator  
(builds on PINQ, Flex, with 
new rules: joins on keys)

➡ 

age race household  
size …

34 white 3 …

29 asian 4 …

… … … …

Example view
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Addressing view sensitivity
• View is complex SQL query; 

evaluation is hard  
[Arapinis et al. ICALP16] 

• Global sensitivity may be 
high / unbounded  

• Calculation depends on 
privacy resolution level 
(e.g., person vs. household)
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Rule-based sensitivity 
bound calculator  
(builds on PINQ, Flex, with 
new rules: joins on keys)

➡ 

➡ Truncate “outliers”

View rewriting➡ 
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Workload
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Query 1

…
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Query 2

Result 3
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For acyclic dependencies, different 
policies can be handled by 

appropriately rewriting the view.

Policy



Empirical evaluation

• Dataset: A synthetic census dataset 
– person(id, sex, gender, age, race, relationship, hid) and  

household(hid, location)  
– Restricted to the state of  NC 
– 5.4 million people and 2.7 million households 

• Queries: 3493 counting queries from the 2010 Summary file 1.  
– “Number of  males between 18 and 21 years old.”  
– “Number of  people living in owned houses of  size 3 where the 

householder is a married Hispanic male.”  

• Views: PrivateSQL generated 17 views



(a) W1, Person, CensusNC (b) W1, Household, CensusNC
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(d) W2, Household, CensusNC

Figure 6: Relative error rates on the CensusNC datasets, for W1 (left) and W2 (right) workloads and Person
and Household policies. Error rates stratified by true query answer size.

(a) W1 on CensusPM . (b) W1 on CensusNC .
Figure 7: Relative error rates for CensusPM

dataset (left), as well as for different ✏ values (right),
both under Person policy.

(a) W1 Workload (b) W2 Workload
Figure 8: Relative error comparison between
BaselineFlex and PrivateSQL for workload an-
swering on the CensusNC dataset.
is that it has more sophisticated support for workloads: VS-

elector groups together queries which may compose paral-
lely and enjoy a tighter privacy analysis, and techniques like
W-nnls in the synopsis generator use least squares inference
to further reduce the error of query answers.

7.3.2 Single Query Answering
To provide a more direct comparison with Flex, we run

our system in “single query mode”, denoted by PrivateSQL
sqm

,
which takes as input a single input query and returns a pri-
vate synopsis answering the input query. We evaluate both
systems on workload W1 on CensusNC and Person policy
and use a per-query budget of ✏q = 0.01. We omit showing
results for queries in W2 \W1 as those queries have the same
sensitivity, and hence same error under both systems.

This evaluation allows us to decouple error improvements
due to workload-related components – such as VSelector,
BudgetAlloc, and PrivSynGen – and focus on the query
analysis components SensCalc and VRewrite.

Fig. 9 shows for each query the QError of Flex on the
y-axis and the QError of PrivateSQL

sqm
on the x-axis.

Figure 9: Comparing
QError rates of W1

queries on CensusNC .

View
Group

SensCalc
Rules

Flex
Rules

#1 0 1
#2 1 8
#3 2 8
#4 4 96
#5 6 1,088
#6 33 1,088
#7 49 11,904

Table 5: Comparison of
Flex and PrivateSQL
sensitivity engines.

Queries are grouped together w.r.t. their computed sen-
sitivity under SensCalc. Groups #6 and #7 are queries
with correlated subqueries and are unsupported by Flex.
However, for illustration purposes, we allow Flex to use
the de-correlation techniques of VSelector in order to an-
swer them. All queries lie over the dotted x = y diagonal
line, i.e., for every query, PrivateSQL

sqm
offers lower error

than Flex. This improvement is over 10 orders of magni-
tude for some Flex supported queries (Group 5). All im-
provements are due to two factors: (a) the tighter sensitiv-
ity bounds of SensCalc compared with Flex rules and (b)
the VRewriter truncation technique which helps bound
the global sensitivity, avoiding the need for smoothing.

Next, we isolate the sensitivity engines of both Flex and
PrivateSQL and compute only the sensitivity bounds (with-
out truncation or smoothing). In Table 5 we show our results
use the same group scheme of Fig. 8. Next to each group
identifier, we show in parentheses the number of queries in
that group. For all queries SensCalc offers a strictly better
sensitivity analysis with improvements ranging up to 37⇥ on
Flex supported queries. Moreover, for group #2 that con-
tains over 40% of the W1 queries, our improved sensitivity
calculator offers an improvement of 4⇥.

7.4 System Analysis
We next study the effect of instantiating PrivateSQL

with alternative implementations of the budget allocator
and synopsis generator (Fig. 10), as well as the effect of
the truncation threshold (Fig. 11). Due to space constraints
we only show results on W1, CensusNC and Person policy.

Effect of Budget Allocator: In Fig. 10a we show the ab-
solute error distribution of PrivateSQL for different Bud-

getAlloc choices. Wsize and Wsens offer the best error
rates, with comparable performance. This is due to low com-
position parallelism between queries of each partial workload

11

Overall Error

Privacy Budget: 1.0 
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Stratified by size of  query answer
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relative error 1.

For queries with sufficiently  
large answers,  

the relative error is small. 
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(a) W1, Person, CensusNC (b) W1, Household, CensusNC (c) W2, Person, CensusNC (d) W2, Household, CensusNC

Figure 6: Relative error rates on the CensusNC datasets, for W1 (left) and W2 (right) workloads and Person
and Household policies. Error rates stratified by true query answer size.

(a) W1 on CensusPM . (b) W1 on CensusNC .
Figure 7: Relative error rates for CensusPM

dataset (left), as well as for different ✏ values (right),
both under Person policy.
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(b) W2 Workload
Figure 8: Relative error comparison between
BaselineFlex and PrivateSQL for workload an-
swering on the CensusNC dataset.
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sqm
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Figure 9: Comparing
QError rates of W1

queries on CensusNC .
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Key highlights of  PrivateSQL

• View Selection + Synopsis Generation gets us away from one query at 
a time answering 
– Bounded privacy loss, consistent answers,  avoids some side channel attacks 

• Privacy can be defined at multiple resolutions 
– Able to specify a rich set of  policies, and automatically rewrite views based on 

policy 

• Computing sensitivity for complex SQL queries is challenging 
– Our techniques give an order of  magnitude tighter bounds on sensitivity than prior work. 

• Modular architecture allows independent innovation in each component



Some Open Questions

• More sophisticated truncation [Raskhodnikova 
FOCS 16; Chen, SIGMOD13] 

• Theoretical characterization of  bias-variance 
tradeoff  of  truncation 

• Quantifying error in the answers



Summary

• Benchmarks can provide valuable insight and focus 
research community 

• Modular architectures like Ektelo can simplify and 
accelerate algorithm development. 

• PrivateSQL towards declarative interface for 
complex queries over multi-relational data
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