Making Privacy Technology Accessible: Benchmarks and Platforms

Michael Hay, Colgate University

The opinions expressed in this talk are my own and not those of the U.S. Census Bureau.

Illustrative Example

age	child race	household size	race householder
12	white	3	white
9	asian	4	white

Goal: Produce 2-way marginal between race of child and race of householder, computed under DP

Which DP algorithm should I use?

Analysis & Implementation

- Query: 2-way marginal between race of child and race of householder
- Analyst calculates sensitivity

Analysts finds Laplace RNG	

 Friend (DP expert) warns, "Watch out for floatingpoint precision attack." [Mironov CCS12]

Simons Workshop on	"Data Privacy: From	Foundations to Applications"	March 2019

household

size

3

4

race

white

asian

age

12

29

race

householde

white

white

Challenges to deployment

- Conflicting empirical results
- Lack of reference implementations
- Risk of subtle bugs (analysis + implementation)

Today's talk

Introduction

- DPBench: principled empirical evaluations of accuracy
- Ektelo: framework for private computation
- PrivateSQL: differentially private SQL query engine

Sound evaluation is hard

- Factors affecting performance: setting of epsilon, "amount" of data, tunable algorithm parameters, data pre-processing (cleaning, representation)
- Algorithms can be data-dependent because they adapt or introduce statistical bias.
 - Examples: smooth sensitivity [Nissim STOC 2007], DAWA [Li VLDB 2014], Adaptive Grid [Qardaji ICDE 2013], StructureFirst [Xu VLDBJ 2013]

Principled evaluation of DP algorithms [SIGMOD16]

Companion website: <u>dpcomp.org</u>

Joint work with Gerome Miklau, Ashwin Machanavajhalla, Dan Zhang, Yan Chen, George Bissias

Sound evaluation is important!

- How to incentivize community participation?
 - Benchmarks Successful in other communities TPC-H, Trec, MNIST
 - Contests
 NIST Differential Privacy Synthetic Data Challenge
 - Reproducibility requirements

Outline

- Introduction
- DPBench: principled empirical evaluations of accuracy
- Ektelo: framework for private computation
- PrivateSQL: differentially private SQL query engine

Challenges of DP Deployment

- Successful deployments have required a team of privacy experts.
- Limited resources available
 - Few libraries, reference implementations or re-usable tools.
 - Frameworks like PINQ ensure privacy safe computation, but little guidance on accuracy
 - Implementations often start from scratch in arbitrary PL.
- Difficult for privacy non-experts to contribute.

Challenges of DP Deployment

- Privacy: Many points of failure
 Code must be carefully vetted.
- Accuracy: Sophisticated algorithms needed
 Need to think in new ways to get optimal error
- Context: data analysis workflows are *ad hoc* Need toolkits, not monolithic algorithms.

Dan Zhang, Ryan McKenna, Ios Kotsogiannis Ektelo execution framework

Joint work with Gerome Miklau, Ashwin Machanavajhalla,

- Goal: simplify and accelerate development of *efficient* and *accurate* differentially private algorithms
- Ektelo supports a library of vetted **operators**.
- Operators encode (some) best practices from literature
- Differentially private computation expressed as a plan: a sequence of operator calls

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
    geo_regions = SelectPartition(level)
    splits = persons.SplitByPartition(geo_regions)
    for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = SelectMeasurementsHDMM(W)
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

* Dan Kifer's presentation "Consistency with External Knowledge: The TopDown Algorithm"

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
   geo_regions = SelectPartition(level)
   splits = persons.SplitByPartition(geo_regions)
   for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = SelectMeasurementsHDMM(W)
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

Plan executed by *client*, with calls to *protected kernel* that manages sensitive data

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
    geo_regions = SelectPartition(level)
    splits = persons.SplitByPartition(geo_regions)
    for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = SelectMeasurementsHDMM(W)
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

Transformations

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
    geo_regions = SelectPartition(level)
    splits = persons.SplitByPartition(geo_regions)
    for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = <u>SelectMeasurementsHDMM(W)</u>
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

Measurement Selection

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
    geo_regions = SelectPartition(level)
    splits = persons.SplitByPartition(geo_regions)
    for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = SelectMeasurementsHDMM(W)
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

Measurement

```
persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
    geo_regions = SelectPartition(level)
    splits = persons.SplitByPartition(geo_regions)
    for persons_in_region in splits:
        x = persons_in_region.Vectorize()
        M = SelectMeasurementsHDMM(W)
        y = x.LaplaceMeasure(M, eps)
        x_hat = LeastSquares(M, y)
        ... additional post-processing ...
```

(Artistic rendering)

Inference (and other post-processing)

Operator classes

Transform

Filter, project, group, etc.

Query selection

Strategically choose query sets

Inference

Reconcile inconsistencies in noisy answers

Partition selection

Dimensionality reduction

Query

Laplace mechanism

Operator classes and instances

Transform	
Т٧	T-Vectorize
ТР	V-SplitByPartition
TR	V-ReduceByPartition

Query	/	
LM	Vector	Laplace

Theorem: if *red* and *orange* operators are vetted, then any Ektelo plan satisfies DP

Query selection	
SI	Identity
ST	Total
SP	Privelet
SH2	H2
SHB	HB
SG	Greedy-H
SU	UniformGrid
SA	AdaptiveGrids
SQ	Quadtree
SW	Worst-approx
SPB	PrivBayes select

Inference	
LS	Least squares
NLS	Nneg Least squares
MW	Mult Weights
HR	Thresholding

Partition selection		
PA	AHPpartition	
PG	Grid	
PD	Dawa	
PW	Workload-based	
PS	<pre>Stripe(attr)</pre>	
РМ	Marginal(attr)	

Operators

Transform	
TV	T-Vectorize
ТР	V-SplitByPartition
TR	V-ReduceByPartition
Oue	rv

LM	Vector	Laplace

Query selection	
SI	Identity
ST	Total
SP	Privelet
SH2	H2
SHB	НВ
SG	Greedy-H
SU	UniformGrid
SA	AdaptiveGrids
SQ	Quadtree
SW	Worst-approx
SPB	PrivBayes select

Inference	
LS	Least squares
NLS	Nneg Least squares
MW	Mult Weights
HR	Thresholding

Partition se	lection
--------------	---------

ΡΑ	AHPpartition
PG	Grid
PD	Dawa
PW	Workload-based
PS	Stripe(attr)
PM	Marginal(attr)

Algorithms as Ektelo plans

ID	Cite	Algorithm name	Plan	Plan signature					
1	[8]	Identity	SI	LM					
2	[39]	Privelet	SP	LM	LS				
3	[17]	Hierarchical (H2)	SH2	LM	LS				
4	[34]	Hierarchical Opt (HB)	SHB	LM	LS				
5	[22]	Greedy-H	SG	LM	LS				
6	-	Uniform	ST	LM	LS				
7	[15]	MWEM	I:(SW	LM	MW)		
8	[42]	AHP	PA	TR	SI	LM	LS		
9	[22]	DAWA	PD	TR	SG	LM	LS		
10	[6]	Quadtree	SQ	LM	LS				
11	[33]	UniformGrid	SU	LM	LS				
12	[33]	AdaptiveGrid	SU	LM	LS	TP[SA	LM]	LS
13	NEW	DAWA-Striped	PS	TP[PD	TR	SG	LM]	LS
14	NEW	HB-Striped	PS	TP[SHB	LM]	LS		
15	NEW	PrivBayesLS	SPB	LM	LS				
16	NEW	MWEM variant b	I:(SW	SH2	LM	MW)	
17	NEW	MWEM variant c	I:(SW	LM	NLS)		
18	NEW	MWEM variant d	I:(SW	SH2	LM	NLS)	

Algorithms from DPBench [SIGMOD 16]

> Novel algorithm variants

Benefits

- Reuse: existing algorithms implemented with reusable operators
- Reduces code verification effort
- Improved operator implementations
- New variants of algorithm easy to construct (improved accuracy!)

Architecture for Private Computation?

- Separate concerns:
 - Transformations
 - Measurement selection
 - Measurement
 - Post-processing (consistency, synthetic data, inference)
- Benefits of modularity:
 - Reduce scope of privacy verification
 - Diverse contributors: relevant expertise differs by component

Outline

- Introduction
- DPBench: principled empirical evaluations of accuracy
- Ektelo: framework for private computation
- PrivateSQL: differentially private SQL query engine

Motivations for Private SQL

- Towards a declarative interface for query answering
- Complex queries over multi-relational data
- Privacy at multiple resolutions

Joint work with Gerome Miklau, Ashwin Machanavajhalla, los Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour

Population

Statistics

Congressional Apportionment

Fund allocations to schools

Minority Language Voting Rights

Statistics Released by US Census Bureau

Person

ID	Sex	•••	HID		Ho	useholo	1
122	М	•••	H6	ļ L,	HID	•••	Geo
123	F	•••	H6		11/		
124	M		H7		H6	•••	CA
121		•••			H7	• • •	FL
125	M	•••	H8		H8		NC
126	F	•••	H8				

Census Summary File 1 (SF-1)

- "Number of males between 18 and 21 years old", ...
- "Number of people living in owned houses of size 3 where the householder is a married Hispanic male", ...

At all levels of geography (state, county, tract, block)

• Linear queries on households

```
SELECT COUNT(*)

FROM ( SELECT hid, COUNT(*) AS CNT

FROM Persons p, (SELECT hid

FROM Persons p1, Persons p2

WHERE p1.hid = p2.hid

AND p1.Rel = 'householder'

AND p2.Rel = 'spouse'

AND ( (p1.sex= 'M' AND p2.sex = 'F')

OR (p1.sex= 'F' AND p2.sex = 'M'))

GROUP BY hid) AS h

WHERE p.hid = h.hid AND p.Rel = 'child'

AND p.Age < 18

GROUP BY hid)

WHERE CNT >= 1
```

• Linear queries on households

• Queries on people living in households

```
SELECT COUNT(*)
FROM Person p
Where p.Age < 18 AND
p.hID in (SELECT hID
FROM Person p
WHERE p.Rel = "householder"
AND p.Race = "Asian")
```

• Queries on people living in households

SELECT COUNT(*) FF Count of the number of people under 18 living in households with an Asian householder p.hID in (SELECT hID FROM Person p WHERE p.Rel = "householder" AND p.Race = "Asian")

• Degree distribution query or count of count histogram

SELECT cnt, COUNT(*) FROM (SELECT hID, COUNT(*) as cnt FROM Person p GROUP BY hID) GROUPBY cnt ORDER BY cnt

• Degree distribution query or count of count histogram

```
SELECT ent, COUNT(*)

FROM (SELECT bit) COUNT(*) or ent

For every household size,

release the number of households of that size

GROUPBY ent
```

ORDER BY cnt

Motivations for Private SQL

- Complex queries over multi-relational data
- Privacy at multiple resolutions

Privacy requirement

• Title 13 Section 9

Neither the secretary nor any officer or employee make any publication whereby the data furnished by any particular establishment or individual under this title can be identified ...

• In some data products, only properties of people need to be hidden, and in other products, properties of households also need to be hidden.

Privacy at multiple resolutions

Person-privacy: hide properties of people **Household-privacy**: hide properties of households and the people within them.

ID	Sex	•••	HID	
				Ho
122	М	•••	H6	HID
123	F		H6	H6
124	М		H7	117
125	М		H8	H/
126	F		H8	H8

Household

•	HID	 Geo
	H6	 СА
	H7	 FL
	H8	 NC

Edge-privacy: hide the presence of an edge **Node-privacy**: hide the presence of a node and all edges incident to it.

Person

Event-privacy: hide sensor reading Window-privacy: hide readings in (t-w, t] User-privacy: hide all sensor readings

Goals of Private SQL

- *Automatically* generates differentially private code to accurately answer the queries specified in a high level language (SQL)
- Ensures a *fixed privacy budget* across all queries posed by the analyst.
- Enables privacy to be specified at *multiple resolutions*.

Example: FLEX [VLDB18] Deployed at Uber.

Unbounded Privacy Loss

• Unless the system decides to shut off future queries, the privacy loss keeps increasing.

Inflexible privacy semantics (for Flex specifically)

• Hides any row in DB, but this may not align with privacy in particular context.

Other concerns: inconsistency between answers, side channel attacks

Examples: HDMM [VLDB18], MWEM [NIPS12] ... Output a histogram tunes to query workload

PrivBayes [SIGMOD14], Private Synthetic Data using GANs [NIST Challenge 18]

• Generates a synthetic database in the same schema as input

No support for multi-relational tables

Joins computed on synthetic tables have very high error.

Defining privacy at multiple resolutions

Edge-privacy: hide the presence of an edge Node-privacy: hide the presence of a node and all edges incident to it.

Person-privacy: hide properties of people **Household-privacy**: hide properties of households and the people within them.

ID	Sex	 HID	
122	М	 H6	
123	F	 H6	
124	М	 H7	
125	М	 H8	
126	F	 H8	

Person

Household

÷	HID	•••	Geo
	H6		СА
	H7		FL
	H8		NC

Multi-resolution privacy in PrivateSQL

- **Policy:** A specification of the base relation that is the *primary private object*.
- Neighboring Databases:
 - Add or remove a row r in the primary private relation
 - Add or remove all rows in other tables that *transitively refer* to the row *r* in the primary private relation

Multi-resolution privacy in PrivateSQL

Person

ID	Sex	•••	HID	Hou	ısehol	ld
122	М		H6	HID	•••	Geo
123	F		H6	H6		СА
124	М		H7			
125	М		H8	H7		FL
126	F		H8	H8		NC

Person-privacy:

- Person is the primary private relation
- Adding or removing an person record does not affect the household table.

Household-privacy:

- Household is the primary private relation
- Adding or removing a row *r* from household removes all rows in person that refer to *r* in household table.

Addressing view sensitivity

 View is complex SQL query; evaluation is hard [Arapinis et al. ICALP16] Rule-based sensitivity bound calculator (builds on PINQ, Flex, with new rules: joins on keys)

Addressing view sensitivity

 View is complex SQL query; evaluation is hard [Arapinis et al. ICALP16]

 Global sensitivity may be high / unbounded Rule-based sensitivity bound calculator (builds on PINQ, Flex, with new rules: joins on keys)

Example view

age	race	household size	
34	white	3	
29	asian	4	

Addressing view sensitivity

 View is complex SQL query; evaluation is hard [Arapinis et al. ICALP16]

. ICALP16]

 Global sensitivity may be high / unbounded Rule-based sensitivity bound calculator (builds on PINQ, Flex, with new rules: joins on keys)

 Calculation depends on privacy resolution level (e.g., person vs. household)

Empirical evaluation

- Dataset: A synthetic census dataset
 - person(id, sex, gender, age, race, relationship, hid) and household(hid, location)
 - Restricted to the state of NC
 - 5.4 million people and 2.7 million households
- Queries: 3493 counting queries from the 2010 Summary file 1.
 - "Number of males between 18 and 21 years old."
 - "Number of people living in owned houses of size 3 where the householder is a married Hispanic male."
- Views: PrivateSQL generated 17 views

Overall Error

Comparison to one-query-at-a-time approach

Privacy Budget: 1.0 **Competitor:** A baseline based on FLEX [VLDB18]

Improvement over FLEX can be attributed to:

- Tighter sensitivity bounds
- Truncation instead of smoothing
- Better composition (across queries sharing view)

Key highlights of PrivateSQL

- *View Selection* + *Synopsis Generation* gets us away from one query at a time answering
 - Bounded privacy loss, consistent answers, avoids some side channel attacks
- Privacy can be defined at multiple resolutions
 - Able to specify a rich set of policies, and automatically rewrite views based on policy
- *Computing sensitivity for complex SQL queries* is challenging
 Our techniques give an order of magnitude tighter bounds on sensitivity than prior work.
- Modular architecture allows independent innovation in each component

Some Open Questions

- More sophisticated truncation [Raskhodnikova FOCS 16; Chen, SIGMOD13]
- Theoretical characterization of bias-variance tradeoff of truncation

• Quantifying error in the answers

Summary

- Benchmarks can provide valuable insight and focus research community
- Modular architectures like Ektelo can simplify and accelerate algorithm development.
- PrivateSQL towards declarative interface for complex queries over multi-relational data

Thanks

[SIGMOD16] Hay et al, "Principled Evaluation of Differentially Private Algorithms using DPBench" <u>https://www.dpcomp.org/</u> [SIGMOD18] Zhang et al, "Ektelo: A Framework for Defining Differentially-Private Computations" <u>https://ektelo.github.io/</u> [CIDR19] Kotsogiannis et al, "Architecting a Differentially Private SQL Engine"

Other related work: [SIGMOD09] McSherry, "Privacy Integrated Queries" [NIPS12] Hardt et al, "A Simple and Practical Algorithm for Differentially Private Data Release" [TODS17] Zhang et al, "PrivBayes: Private Data Release via Bayesian Networks" [VLDB19] Johnson et al, "Towards Practical Differential Privacy for SQL Queries" [JPC17] Ebadi and Sands. Featherweight PINQ. [FOCS16] Raskhodnikova and Smith, "Lipschitz Extensions for Node-Private Graph Statistics and the Generalized Exponential Mechanism" [SIGMOD13] Chen and Zhou, "Recursive mechanism: towards node differential privacy and unrestricted joins"