
Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Making Privacy
Technology Accessible:

Benchmarks and Platforms

Michael Hay, Colgate University

The opinions expressed in this talk are my own
and not those of the U.S. Census Bureau.

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Illustrative Example

 2

age child
race

household  
size

race
householder

12 white 3 white

9 asian 4 white

… … … …

Goal: Produce 2-way
marginal between race
of child and race of
householder,
computed under DP

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Which DP algorithm should I use?

 3

Paper 2 [2014]

1

10

100

1000

10000

100000

Epsilon

0.01 0.05 0.10 0.50

Paper 1 [2012]

Er
ro

r

1

10

100

1000

10000

100000

1000000

Epsilon

0.0125 0.025 0.05 0.1

Algorithm A
Algorithm B

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Analysis & Implementation
• Query: 2-way marginal between race of child and

race of householder

• Analyst calculates sensitivity

• Analysts finds Laplace RNG

• Friend (DP expert) warns, “Watch out for floating-
point precision attack.” [Mironov CCS12]

 4

age race household  
size

race
householde

r
12 white 3 white

29 asian 4 white

… … … …

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Challenges to deployment

• Conflicting empirical results

• Lack of reference implementations

• Risk of subtle bugs (analysis + implementation)

 5

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Today’s talk

• Introduction

• DPBench: principled empirical evaluations of
accuracy

• Ektelo: framework for private computation

• PrivateSQL: differentially private SQL query engine

 6

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Sound evaluation is hard
• Factors affecting performance: setting of epsilon,

“amount” of data, tunable algorithm parameters,
data pre-processing (cleaning, representation)

• Algorithms can be data-dependent because they
adapt or introduce statistical bias.

• Examples: smooth sensitivity [Nissim STOC 2007],
DAWA [Li VLDB 2014], Adaptive Grid [Qardaji ICDE
2013], StructureFirst [Xu VLDBJ 2013]

 7

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 8

Principled evaluation of DP algorithms [SIGMOD16]
Companion website: dpcomp.org Joint work with Gerome Miklau,

Ashwin Machanavajhalla, Dan
Zhang, Yan Chen, George Bissias

Finding: no “universal” algorithms:
best performance depends on
task, input data, epsilon…

http://dpcomp.org

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Sound evaluation is important!

• How to incentivize community participation?

• Benchmarks  
Successful in other communities TPC-H, Trec, MNIST

• Contests 
NIST Differential Privacy Synthetic Data Challenge

• Reproducibility requirements

 9

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Outline

• Introduction

• DPBench: principled empirical evaluations of
accuracy

• Ektelo: framework for private computation

• PrivateSQL: differentially private SQL query engine

 10

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Challenges of DP Deployment

• Successful deployments have required a team of
privacy experts.

• Limited resources available
• Few libraries, reference implementations or re-usable tools.
• Frameworks like PINQ ensure privacy safe computation, but

little guidance on accuracy
• Implementations often start from scratch in arbitrary PL.

• Difficult for privacy non-experts to contribute.

 11

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Challenges of DP Deployment

• Privacy: Many points of failure  
 ➡ Code must be carefully vetted.

• Accuracy: Sophisticated algorithms needed  
 ➡ Need to think in new ways to get optimal error

• Context: data analysis workflows are ad hoc  
 ➡ Need toolkits, not monolithic algorithms.

 12

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

εktelo execution framework
• Goal: simplify and accelerate development of

efficient and accurate differentially private
algorithms

• Ektelo supports a library of vetted operators.

• Operators encode (some) best practices from
literature

• Differentially private computation expressed as a
plan: a sequence of operator calls

 13

Joint work with Gerome Miklau, Ashwin Machanavajhalla,
Dan Zhang, Ryan McKenna, Ios Kotsogiannis

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 14

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

* Dan Kifer’s presentation “Consistency with
External Knowledge: The TopDown Algorithm”

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 15

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Protected
Kernel

API

Ektelo plan

Plan executed by client,
with calls to protected
kernel that manages
sensitive data

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 16

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Transformations

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 17

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Measurement Selection

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 18

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Measurement

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 19

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Inference (and other post-processing)

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 20

persons = ProtectedDataSource(persons_uri)
for level in geo_levels:
 geo_regions = SelectPartition(level)
 splits = persons.SplitByPartition(geo_regions)
 for persons_in_region in splits:
 x = persons_in_region.Vectorize()
 M = SelectMeasurementsHDMM(W)
 y = x.LaplaceMeasure(M, eps)
 x_hat = LeastSquares(M, y)
 ... additional post-processing ...

Top Down
algorithm*
implemented

as Ektelo plan.

(Artistic
rendering)

Client-side;  
no impact on privacy

Runs in trusted environment.
Impacts sensitivity

Releases noisy measurements;
Consumes privacy loss budget

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Operator classes

 21

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Filter, project,
group, etc.

Laplace
mechanism

Strategically
choose query sets

Reconcile
inconsistencies in

noisy answers

Dimensionality
reduction

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Operator classes and instances

 22

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Theorem: if red and
orange operators are

vetted, then any Ektelo
plan satisfies DP

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 23

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Transform Partition selection Query selection

TV T-Vectorize PA AHPpartition SI Identity

TP V-SplitByPartition PG Grid ST Total

TR V-ReduceByPartition PD Dawa SP Privelet

PW Workload-based SH2 H2

Inference PS Stripe(attr) SHB HB

LS Least squares PM Marginal(attr) SG Greedy-H

NLS Nneg Least squares SU UniformGrid

MW Mult Weights Query SA AdaptiveGrids

HR Thresholding LM Vector Laplace SQ Quadtree

SW Worst-approx

SPB PrivBayes select

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Figure 1: The operators currently implemented in ������.
Private operators are red, Private→Public operators are or-
ange, and Public operators are green.

that operator type and class are orthogonal dimensions. Next we
describe in detail the operators and operator classes.

4.2.1 Transformation Operators. Transformation operators take
as input a data source variable (either a table or a vector) and output
a transformed data source (again, either a table or vector). Trans-
formation operators modify the data held in the kernel, without
returning answers. So while they do not expend privacy budget,
they can a�ect the privacy analysis through their stability (Sec. 3).
Every transformation in ������ has a well-established stability.
Table Transformations ������ supports table transformations S��
����,W����, S����B�P�������� , and G����B�, with stabilities
are 1, 1, 1, and 2 respectively. The de�nitions of the operators are
nearly identical to those described in PINQ [24] and are not re-
peated here. As ������ currently handles programs that use linear
queries on single tables, the J��� operator is not yet supported.
Vectorization All of the plans in ������ start with table transfor-
mations and typically transform the resulting table into a vector
using T�V�������� (and all later operations happen on vectors).

The T�V�������� operator is a transformation operator that
takes as input a table T and outputs a vector x that has as many
cells as the number of elements in the table’s domain (recall the
discussion of domain Sec. 3). Each cell in x represents the number of
records in the table that correspond to the domain element encoded
by the cell. T�V�������� is a 1-stable transformation.

The vectorize operation can signi�cantly impact the performance
of the code, especially in high-dimensional cases, as we represent
one cell per element in the domain. For this reason we allow ta-
ble transformations to reduce the domain size before running T�
V��������. One of the primary reasons for working with the vector
representation is to allow for inference operators downstream. Once
in vector form, data can be further transformed as described next.
Vector Transformations ������ supports transformations on vector
data sources. Each vector transformation takes as input a vector
x and a matrixM and produces a vector x′ =Mx. The linearity of
vector transformations is an important feature that is leveraged by
downstream inference operators. The stability of vector transfor-
mations is equal to the largest L1 column norm of M.

The V�R�����B�P�������� operator is a 1-stable vector trans-
formation operator that reduces the dimensionality of the data
vector x by eliminating cells from x or grouping together cells in x.

ID Cite Algorithm name Plan signature

1 [8] Identity SI LM

2 [39] Privelet SP LM LS

3 [17] Hierarchical (H2) SH2 LM LS

4 [34] Hierarchical Opt (HB) SHB LM LS

5 [22] Greedy-H SG LM LS

6 - Uniform ST LM LS

7 [15] MWEM I:(SW LM MW)

8 [42] AHP PA TR SI LM LS

9 [22] DAWA PD TR SG LM LS

10 [6] Quadtree SQ LM LS

11 [33] UniformGrid SU LM LS

12 [33] AdaptiveGrid SU LM LS TP[SA LM] LS

13 NEW DAWA-Striped PS TP[PD TR SG LM] LS

14 NEW HB-Striped PS TP[SHB LM] LS

15 NEW PrivBayesLS SPB LM LS

16 NEW MWEM variant b I:(SW SH2 LM MW)

17 NEW MWEM variant c I:(SW LM NLS)

18 NEW MWEM variant d I:(SW SH2 LM NLS)

Figure 2: The high-level signatures of plans implemented
in ������ (referenced by ID). All plans begin with a vector-
ize transformation, omitted for readability. We also omit pa-
rameters of operators, including � budget shares. I(subplan)
refers to iteration of a subplan and TP[subplan] means that
subplan is executed on each partition produced by TP.

Such transformations are useful to (a) �lter out parts of the domain
that are uninteresting for the analyst, (b) reduce the size of the
x vector so that algorithm performance can be improved, and (c)
reduce the number of cells in x so that the amount of noise added
by measurement operators is reduced.

V�R�����B�P�������� takes as input a partition de�ning a
grouping of the cells in the x. It can be carried out by representing
the partition as a (p ×n) matrix P where n is the number of cells in
x, p is the number of groups in the partition, and P[i, j] = 1 if cell j
in x is mapped to group i , and 0 otherwise.

The V�S����B�P�������� operator is the vector analogue of the
tabular S����B�P�������� operator. It takes as input a partition
and splits the data vector x into k vectors, x(1), . . . ,x(k), each
representing a disjoint subset of the original domain. This operator
allows us to create di�erent subplans for disjoint parts of the domain.
This is a 1-stable vector transform. (Note: V�S����B�P�������� can
be expressed as k linear transforms with matrices that select the
appropriate elements of the domain for each partition.)

4.2.2 �ery Operators. Query operators are responsible for
computing noisy answers to queries on a data source. Since an-
swers are returned, query operators necessarily expend privacy
budget. Query operators take a data source variable and � as input.

For tables, theN����C���� operator takes as input a tableD and
� and returns �D�+�, where � is drawn from the Laplace distribution
with scale 1�� . For vectors, the V����� L������ operator takes
as input a vector x, epsilon, and a set of linear counting queries
M represented in matrix form. Let M be a matrix of size (m × n).
V����� L������ returns Mx + �(M)

� b where b is a vector of m
independently drawn Laplace random variables with scale 1 and
�(M) is the maximum L1 norm of the columns of M.

For both query operators, it is easy to show they satisfy �-
di�erential privacy with respect to their data source input [23, 24].

Research 2: Usability and Security/Privacy SIGMOD’18, June 10-15, 2018, Houston, TX, USA

119

Algorithms as Ektelo plansOperators

Algorithms
from DPBench  
[SIGMOD 16]

Novel
algorithm
variants

Benefits
• Reuse: existing algorithms implemented with reusable operators
• Reduces code verification effort
• Improved operator implementations
• New variants of algorithm easy to construct (improved accuracy!)

https://ektelo.github.io/

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Architecture for Private Computation?

• Separate concerns:
• Transformations
• Measurement selection
• Measurement
• Post-processing (consistency, synthetic data, inference)

• Benefits of modularity:
• Reduce scope of privacy verification
• Diverse contributors: relevant expertise differs by

component

 24

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Outline

• Introduction

• DPBench: principled empirical evaluations of
accuracy

• Ektelo: framework for private computation

• PrivateSQL: differentially private SQL query engine

 25

Motivations for Private SQL

• Towards a declarative interface for query answering

• Complex queries over multi-relational data

• Privacy at multiple resolutions

Joint work with Gerome Miklau, Ashwin
Machanavajhalla, Ios Kotsogiannis, Yuchao

Tao, Xi He, Maryam Fanaeepour

Population Statistics

Congressional Apportionment Redistricting

Fund allocations to schools

Minority Language
Voting Rights

Statistics Released by US Census Bureau

ID Sex … HID

122 M … H6
123 F … H6
124 M … H7
125 M … H8
126 F … H8

HID … Geo

H6 … CA
H7 … FL
H8 … NC

Household

Person

Census Summary File 1 (SF-1)
• “Number of males between 18 and 21 years old”, …
• “Number of people living in owned houses of size 3 where the

householder is a married Hispanic male”, …
At all levels of geography (state, county, tract, block)

Complex Queries

• Linear queries on households

SELECT COUNT(*)  
FROM (SELECT hid, COUNT(*) AS CNT  
	 	 FROM Persons p, (SELECT hid  
	 	 	 	 	 	 	 FROM Persons p1, Persons p2  
	 	 	 	 	 	 	 WHERE p1.hid = p2.hid  
	 	 	 	 	 	 	 	 AND p1.Rel = ‘householder’  
	 	 	 	 	 	 	 	 AND p2.Rel = ‘spouse’  
	 	 	 	 	 	 	 	 AND ((p1.sex= ‘M’ AND p2.sex = ‘F’)  
	 	 	 	 	 	 	 	 OR (p1.sex= ‘F’ AND p2.sex = ‘M’)) 
	 	 	 	 	 	 	 GROUP BY hid) AS h  
	 	 WHERE p.hid = h.hid AND p.Rel = ‘child’  
	 	 	 AND p.Age < 18  
	 	 GROUP BY hid)  
WHERE CNT >= 1

!29

Complex Queries

• Linear queries on households

SELECT COUNT(*)  
FROM (SELECT hid, COUNT(*) AS CNT  
	 	 FROM Persons p, (SELECT hid  
	 	 	 	 	 	 	 FROM Persons p1, Persons p2  
	 	 	 	 	 	 	 WHERE p1.hid = p2.hid  
	 	 	 	 	 	 	 	 AND p1.Rel = ‘householder’  
	 	 	 	 	 	 	 	 AND p2.Rel = ‘spouse’  
	 	 	 	 	 	 	 	 AND ((p1.sex= ‘M’ AND p2.sex = ‘F’)  
	 	 	 	 	 	 	 	 OR (p1.sex= ‘F’ AND p2.sex = ‘M’)) 
	 	 	 	 	 	 	 GROUP BY hid) AS h  
	 	 WHERE p.hid = h.hid AND p.Rel = ‘child’  
	 	 	 AND p.Age < 18  
	 	 GROUP BY hid)  
WHERE CNT >= 1

!30

Count of the number of households  
 where the householder age in [15..64]  
 AND it’s a husband-wife family  
 AND there is at least one related child under 18.

Complex Queries

• Queries on people living in households

SELECT COUNT(*)
FROM Person p
Where p.Age < 18 AND
	 	 p.hID in (SELECT hID
	 	 	 	 	 FROM Person p
	 	 	 	 	 WHERE p.Rel = “householder”
	 	 	 	 	 	 	 AND p.Race = “Asian”)	 	 	 	 	
	 	 	 	 	 	

!31

Complex Queries

• Queries on people living in households

SELECT COUNT(*)
FROM Person p
Where p.Age < 18 AND
	 	 p.hID in (SELECT hID
	 	 	 	 	 FROM Person p
	 	 	 	 	 WHERE p.Rel = “householder”
	 	 	 	 	 	 	 AND p.Race = “Asian”)	 	 	 	 	
	 	 	 	 	 	

!32

Count of the number of people under 18  
 living in households with an Asian householder

Complex queries

• Degree distribution query or count of count histogram

SELECT cnt, COUNT(*)
FROM (SELECT hID, COUNT(*) as cnt
	 	 FROM Person p
	 	 GROUP BY hID)
GROUPBY cnt
ORDER BY cnt

!33

Complex queries

• Degree distribution query or count of count histogram

SELECT cnt, COUNT(*)
FROM (SELECT hID, COUNT(*) as cnt
	 	 FROM Person p
	 	 GROUP BY hID)
GROUPBY cnt
ORDER BY cnt

!34

For every household size,  
 release the number of households of that size

Motivations for Private SQL

• Complex queries over multi-relational data

• Privacy at multiple resolutions

Privacy requirement

• Title 13 Section 9

Neither the secretary nor any officer or employee …
… make any publication whereby the data furnished  

by any particular establishment or individual  
under this title can be identified …

• In some data products, only properties of people need to
be hidden, and in other products, properties of households
also need to be hidden.

Privacy at multiple resolutions

Edge-privacy: hide the presence of an edge
Node-privacy: hide the presence of a node
and all edges incident to it.

Person-privacy: hide properties of people
Household-privacy: hide properties of
households and the people within them.

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person

Event-privacy: hide sensor reading
Window-privacy: hide readings in (t-w, t]
User-privacy: hide all sensor readings

Goals of Private SQL

• Automatically generates differentially private code to
accurately answer the queries specified in a high level
language (SQL)

• Ensures a fixed privacy budget across all queries posed by the
analyst.

• Enables privacy to be specified at multiple resolutions.

Private Database Analyst

Query
Workload

Query 1

1. Queries answered on live-DB  
 one at a time

Query 2

…

Example: FLEX [VLDB18]
• Deployed at Uber.

Result 1

Result 2

DP
Algorithm

DP
Algorithm

Private Database Analyst

Query
Workload

Query 1

1. Queries answered on live-DB  
 one at a time

Result 1

Query 2

Result 2 …
Unbounded Privacy Loss
• Unless the system decides to shut off future queries, the privacy loss keeps

increasing.
Inflexible privacy semantics (for Flex specifically)
• Hides any row in DB, but this may not align with privacy in particular context.

Other concerns: inconsistency between answers, side channel attacks

✗
DP

Algorithm

DP
Algorithm

Private Database Analyst

Query
Workload

Query 1

2. Query answering on a synthetic
 version of base tables

…

Examples:
HDMM [VLDB18], MWEM [NIPS12] …
• Output a histogram tunes to query workload
PrivBayes [SIGMOD14], Private Synthetic Data using GANs
[NIST Challenge 18]
• Generates a synthetic database in the same schema as input

Result 1
Query 2

Result 3

Private Database Analyst

Query
Workload

Query 1

2. Query answering on a synthetic
 version of base tables

…

No support for multi-relational tables

Joins computed on synthetic tables have very high error.

Result 1
Query 2

Result 3

✗

Defining privacy at multiple resolutions

Edge-privacy: hide the presence of an edge
Node-privacy: hide the presence of a node
and all edges incident to it.

Person-privacy: hide properties of people
Household-privacy: hide properties of
households and the people within them.

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person

Multi-resolution privacy in PrivateSQL

• Policy: A specification of the base relation that is the
primary private object.

• Neighboring Databases:
– Add or remove a row r in the primary private relation
– Add or remove all rows in other tables that transitively refer to the

row r in the primary private relation

Multi-resolution privacy in PrivateSQL

Person-privacy:
• Person is the primary private relation
• Adding or removing an person record does not affect the household table.

Household-privacy:
• Household is the primary private relation
• Adding or removing a row r from household removes all rows in person that

refer to r in household table.

ID Sex … HID

122 M … H6

123 F … H6

124 M … H7

125 M … H8

126 F … H8

HID … Geo

H6 … CA

H7 … FL

H8 … NC

Household

Person

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 46

Analyst

Query
Workload

The PrivateSQL system

ε
Private Database

Privacy
Budget

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 47

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Private Database

Example view

age race household  
size …

34 white 3 …

29 asian 4 …

… … … …

Views selected so that analyst
queries are linear over views (no

joins)

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 48

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is

G
en

er
at

or

Private Database
Synopsis may consist of a

tuples or histograms

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 49

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is

G
en

er
at

or

Private Database
Bu

dg
et

 A
llo

ca
to

r

Split privacy budget across
views

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 50

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is

G
en

er
at

or

Private Database
Bu

dg
et

 A
llo

ca
to

r

Query 1

…

Result 1
Query 2

Result 3

Query
Answeri

ng
Engine

Purely postprocessing.  
No effect on privacy

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 51

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is

G
en

er
at

or

Private Database

Se
ns

iti
vi

ty
 C

al
cu

la
to

r

Bu
dg

et
 A

llo
ca

to
r

Query 1

…

Result 1
Query 2

Result 3

Query
Answeri

ng
Engine

Quantifies the number of rows
that change in the view if one

row changes in the input

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Addressing view sensitivity
• View is complex SQL query;

evaluation is hard  
[Arapinis et al. ICALP16]

• Global sensitivity may be
high / unbounded

• Calculation depends on
privacy resolution level 
(e.g., person vs. household)

 52

Rule-based sensitivity
bound calculator  
(builds on PINQ, Flex, with
new rules: joins on keys)

➡

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Addressing view sensitivity
• View is complex SQL query;

evaluation is hard  
[Arapinis et al. ICALP16]

• Global sensitivity may be
high / unbounded

• Calculation depends on
privacy resolution level 
(e.g., person vs. household)

 53

Rule-based sensitivity
bound calculator  
(builds on PINQ, Flex, with
new rules: joins on keys)

➡

age race household  
size …

34 white 3 …

29 asian 4 …

… … … …

Example view

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019

Addressing view sensitivity
• View is complex SQL query;

evaluation is hard  
[Arapinis et al. ICALP16]

• Global sensitivity may be
high / unbounded

• Calculation depends on
privacy resolution level 
(e.g., person vs. household)

 54

Rule-based sensitivity
bound calculator  
(builds on PINQ, Flex, with
new rules: joins on keys)

➡

➡ Truncate “outliers”

View rewriting➡

Simons Workshop on “Data Privacy: From Foundations to Applications” March 2019 55

Analyst

Query
Workload

The PrivateSQL system

ε

View Selector

Sy
no

ps
is

G
en

er
at

or

Private Database

Se
ns

iti
vi

ty
 C

al
cu

la
to

r

Bu
dg

et
 A

llo
ca

to
r

Query 1

…

Result 1
Query 2

Result 3

Query
Answeri

ng
Engine

V
ie

w
 R

ew
rit

in
g

For acyclic dependencies, different
policies can be handled by

appropriately rewriting the view.

Policy

Empirical evaluation

• Dataset: A synthetic census dataset
– person(id, sex, gender, age, race, relationship, hid) and  

household(hid, location)
– Restricted to the state of NC
– 5.4 million people and 2.7 million households

• Queries: 3493 counting queries from the 2010 Summary file 1.
– “Number of males between 18 and 21 years old.”
– “Number of people living in owned houses of size 3 where the

householder is a married Hispanic male.”

• Views: PrivateSQL generated 17 views

(a) W1, Person, CensusNC (b) W1, Household, CensusNC

All Queries 0 – 103 103 – 104 104 – 105 > 105
0

10
�4

10
�3

10
�2

10
�1

10
0

10
1

10
2

R
el

at
iv

e
Er

ro
r

(c) W2, Person, CensusNC

R
el

at
iv

e
Er

ro
r

(d) W2, Household, CensusNC

Figure 6: Relative error rates on the CensusNC datasets, for W1 (left) and W2 (right) workloads and Person
and Household policies. Error rates stratified by true query answer size.

(a) W1 on CensusPM . (b) W1 on CensusNC .
Figure 7: Relative error rates for CensusPM

dataset (left), as well as for different ✏ values (right),
both under Person policy.

(a) W1 Workload (b) W2 Workload
Figure 8: Relative error comparison between
BaselineFlex and PrivateSQL for workload an-
swering on the CensusNC dataset.
is that it has more sophisticated support for workloads: VS-

elector groups together queries which may compose paral-
lely and enjoy a tighter privacy analysis, and techniques like
W-nnls in the synopsis generator use least squares inference
to further reduce the error of query answers.

7.3.2 Single Query Answering
To provide a more direct comparison with Flex, we run

our system in “single query mode”, denoted by PrivateSQL
sqm

,
which takes as input a single input query and returns a pri-
vate synopsis answering the input query. We evaluate both
systems on workload W1 on CensusNC and Person policy
and use a per-query budget of ✏q = 0.01. We omit showing
results for queries in W2 \W1 as those queries have the same
sensitivity, and hence same error under both systems.

This evaluation allows us to decouple error improvements
due to workload-related components – such as VSelector,
BudgetAlloc, and PrivSynGen – and focus on the query
analysis components SensCalc and VRewrite.

Fig. 9 shows for each query the QError of Flex on the
y-axis and the QError of PrivateSQL

sqm
on the x-axis.

Figure 9: Comparing
QError rates of W1

queries on CensusNC .

View
Group

SensCalc
Rules

Flex
Rules

#1 0 1
#2 1 8
#3 2 8
#4 4 96
#5 6 1,088
#6 33 1,088
#7 49 11,904

Table 5: Comparison of
Flex and PrivateSQL
sensitivity engines.

Queries are grouped together w.r.t. their computed sen-
sitivity under SensCalc. Groups #6 and #7 are queries
with correlated subqueries and are unsupported by Flex.
However, for illustration purposes, we allow Flex to use
the de-correlation techniques of VSelector in order to an-
swer them. All queries lie over the dotted x = y diagonal
line, i.e., for every query, PrivateSQL

sqm
offers lower error

than Flex. This improvement is over 10 orders of magni-
tude for some Flex supported queries (Group 5). All im-
provements are due to two factors: (a) the tighter sensitiv-
ity bounds of SensCalc compared with Flex rules and (b)
the VRewriter truncation technique which helps bound
the global sensitivity, avoiding the need for smoothing.

Next, we isolate the sensitivity engines of both Flex and
PrivateSQL and compute only the sensitivity bounds (with-
out truncation or smoothing). In Table 5 we show our results
use the same group scheme of Fig. 8. Next to each group
identifier, we show in parentheses the number of queries in
that group. For all queries SensCalc offers a strictly better
sensitivity analysis with improvements ranging up to 37⇥ on
Flex supported queries. Moreover, for group #2 that con-
tains over 40% of the W1 queries, our improved sensitivity
calculator offers an improvement of 4⇥.

7.4 System Analysis
We next study the effect of instantiating PrivateSQL

with alternative implementations of the budget allocator
and synopsis generator (Fig. 10), as well as the effect of
the truncation threshold (Fig. 11). Due to space constraints
we only show results on W1, CensusNC and Person policy.

Effect of Budget Allocator: In Fig. 10a we show the ab-
solute error distribution of PrivateSQL for different Bud-

getAlloc choices. Wsize and Wsens offer the best error
rates, with comparable performance. This is due to low com-
position parallelism between queries of each partial workload

11

Overall Error

Privacy Budget: 1.0
Policy: Hiding a row in person table.

Stratified by size of query answer

Outputting 0 for all queries gives
relative error 1.

For queries with sufficiently  
large answers,  

the relative error is small.

Comparison to one-query-at-a-time approach

Stratified by size of query answer

Privacy Budget: 1.0
Competitor: A baseline based on
FLEX [VLDB18]

Improvement over FLEX can  
be attributed to:
• Tighter sensitivity bounds
• Truncation instead of

smoothing
• Better composition (across

queries sharing view)

(a) W1, Person, CensusNC (b) W1, Household, CensusNC (c) W2, Person, CensusNC (d) W2, Household, CensusNC

Figure 6: Relative error rates on the CensusNC datasets, for W1 (left) and W2 (right) workloads and Person
and Household policies. Error rates stratified by true query answer size.

(a) W1 on CensusPM . (b) W1 on CensusNC .
Figure 7: Relative error rates for CensusPM

dataset (left), as well as for different ✏ values (right),
both under Person policy.

(a) W1 Workload

All Queries 0 – 103 103 – 104 104 – 105 > 105
10
�410
�2
10

0
10

2
10

4
10

6
10

8
10

10
10

12

(b) W2 Workload
Figure 8: Relative error comparison between
BaselineFlex and PrivateSQL for workload an-
swering on the CensusNC dataset.
is that it has more sophisticated support for workloads: VS-

elector groups together queries which may compose paral-
lely and enjoy a tighter privacy analysis, and techniques like
W-nnls in the synopsis generator use least squares inference
to further reduce the error of query answers.

7.3.2 Single Query Answering
To provide a more direct comparison with Flex, we run

our system in “single query mode”, denoted by PrivateSQL
sqm

,
which takes as input a single input query and returns a pri-
vate synopsis answering the input query. We evaluate both
systems on workload W1 on CensusNC and Person policy
and use a per-query budget of ✏q = 0.01. We omit showing
results for queries in W2 \W1 as those queries have the same
sensitivity, and hence same error under both systems.

This evaluation allows us to decouple error improvements
due to workload-related components – such as VSelector,
BudgetAlloc, and PrivSynGen – and focus on the query
analysis components SensCalc and VRewrite.

Fig. 9 shows for each query the QError of Flex on the
y-axis and the QError of PrivateSQL

sqm
on the x-axis.

Figure 9: Comparing
QError rates of W1

queries on CensusNC .

View
Group

SensCalc
Rules

Flex
Rules

#1 0 1
#2 1 8
#3 2 8
#4 4 96
#5 6 1,088
#6 33 1,088
#7 49 11,904

Table 5: Comparison of
Flex and PrivateSQL
sensitivity engines.

Queries are grouped together w.r.t. their computed sen-
sitivity under SensCalc. Groups #6 and #7 are queries
with correlated subqueries and are unsupported by Flex.
However, for illustration purposes, we allow Flex to use
the de-correlation techniques of VSelector in order to an-
swer them. All queries lie over the dotted x = y diagonal
line, i.e., for every query, PrivateSQL

sqm
offers lower error

than Flex. This improvement is over 10 orders of magni-
tude for some Flex supported queries (Group 5). All im-
provements are due to two factors: (a) the tighter sensitiv-
ity bounds of SensCalc compared with Flex rules and (b)
the VRewriter truncation technique which helps bound
the global sensitivity, avoiding the need for smoothing.

Next, we isolate the sensitivity engines of both Flex and
PrivateSQL and compute only the sensitivity bounds (with-
out truncation or smoothing). In Table 5 we show our results
use the same group scheme of Fig. 8. Next to each group
identifier, we show in parentheses the number of queries in
that group. For all queries SensCalc offers a strictly better
sensitivity analysis with improvements ranging up to 37⇥ on
Flex supported queries. Moreover, for group #2 that con-
tains over 40% of the W1 queries, our improved sensitivity
calculator offers an improvement of 4⇥.

7.4 System Analysis
We next study the effect of instantiating PrivateSQL

with alternative implementations of the budget allocator
and synopsis generator (Fig. 10), as well as the effect of
the truncation threshold (Fig. 11). Due to space constraints
we only show results on W1, CensusNC and Person policy.

Effect of Budget Allocator: In Fig. 10a we show the ab-
solute error distribution of PrivateSQL for different Bud-

getAlloc choices. Wsize and Wsens offer the best error
rates, with comparable performance. This is due to low com-
position parallelism between queries of each partial workload

11

Key highlights of PrivateSQL

• View Selection + Synopsis Generation gets us away from one query at
a time answering
– Bounded privacy loss, consistent answers, avoids some side channel attacks

• Privacy can be defined at multiple resolutions
– Able to specify a rich set of policies, and automatically rewrite views based on

policy

• Computing sensitivity for complex SQL queries is challenging
– Our techniques give an order of magnitude tighter bounds on sensitivity than prior work.

• Modular architecture allows independent innovation in each component

Some Open Questions

• More sophisticated truncation [Raskhodnikova
FOCS 16; Chen, SIGMOD13]

• Theoretical characterization of bias-variance
tradeoff of truncation

• Quantifying error in the answers

Summary

• Benchmarks can provide valuable insight and focus
research community

• Modular architectures like Ektelo can simplify and
accelerate algorithm development.

• PrivateSQL towards declarative interface for
complex queries over multi-relational data

[SIGMOD16] Hay et al, “Principled Evaluation of Differentially Private
Algorithms using DPBench” https://www.dpcomp.org/
[SIGMOD18] Zhang et al, “Ektelo: A Framework for Defining Differentially-
Private Computations” https://ektelo.github.io/
[CIDR19] Kotsogiannis et al, “Architecting a Differentially Private SQL Engine”

 
Other related work:
[SIGMOD09] McSherry, “Privacy Integrated Queries”
[NIPS12] Hardt et al, “A Simple and Practical Algorithm for Differentially Private Data Release”
[TODS17] Zhang et al, “PrivBayes: Private Data Release via Bayesian Networks”
[VLDB19] Johnson et al, “Towards Practical Differential Privacy for SQL Queries”
[JPC17] Ebadi and Sands. Featherweight PINQ.
[FOCS16] Raskhodnikova and Smith, “Lipschitz Extensions for Node-Private Graph Statistics and
the Generalized Exponential Mechanism”
[SIGMOD13] Chen and Zhou, “Recursive mechanism: towards node differential privacy and
unrestricted joins”

Thanks

https://www.dpcomp.org/
https://ektelo.github.io/
https://ektelo.github.io/

