
automated verification +
differential privacy
aws albarghouthi university of wisconsin–madison

�2

calvin smith justin hsu

1949 1960 1970 1980 1990 2000

program
logics

abstract interp
model checking

industrial
tools

assert(x != null)

�4

algorithm
property

-dpϵ

verifier proof

�5

verifier
algorithm
property
accuracy

proof

�6
[dwork/roth book]

Proof of Report Noisy Max
Proof of Exponential Mech

�7

synthesizer
IO examples algorithm

+
proofproperty

-dpϵ

�8

[Gupta, Roth, Ullman, TCC 2012]

�9

short-term vision aid algorithm designers

synthesizer
IO examples algorithm

+
proofproperty

-dpϵ

long-term vision put theorists out of work

1 automatic proofs of accuracy [POPL19]
2 automatic proofs of differential privacy [POPL18]

theme
get rid of probability! long live logic!

�10

{x > 0}

y = x + 1

{y > 0}

x > 0 ∧ y = x + 1 ⟹ y > 0

solve with an SAT/SMT solver

{0 < p < 1}

x ~ flip(p)

{x = true} @ 1-p

challenge how do we check
this with first-order logic?

T F

p 1-p

{0 < p < 1}

x ~ flip(p)

{x = true} @ 1-p

idea axiomatization
{0 < p < 1}

w = 0
assume(x = true)
w = w + 1-p

{x = true & w <= 1-p}

w = 0 ∧ x ∧ w′� = w + 1 − p ⟹ x ∧ w′� ≤ 1 − p

T F

p 1-p

challenge many different axiomatizations
{0 < p < 1}

w = 0
assume(x = true)
w = w + 1-p

{x = true & w <= 1-p}

{0 < p < 1}

w = 0
assume(x = false)
w = w + p

{x = true & w <= 1-p}

challenge many different axiomatizations

{0 < p < 1}

w = 0
assume(true)
w = w + 0

{x = true & w <= 1-p}

challenge many different axiomatizations

x ~ dist

assume x is one of
those 3 values

failure probability is

{0 < p < 1}

x ~ flip(p)

{x = true} @ 1-p

idea synthesize axiomatization
{0 < p < 1}

w = 0
assume(phi(x))
w = w + pr(not phi(x))

{x = true & w <= 1-p}

w = 0 ∧ φ(x) ∧ w′� = w + pr(φ(x)) ⟹ x ∧ w′� ≤ 1 − p
∃φ . ∀w, w′ �, x .

y ~ Lap(x,s)

axiom family

|x − y | ≤ s ⋅ log (1
f(VI))

with failure probability
f(VI) ∈ (0,1]

x

�19

def rnm(q):
i, best, r = 0

while i < len(q)
d ~ Lap(q[i], 2/ε)

if d > best || i = 0
r = i
best = d

i = i + 1

return r

{∀j. q[r] >= q[j] - 4/ε log (len(q)/p)} @ p

|q[i] − d | ≤
2
ϵ

⋅ log (len(q)
p)

with failure probability
p

len(q)

{0 < p < 1}

1 automatic proofs of accuracy [POPL19]
2 automatic proofs of differential privacy [POPL18]

theme
get rid of probability! long live logic!

�20

�21

∀d, d′�, a, ϵ . 𝖺𝖽𝗃(d, d′�) ⇒

p : D → Δ(ℤ)

ℙ[p(d) = a] ≤ eϵ ⋅ ℙ[p(d′�) = a]

problems
proving differential privacy is hard and error-prone [lyu et al. 16]
existing automated techniques only work for simple algorithms

goal
automatically prove differential privacy of advanced algorithms

�22

key ideas
view differential privacy coupling proofs as games
solve a program synthesis/verification problem

�23

∃q . ∀x . φ(q, x)

variable approximate couplings

�24

0 1

scale of distributions is 1/y

{(c, c, y) | c 2 Z}

μ1(c) ≤ ey ⋅ μ2(c)

variable approximate couplings

�25

0 1

scale of distributions is 1/y

{(c, c, 2y) | c 2 Z}

2

variable approximate couplings

�26

0 1

scale of distributions is 1/y

{(c, c+ 1, 0) | c 2 Z}

proof rule

�27

p is DP if ∀d, d′�, ϵ . ∃𝒞 .
𝒞 couples p(d), p(d′ �)
𝒞 = {(c, c, y) ∣ y ≤ ϵ}

let’s play!

�29

def rnm(q):
i, best, r = 0

while i < len(q)
d ~ Lap(q[i], 2/ε)

if d > best || i = 0
r = i
best = d

i = i + 1

return r

r1 = 0 r2 = 0

r1 = 0 r2 = 0
d1 = c d2 = c

cost = ε/2

non-deterministically pick from
{(c, c, ✏/2) | c 2 Z}

cost = 0

{r1 = r2 && cost <= ε}[dwork & roth 14]
9 10 cost = ε

q2 = [10, 1] q1 = [9, 0]

our game strategy
in every iteration, couple samples using

{(c, c, ✏/2) | c 2 Z}

n · ✏
2

differential privacy

a winning strategy
use this coupling in 1 iteration only

{(c, c+ 1, ✏) | c 2 Z}

in all other iterations pay zero cost

winning strategies are programs

if condition
use coupling C1

else
use coupling C2

evaluation

�33

1 automatic proofs of accuracy [POPL19]
2 automatic proofs of differential privacy [POPL18]

theme
get rid of probability! long live logic!

�34

