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~roof of Report Noisy Max

Proof. Fix D = D"U {a}. Let e, respectively ¢, denote the vector of
counts when the database is D, respectively D'. We use two properties:

1. Monotonicity of Counts. For all j € [m], ¢; = ¢; and

2. Lipschitz Property. For all j € [m], 1 + ¢ = ¢;.

Fix any i € [m|. We will bound from above and below the ratio of
the probabilities that ¢ is selected with D and with D',

Fix r—i, a draw from [Lap(1/¢)]™ " used for all the noisy counts
except the ith count. We will argue for each r_; independently. We

dwork/roth Pbook]|

36 Basic Techniques and Composition Theorems

use the notation Pr(i|€] to mean the probability that the output of the
Report Noisy Max algorithm is ¢, conditioned on £.
We first argue that Pr[i|D,r—;] < €° Pr[i| D, r—i]. Define

r'f=min:¢ +r; >c¢; +r; Vi #£ 1.
s ‘ d

Note that, having fixed r_;, ¢ will be the output (the argmax noisy

count) when the database is D if and only if r; > r

We have, forall 1 < 7 # ¢ < mu

[ ’ f.‘ - f,.‘\ + f._:

p 'y - N - /
= (1+c)+r*Zei+r* >ci+r; 2c;+r;

P |
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(r"+1) > c; +r;.

)
J

Thus, if r; > v* + 1, then the ith count will be the maximum when the
database is D" and the noise vector is (r;,r_;). The probabilities below

are over the choice of r; ~ Lap(1/e).
l)l':T'; _, 1 } 1".] _, (,"'l)r[‘,.: _, I“: = e £ l’!':fll).r :]

= Prfi|D.r_;) = Pr[r; Z 1+ r*] = e Prir; = r*| = ¢ Pr[i|D.r_;].

which, after multiplying through by €%, vields what we wanted to show:
Prii|D,r_;] < e Pr[i|D',r_].

We now argue that Prli| D', r_;] < e® Prli| D, r_;]. Define

r* = min : C; + 1> b1 Vi # L
r s o *

Note that, having fixed r_;, ¢ will be the output (argmax noisy count)

. f o .
when the database is [ if and only if »;
We have, forall 1 < 7 # ¢ < mu

.
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F(r*+1) >
F(rt+1) >
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F(r* 4 1) = e

Thus, if v; > r* + 1, then ¢ will be the output (the argmax noisy
count) on database D with randomness (r;,r_;). We therefore have,

with probabilities taken over choice of r;:

Prli|D.r_;| Z Prir; Z2r* + 1] Ze “Prir; 2| =¢"" l’z'[z'\l)'.r‘ ils

“roof of Exponential Mech

Proof. For clarity, we assume the range R of the exponential mecha-
nism is finite, but this is not necessary. As in all differential privacy
proofs, we consider the ratio of the probability that an instantiation

of the exponential mechanism outputs some element r € R on two
neighboring databases z € NI*l and y € NI?! (ie., ||z — y|; < 1).

ceu(z,r)

exp(—Sa,—)

/

su(z,r")
r’».’—_Re'\p( A )

exp( sz;g.:"'l )

i csuly,r’)
E)‘ ;’: - e‘\p( 2.‘3“ )

= exp(e).

Similarly, %f%l > exp(—e) by symmetry.
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function IDC

(iter : Nat[i]) (eps : numle])

(db :[2 * i * e] db_type) (gs : query bag)

(PA : (query bag) -> approx_db
-> db_type -ole] Circle query)

(DUA : approx_db -> query -> num -> approx_db)

(eval_q : query —-> db_type -o[1] num)

: Circle approx_db {

case 1ter of

0 => return init_approx

| n + 1 =>
sample approx = (IDC n eps db gqs PA DUA);
sample q = PA qs approx db;
sample actual = add_noise eps (eval_q q db);
return (DUA approx q actual)

Figure 11. Iterative Database Function in DFuzz

Gupta, Roth, Ullman, TCC 2012
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1 automatic proofs of accuracy [POPL19]

2 automatic proofs of differential privacy |

theme

get rid of probability! long live logic!
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{x > 0}

+1 +—> x>0Ay=x4+1=y>0

<
|
X

{y > 0}

solve with an SAT/SMT solver



{0 < p <1}

o 1-p
x ~ £lip(p) I l
{x = H.

true} @ 1-p

challenge how do we check
this with first-order logic’/



Idea axiomatization
II II {0 < p <1}

{0 < p <1}
w = 0
X ~ ftlip(p) —> assume(x = true)

{x = true} @ 1-p
{X = true & w <= 1-p}

w=0AxAW=w+1l—-p=xAW <1-p



challenge many different axiomatizations

{0 < p < 1} {0 < p < 1}

w = 0 w = 0

assume(x = true) assume(x = false)
w=w+ 1-p W=WwW++D

{X = true & w <= 1-p} {X = true & w <= 1-p}



challenge many different axiomatizations

{0 < p <1}
w =0
assume(true)
w=w + 0

[X = true & w <= 1-p}



challenge many different axiomatizations

X ~ dist

i
/

assume X IS one of
those 3 values

fallure probapility Is




Idea synthesize axiomatization

{0 < p < 1}
{0 < p <1}
w = 0
x ~ flip(p) assume(phi(x))

w =w + pr(not phi(x))
{x = true} @ 1-p
{X = true & w <= 1-p}
dp .Vw, w', x.

w=0A@) Aw' =w+pr(pl) = xAw < 1-p



y ~ Lap(x,s)

axiom family with failure probability

ey Ss-lag( ) V) € (0,1]

V)




{0 < p < 1}

def rnm(q):
i, best, r = 0

hil len(q) [ gli] d\<2 [ (len@)
while 1 < len(qg git| — S — - log
d ~ Lap(q[i], 2/&)——“’————J" € P
if d > best || 1 =0 with failure probability
r =i len(q)
best = d

1 =1+ 1

return r

{vj. q[r] >= q[j] - 4/¢ log (len(g)/p)} @ p
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1 automatic proofs of accuracy [POPL19]

2 automatic proofs of differential privacy |

theme

get rid of probability! long live logic!
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p:D - A7)

Vd,d',a,e.adj(d,d’) =
Plp(d) =a] < e° - P[p(d) = a]



problems
oroving differential privacy 1s hard and error-prone [lyu et al. 10|

existing automated technigues only work for simple algorithms

goal
automatically prove differential privacy of advanced algorithms
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key ideas
view differential privacy coupling proofs as games

solve a program synthesis/verification problem

dg . Vx. p(q, X)
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variable approximate couplings

scale of distributions is 1/y

1,(©) < €+ py(c)

0 1

{(c,cly) | c € Z}
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variable approximate couplings

scale of distributions is 1/y

{(c,c,2y) | c €}
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variable approximate couplings

scale of distributions is 1/y
A.

{(c,c+1,0) | ceZ}

260



proof rule

pisDP 1t Vd,d,e. 46 .
€ couples p(d), p(d")
6 = {(c,c,y) |y < €]
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cost = 0O
rl = 0 r2 = 0
while 1 < len(q)
d ~ Lap(q[i], 2/¢) rl = 0 r2 = 0
dl = c d2 = cC
cost = €/2

non-deterministjcally pick from
{(c,c, 6/2). c e}

cost = €
{rl = r2 && cost <= &}

9 10

AWOrK & Toun 14



our §ame sipategy
N every iteration, &fIole samples using

{(c,of€/2) | ™E 7}

——— Jqifferential privacy



a winning strategy
Use this coupling IN 1 iteration only

fe,e+1,€) | ceZ

N all otner iterations pay zero cost




winning strategies are programs

If conaition
use coupling CT
else
Use coupling C2




PARTIALSUM
PREFIXSUM

SMARTSUM
REPORTNOISYMAX

ExpMECH

ABOVETHRESHOLD
ABOVETHRESHOLDN

NUMERICSPARSE
NUMERICSPARSEN

evaluation

Compute the noisy sum of a list of queries.
Compute the noisy sum for every prefix of a list of queries.

Advanced version of PRerixSum that chunks the list [Chan et al. 2011; Dwork et al. 2010].
Find the element with the highest quality score [Dwork and Roth 2014].

Variant of REPORTNOISYMAX using the exponential distribution [Dwork and Roth 2014;
McSherry and Talwar 2007].

Find the index of the first query above threshold [Dwork and Roth 2014].

Find the indices of the first N queries with answer above threshold [Dwork and Roth
2014; Lyu et al. 2017].

Return the index and answer of the first query above threshold [Dwork and Roth 2014].
Return the indices and answers of the first N queries above threshold [Dwork and Roth

2014; Lyu et al. 2017].
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1 automatic proofs of accuracy [POPL19]

2 automatic proofs of differential privacy |
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get rid of probability! long live logic!
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