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Federated Learning 
[MMRHA17]

• Lots of personal data is distributed across many devices


• We hope to improve machine learning models with this 
sensitive data.


• Devices are powerful enough now that they can do a lot 
of the computation.


• Rather than transmit data to a central server, have each 
device do the computation and only submit the update.
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Privacy of Model

• Several users download the model at each round.


• Attacks - Models can memorize unique patterns 
[CLKES18].


• Solution - Use central DP on the aggregated model 
[SCS13, BST14, ACGMMTZ16, MRTZ18]


• Previous works show good privacy-utility tradeoffs in this 
setting.
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Privacy of the Updates

• Consider gradient methods with example-label pair (x,y) 
and generalized linear loss 𝓵(𝜃; x,y).


• Update from a device:

∇ℓ(θ; x, y) = scalar ⋅ x

User’s data
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Threat Model in Private FL

• We consider two different adversaries in our system.


• Strong adversary - can perform arbitrary inferences on 
the privatized model at each round of communication .


• Protect with Central DP with small privacy parameters. 


• Curious onlooker  - can see privatized updates and 
wants to reconstruct some function of the input.


• Protect with reasonable privacy parameters in Local DP.



Locally Private Updates
• Local differential privacy is a strong requirement that 

would ensure the privacy of the individual updates.


• [Warner65,EGS03,KLNRS08] An algorithm is 𝜀-Local DP if 
for all inputs x,x′ and outcome sets S we have


• [BNO13,DJW13,DJW18,DR18] - Strong lower bounds for 
estimating high dimensional vectors

ℙ[A(x) ∈ S]
ℙ[A(x′�) ∈ S] ≤ eϵ



Relaxing the Local Privacy 
Parameter

• Can we still provide privacy guarantees for larger 𝜀?


• Protecting against arbitrary inferences requires 𝜀 = O(1).


• Consider specific adversaries - curious onlookers who 
have limited information about the inputs and want to 
reconstruct the input.

ℙ[A(x) ∈ S]
ℙ[A(x′�) ∈ S] ≤ eϵ



Defining Reconstruction

Data X ~ 𝛑 Weights W

Best reconstruction 
of X given Z

Privatized Z = A(W)

𝜙(Z)

For any z and estimator 𝝓, we want:
ℙ[ | |X − ϕ(z) | |2 < α ∣ Z = z] ≪ 1



Reconstruction

• Adversary wants to reconstruct X or some f(X) given Z  
with some prior 𝛑 over inputs. 

• A normalized estimator 𝝓 causes an (𝛂,f,p)-
reconstruction breach if there exists a z such that 


• If no such estimator, then A protects against (𝛂,f,p)-
reconstruction.

X → W → Z = A(W)

ℙ [ | | f(X) − ϕ(z) | |2 < α ∣ A(W) = z] > p
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Target Functions

• Target reconstruction 
function - projections


• Consider projection matrix 
P with k<d:

fk(x) = Px
| |Px | |2

X = W → Z = A(W)
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DP Protects Against 
Reconstruction

• Consider a diffuse prior 𝛑. If A is 𝜀-DP then A protects 
against (𝛼,fk,p)-reconstruction where


• We can obtain a small probability of reconstruction even 
for large 𝜀.

p = exp (ϵ + c ⋅ k log(α2 ⋅ (1 − α2/4)))



Separated DP
• To privatize high dimensional vectors, we will decompose 

vector W into a unit vector U and its magnitude R.


• We design DP algorithms to privatize U and R separately.

W = W
| |W | |2

U

⋅ | |W | |2

R



Existing Local DP 
Algorithms

• Let’s use a local DP algorithm to privatize high 
dimensional unit vectors.


• Consider a unit vector u∈𝕊d-1= {v∈ℝd : ||v||2 = 1}.


• Add mean zero, independent noise: A(u) = u + N, then 


• [DJW13] - Sampling scheme with better dependence on d

𝔼 [ | |A(u) − u | |2
2 ] = Θ ( d2

ϵ2 )

𝔼 [ | |A(u) − u | |2
2 ] = Θ (d ( eϵ + 1

eϵ − 1 )
2)



Existing Local DP 
Algorithms

• Let’s use a local DP algorithm to privatize high 
dimensional unit vectors.


• Consider a unit vector u∈𝕊d-1= {v∈ℝd : ||v||2 = 1}.


• Add mean zero, independent noise: A(u) = u + N, then 


• [DJW13] - Sampling scheme with better dependence on d

𝔼 [ | |A(u) − u | |2
2 ] = Θ ( d2

ϵ2 )

𝔼 [ | |A(u) − u | |2
2 ] = Θ (d ( eϵ + 1

eϵ − 1 )
2)

Optimal for  
𝜀 = O(1), but not 

for larger 𝜀



Privatize Unit Vectors

[DJW13] This Work - PrivUnit(u;𝛾,𝜀)



Privatize Unit Vectors

• Let Z = PrivUnit(u;𝛾,0) with                       then PrivUnit is 
𝜀-DP.


• Further, 


• This is optimal.

γ ≈ ϵ
d

𝔼[Z] = u, 𝔼 [ | |Z − u | |2
2 ] = O ( d

ϵ ∧ ϵ2 )



Privatize Magnitude
ScalarDP(r;𝜀,rmax)

0 rmax
r
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Privatize Magnitude

0 rmaxr

ScalarDP(r;𝜀,rmax)

Discretize into k = exp(𝜀/3) bins

Z = PrivMagn(r;𝜀,rmax) is 𝜀-DP  
and 𝔼[(Z - r)2] = O(rmax2 exp(-2𝜀/3))

[GV16] Optimal for 𝜀>1



Optimality
• Consider stochastic gradient descent with example label 

pairs (x,y) with ||x||≤r and y∈{-1,1}.  


• Using our local DP mechanisms, we have

n (L(θ̄n) − L(θ⋆)) d T2

𝔼[T2] = O (r2 ⋅
d

ε ∧ ε2 )
• This is minimax optimal for any arbitrarily interactive local-

DP algorithm [DR19]



Experiments

• We conducted experiments for various tasks and models.


• We used our local DP algorithms (PrivUnit and ScalarDP) 
to protect against reconstruction.


• We also clipped each model update and added Gaussian 
noise to the aggregate update for central DP.



MNIST

Accuracy 10%

Accuracy 98.8%



CIFAR10

Accuracy 10%

Accuracy 71.5%



ResNet50v2

• Pretrained ResNet50v2 on 
ImageNet


• Further trained last two layers 
on Flickr data with 100 classes.

Top 5 Accuracy 97.7%

Accuracy 5%



LSTM

• Pretrained LSTM on Wikipedia


• Further trained on Reddit 
comments from Nov 2017.

Accuracy 15.4%

Accuracy 19.5%
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