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Federated Learning

[MMRHA17]

Lots of personal data is distributed across many devices

We hope to improve machine learning models with this
sensitive data.

Devices are powerful enough now that they can do a lot
of the computation.

Rather than transmit data to a central server, have each
device do the computation and only submit the update.



Federated Learning

——

Server with
Model M




Federated Learning

Server with
Model M




Federated Learnlng




Federated Learning

Server with
Model M

A=%ZA(’)

M~M+A




Privacy of Model

Several users download the model at each round.

Attacks - Models can memorize unique patterns
[CLKES18].

Solution - Use central DP on the aggregated model
[SCS13, BST14, ACGMMTZ16, MRTZ18]

Previous works show good privacy-utility tradeoffs in this
setting.
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Privacy of the Updates

 Consider gradient methods with example-label pair (x,y)
and generalized linear loss #(0; x,y).

» Update from a device:

V£(0,x,y) =scalar - x

.
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Threat Model in Private FL

 We consider two different adversaries in our system.

 Strong adversary - can perform arbitrary inferences on
the privatized model at each round of communication .

* Protect with Central DP with small privacy parameters.

 Curious onlooker - can see privatized updates and
wants to reconstruct some function of the input.

* Protect with reasonable privacy parameters in Local DP.



Locally Private Updates

* |ocal differential privacy is a strong requirement that
would ensure the privacy of the individual updates.

e [Warner65,EGS03,KLNRSO8] An algorithm is e-Local DP if
for all inputs x,x" and outcome sets S we have
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e [BNO13,DJW13,DJW18,DR18] - Strong lower bounds for
estimating high dimensional vectors



Relaxing the Local Privacy
Parameter

€

P[A(x) € §]
< e
P[Ax") € §] —

e Can we still provide privacy guarantees for larger &7

e Protecting against arbitrary inferences requires € = O(1).

e Consider specific adversaries - curious onlookers who
have limited information about the inputs and want to
reconstruct the input.



Defining Reconstruction

Weights W Privatized Z = AW)

For any z and estimator ¢, we want:
Pl X-¢d@||,<alZ=z]x1




Reconstruction
X > W->Z=AW)

 Adversary wants to reconstruct X or some f(X) given Z
with some prior it over inputs.

e A normalized estimator ¢ causes an (o,f,p)-
reconstruction breach if there exists a z such that

P [fX) = @], <a| AW)=z|>p

e If no such estimator, then A protects against (o,7,p)-
reconstruction.
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Target Functions
X=W->7Z=AW)

e Target reconstruction
function - projections

e Consider projection matrix
P with k<d.

JdX) = wfjuz
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DP Protects Against
Reconstruction

e Consider a diffuse prior 7. If A is e-DP then A protects
against (a,fi,p)-reconstruction where

p = exp (6 + c - klog(oc2 - (1 — a2/4)))

 We can obtain a small probability of reconstruction even
for large «.



Separated DP

e To privatize high dimensional vectors, we will decompose
vector IV into a unit vector U and its magnitude R.

— W o
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* We design DP algorithms to privatize U and R separately.




Existing Local DP
Algorithms

Let’s use a local DP algorithm to privatize high
dimensional unit vectors.

Consider a unit vector ueSd-1= {veR : ||v||2 = 7}.

Add mean zero, independent noise: A(u) = u + N, then

=A@ - ul 3| =0 (%)

- Sampling scheme with better dependence on d
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Privatize Unit Vectors

This Work - PrivUnit(u;y,¢)



Privatize Unit Vectors

o Let Z = PrivUnit(u;y,0) with Yy X

e-DP.

e Further, E[Z] = u,

 This is optimal.
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Privatize Magnitude

ScalarDP(r;s,rmax)
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Privatize Magnitude

ScalarDP(r;s,rmax)

r

Fmax

Discretize into k = exp(</3) bins

Z = PrivMagn(r:c,rmax) is e-DP

and

C[(Z - 1r)?] = O(rmax® exp(-2¢/3))




Privatize Magnitude

ScalarDP(r;s,rmax)

0 r Fmax

Discretize into k = exp(</3) bins

Z = PrivMagn(r;g,rmaxP

and E[(Z - r)3] = O(rmax2 exp(-2</3))




Optimality

 Consider stochastic gradient descent with example label
pairs (x,y) with ||x|]|<r and ye{-1,1}.

e Using our local DP mechanisms, we have

n (L@,) — L(0*)) S T2

-[T7] = 0<r2- ‘ )
£ N €2

* This is minimax optimal for any arbitrarily interactive local-
DP algorithm




Experiments

Experiments

Image Classification over 10 Classes MNIST 3,274,634

Image Classification over 10 Classes | CIFAR10 | 1,068,298
Image Classification over 100 Classes Flickr 1,255,524
Next Word Prediction REDDIT | 13,352,875

* We conducted experiments for various tasks and models.

* We used our local DP algorithms (PrivUnit and ScalarDP)
to protect against reconstruction.

 We also clipped each model update and added Gaussian
noise to the aggregate update for central DP.



MNIST

Accuracy for Federated Learning on MNIST
— Clear €1=500 €1=250 — €1=100 — €1=50

Accuracy 98.8%
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CIFAR10

Accuracy for Federated Learning on CIFAR10
— Clear €1=5000 €1=1000 — €1=500 — €1=100

Accuracy 71.5%
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ResNet50v2

Top 5 Accuracy for Federated Learning on Flickr
— Clear €1=5000 €1=500 — ¢€1=100 — €1=50

Top 5 Accuracy 97.7%

e Pretrained ResNet50v2 on
ImageNet

e Further trained last two layers
on Flickr data with 100 classes.
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LSTM

Top 1 Accuracy for Federated Learning on REDDIT
€1=2500  — €1=500

— Clear e1 =10000

Test Accuracy

Accuracy 15.4%

O
100

Number of Rounds

— €1=100

Accuracy 19.5%
 Pretrained LSTM on Wikipedia

e Further trained on Reddit
comments from Nov 2017.
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Thanks
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