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Scaling Problems - Motivation

Why should anyone care?

Communication Complexity: gen. Forster’s sign-rank lower bounds
Algorithms: det. approx. to Perm. non-neg. matrices & mixed volume
Coding Theory: lower bounds on LCC’s over R

Optimization: Brascamp-Lieb & moment polytopes, non. comm. Duality
Operator Theory: Paulsen problem

Quantum Information Theory: Entanglement distillation

Functional Analysis: Brascamp-Lieb inequalities

Algebraic Complexity: non-commutative PIT, asymptotic Kronecker
Extremal combinatorics: quantitative gen. of Sylvester-Gallai thms,
asymptotic slice-rank

Many more (invariant theory, representation theory, opt. transport...)



Matrix Scaling -

n X n non-neg. matrix A4 is doubly stochastic (DS)
if sum of rows/columns of A are equal to 1. 1/3 | 2/3

B is scaling of A if 3 positive x4, ..., X;,, Y1, > Vn
such that bl] = x,-a,-]-y]-. 2/3 1/3

A has DS scaling if there is DS scaling B of A.

ds() = ) (= 1+ ) (¢, - 1)°
i J

2
A has approx. DS scaling if Ve > 0 thereis 1/3 2 1
scaling B, of As.t. ds(B,) < €.

1. When does A have approx. DS scaling? 1/3 4 1/2
2. Can we find it efficiently?




Matrix Scaling — examples (alg. & geom.)
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Matrix Scaling — Algorithm S -

Problem: A € M,,(R5¢), € > 0, is there e-scaling to DS? If yes, find it.
Algorithm S [Kruithof’37, ..., Sinkhorn’64]:

Repeat k times:

1. Normalize rows of A (make row sums equal)

2. Normalize columns of 4 (make col sums equal)

If at any point ds(4) < €, output the scaling so far.
Else, output: no scaling.

Questions:

 Are we making progress at all?
* How do we know when to stop? (Which k?)

* Isthere €g > 0s.t.ifds(4) < €p canget DSforanye > 0°?



Algorithm S — Two Examples -

Question: How can we distinguish between these two cases?

Observation: In first example, have no matchings (and Hall blocker).

Are these the only bad cases?



Algorithm S — Analysis [LSW’00] -

Algorithm S:
Repeat k times:
1. Normalize rows of A
2. Normalize columns of A
If at any point ds(A4) < ¢, output the scaling so far.
Else, output: no scaling.

Analysis [LSW’00]:
1. Per(4) > 0= Per(4) >v™"
2. ds(A) > € = Per(A) grows by exp(0(€)) after
normalization
3. Per(A4) < 1 for any normalized matrix

Within K = poly(n/e€) iterations we will get our scaling!

Per(4) > 0 © A has matching (also no Hall blocker), so correct.



-

Per(4) = 0 & A has no matching (and a Hall blocker).

See board.



Quantum Operators — Definition

A quantum operator is any map T: M,,(C) - M,,(C)
given by (44, ..., 4;) s.t.

T(X) = 2 A;XA]
1<ism

Such maps take psd matrices to psd matrices.

Dual of T(X) is map T*: M,,(C) - M,,(C) given by:

T*(X) = z ATXA;

1<i<m

* Analog of scaling?
* Doubly stochastic?



Operator Scaling -

A quantum operator T: M,,(C) - M,,(C) is doubly
stochastic (DS)if T(I) =T*(I) = 1.

Scaling of T(X) consistsof L, R € GL,,(C) s.t.
(A4, ...,Ay) —» (LA¢R, ...,LA,,,R)

Distance to doubly-stochastic:

ds(T) & ||T(I) = I||2 + ||T*(I) — I||%

T (X) has approx. DS scaling if Ve > 0, 3 scaling L, R s.t.
operator T.(X) given by (L;A4R,, ..., LcA,R,) has ds(T,) < €.

1. When does (44, ..., A,,) have approx. DS scaling?
2. Can we find it efficiently?



Generalizes Matrix Scaling -

Take quantum operator

Tqp= (Vai1 - Eq1,vVa12 - Eq2, ....\/Qpy - Eng)

and dual

Ty = (Va11 - E11,V/@21  Eq2, /@y - Eng)
TA(I) = z al]E,]E:r] = z a,-]-Eii = diag(rl, ...,Tn)

TZ(I) = z a]lE,]EzL] = z ajl-Eii = diag(cl, ey Cn)

Distance to doubly-stochastic:

ds(T,) < ||IT(D — I + IT*(D) — 1|7 = ds(A)



Operator Scaling — Algorithm G -

Problem: operator T = (44, ..., 4;,), € > 0, can T be €-scaled to
double stochastic? If yes, find scaling.

Algorithm G [Gurvits’ 04]:
Repeat k times:
1. Left normalize T(X), i.e.,(44, ...,Ay,) < (LA4, ...,LA,,)
st.T(I) = I.
2. Right normalize T(X), i.e., (44, ...,A;) < (A4R, ..., A;,R)
st.T*(I) = I.

If at any point ds(T) < €, output the current scaling.
Else output no scaling.

e Which k should we choose? b



Algorithm G — Analysis -

Algorithm G:
Repeat k times:
1. Left normalize: (A4, ...,4,,) < (RA4,...,RA,;) st. T() = 1.
2. Right normalize: (44, ..., 4,,) < (41C, ...,A,,C)st. T*(I) = I.
If at any point ds(T) < €, output current scaling.

Else output no scaling.

Potential Function (Capacity) [Gur’04]:

. (det(T(X
cap(T) = mf{ ze(t(;))) : X > O}.

Analysis [Gur’04, GGOW’15]:
1. cap(T) > 0= cap(T) > e P°Y™ (GGow’15)
2. ds(T) > € = cap(T) grows by exp(0(€)) after
normalization
3. cap(T) < 1 for normalized operators.




When can we scale? -

Matrix scaling & there was no Hall blocker. Analog in this case?

Definition [Gur’05]: (44, ..., 4,,) rank non-decreasing (RND) iff

forallV c C"
dim (U A,-V) >dim(V)
i

Theorem [Gur’05]): T = (44, ..., A,,) then
cap(T) >0 < (A4,...,A;;) RND

Observation: (44, ..., A,,) rank decreasing < in some

basis they have a common Hall Blocker!



Lower Bound on Capacity -

Reminder:

T(X) = z A;XA]
cap(T) = inf{det(T(X)):X > 0,det(X) = 1}.

Want to prove that:
cap(T) > 0 = cap(T) > e Poly®™

Basic case of RND: A4 is an invertible matrix.
T(X) > A1 XAl = det(T(X)) = det(4,XA})

det(X) = 1 = det(AXA}) = det(4,)? = 1



Lower Bound on Capacity -

Next basic case: 44, ..., 4,;; span an invertible matrix.

Easy Lemma I: for any unitary matrix B € C"™™, |et
C; = ¥ b;jAjand Tg(X) = ¥; C;XC]. Then
Tz(X) = T(X).

Ay, ..., Ay, span an invertible matrix, then 3 unitary B € C"™*™
with by € Q (byj = pj/q, q small) s.t. C; = ¥ by;Aj invertible.

T(X) = Tg(X) > C,XCl = det(T(X)) = det(C,XCY)

det(X) =1 = det(C,XC1) = d CZ>1
et(X) =1 = det(C,XC}) = det(Cy) o7



Lower Bound on Capacity -

General case: T(X) rank non-decreasing

Definition: If T1: M,  (C) - My, (C), Ty: My, (C) —» M, (C)
given by T;(X) = Zin]-XAELj, define
Ti2 £ T1®Ty: My 5, (C) > M, ,,(C)as
T12(Y) = ZBinB;rj
Where B;j = A1; Q Ayj.
Easy Lemma ll:

cap(Tq2) < cap(T1)"2cap(T,)™.

To get good lower bound on capacity, it is enough to find an
operator T': M 4(C) —» M 4(C) with d = eP°Y(™ sych that
T @ T' has an invertible matrix in their span.



Invariant Theory for analysis -

Invariant Theory:
Group G = SL,,(C)? acts on (44, ..., A,;,) by L-R multiplication:
(Aq, ..., A) - (LA4R, ..., LA R)

Null-cone Problem: given (44, ..., A,;,), is there sequence
of scalings (L¢, R;) such that

t!lm (LtAlRt' “euy LtAmRt) — (O, “en ) O)?

Invariant Theory [DW’00, DZ’01, SdB’01, ANS’10]:
(A4, ...,A,;) in Null Cone & (44, ...,4,,) RND
= det(ZiAi X Bl) =0V Bi (S Md((C),V d

[Derksen’01]: Enough to take d < 2n”,



Pulling things together (in a nutshell) -

cap(T) =0 < (A4, ...,A;) RND
< (A4, ..., A) in Nullcone

o det(3;4; ® B)) =0V B; € M4(C),d < 2™

Lemma 1: T4 given by(44, ..., 4,,), T, given by(Bjy, ..., B,;;) and
T given by'(Al ® BIJAl ® Bz, ,Am ® Bm) then

cap(T) < cap(T1)*cap(T,)4
Lemma 2: T given by(C4, ..., C,,) s.t. (Cq, ..., C;,) span invertible

matrix then
cap(T) > Z—n-polylog(n)

Theorem: T given by(4y, ..., A,,) s.t. cap(T) > 0 then

cap(T) > 2—n2-polylog(n)



Approximating Capacity -

Algorithm G can easily be modified to approximate
Capacity within (1 + €)-multiplicative factor.

det(T(X))
det(X)

cap(T) = inf{ : X > O}

 Keep track of scalings
e ds(T)<e=12=cap(T) = (1 — \/ne)n

 cap(T) =[](det.of scalings) - cap(Ty)



BL inequalities — [BL'76, Lieb’90] -

* BL Datum:
* Matrices B; : R™ — R"™
* Numberspqy, P2, ... 0m >0

* Functional Inequality: for all integrable functions f; :
R™ — Ry

LERn ﬁfi(Bi(x)) dx < C- ﬁ[“fl”%

i=1

For which constant C does this inequality hold, if at all?

l.e., how do we prove inequalities?



Example: Cauchy-Schwarz Inequality

 Forall integrable functions f;: R"™ — R.,,

| AR dx < NIAl 1A,

N =

£l = ( f £ (x)? dx)



Example: Holder’s Inequality

« If Y2 pi = 1.

| L_l[fim dx < ]_[ Il

[1f:ll

( f fi (x)P: dx>pi

1
Pi



Example: Loomis-Whitney Inequality

 Geometric inequality:

e Let E c R be a body.

Let 7; denote the projection onto the coordinates

{1,2,3\{j}and E; = m;(E).

Then Vol(E) < /Vol(E,) - Vol(E,) - Vol(Es3) .



Example: Loomis-Whitney Inequality

Vol(E) < /Vol(E;) - Vol(E,) - Vol(E3)



Example: Loomis-Whitney Inequality -

* Functional inequality: Let r; denote the projection
onto the coordinates {1,2,3}\{j}.

fﬂﬁ(m(x)) dx <1_[||ﬁ||2

]RSl
1
2

£l = f F(x)? dax
]RZ



Example: Shearer’s Lemma -

e Let Sy, ..., 5, € |n]s.t.eachi € [n] appearsin
exactly k sets.

H_[ﬁ(xs> dx <1_[||ﬁ||k

RM i=1

* Loomis-Whitney special case whenn = 3 and k = 2.

e Equivalent entropy version [CCE’'08, LCCV’16] and
discrete analogue [CDKSY’15]



BL inequalities -

 ABLdatum (B, p) will be called feasible if the BL

inequality holds with a finite constant.

 The optimal constant in the inequality will be called

BL constant and denoted by BL(B, p).

| [ [r:®» ax <BLEB.P) [ Juras

]Rn i=1



Lieb’s Theorem [Lieb’90] -

e Maximizers are Gaussians

1
\/det(Ai) .

Jn; exp(—=mtyT A;y) dy =

 Hence

[1;Z, det(4;)P
BL(B,p)? = sup a4 oA =
P pAi>10 niXn; det(zﬁl plB;TAlBl)

* Looks an awful lot like capacity



BL Polytope [BCCT’05] -

* BL(B,p) < o iff the following hold:
1. n =l pin;.

2. For all subspaces V € R",

dim(V) < z p. dim(B;(V))
i=1

* Fix B. Let Py set of p’s that satisfy above conditions.

* Finitely many constraints, so Pg is a polytope.



Geometric BL Datum [Ball’89, Barthe’98] -

* (B,p) is called geometric if it satisfies the following

normalization conditions:
1. Projection: B;B] = L, for all i.
2. lIsotropy: Y. p;B] B; = I,,.
* If (B,p) geometric, then BL(B,p) = 1.

* Can we convert (efficiently) any feasible BL datum to the

geometric case?



Scaling Algorithm -

-1 2
* Fixing projection: B; « (Bl-B;T) /

* Fixing isotropy: B; « B; (Zl 1plBTB )_1/2

e Can we fix both? Fixing one might disturb the other.
» Keep fixing both alternately for a few steps. This works!

Repeat for t = poly(n, b, d, 1/€) steps:
1. Fix projection;
2. Fixisotropy;
3. Output feasible if get close to geometric position

Output not feasible

e How to analyze it?



Looks like a duck...

* Analysis by reduction to operator scaling!



Computing Approx. of BL const. [GGOW’16]

* Reduction to operator scaling
* Matrices B; : R™ - R™

Ci

* Numbersp; = = c;i,d €N

See board.

* Approx. BL const. reduces to approx. capacity!



Open Questions -

* More applications of scaling problems?

&

 Can we obtain new inequalities that generalize
capacity for non-abelian group actions?

* Van der Waerden for Operator scaling capacity? For general
group actions?

* More BL-type inequalities for other quivers?



Advertisement

Amazing workshop at the |AS!
Videos & materials online
https://www.math.ias.edu/ocit2018

Survey on all of this on arxiv & on
EATCS complexity column!
(link on my webpage)
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