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Concentration of scalar random variables

Independent random X; € R

X — Zin'

Is X =~ [EXwith high probability?
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Concentration of scalar random variables

Chernoff inequality
Independent random X; € R

X=X X
1. EX =u
2. |Xl| <r

E.g. ife=05r=1andu =10log(1/7)
gives

2
P[|X — u| > eu] < 2exp( T(‘z‘;))



Concentration of random matrices

Independent random X; € R4*¢

X — ZiXi

s X = [EX with high probability?

-1.96 0 1.96



Concentration of random matrices

Matrix Chernoff [Tropp "11]

Independent random X; € R¥*%, positive semi-definite
X = ZiXi

1. ||EX[| =u

2. ||IX;ll <7

Eg. ife=05r=1andu =10log(d/1)

gives

2
P[lIX — EX|| > €] < d 2exp ( r(’“;g))

[Rudelson ‘99, Ahlswede-Winter '02]



What if variables are not independent?

X € {0,1} random variable

Y =X
X + Y not concentrated, O or 2

Z/=1-X
X + Z very concentrated, always 1

Negative dependence:
X makes Z less likely and vice versa



What if variables are not independent?

¢ €{0,1}'™ random variable

Negative pairwise correlation
For all pairsi # j
E()=1 = lower prob.of £(j) =1

Formally P[E(j) = 1[$() = 1] = P[$(j) = 1]



What if variables are not independent?

¢ €{0,1}'™ random variable

Negative correlation
Forall S € [m]
Plvi € S.&(1) = 1] < IesP[E() = 1]

Can we get a Chernoff bound? Yes.

If £ AND € (negated bits) are negatively correlated,
Chernoff-like concentration applies to }.; (i)
[Goyal-Rademacher-Vempala ‘09, Dubhashi-Ranjan "98]



Strongly Rayleigh distributions

A class of negatively dependent distributions
[Borcea-Branden-Liggett '09]

¢ €{0,1}'™ random variable

Many nice properties
Negative pairwise correlation
Negative association
Closed under conditioning, marginalization



Strongly Rayleigh distributions

A class of negatively dependent distributions
[Borcea-Branden-Liggett '09]

¢ €{0,1}'™ random variable

Examples:
Uniformly sampling k items without replacement
Random spanning trees
Determinantal point processes, volume sampling

Symmetric exclusion processes



Strongly Rayleigh distributions

A class of negatively dependent distributions
[Borcea-Branden-Liggett '09]

¢ €{0,1}'™ random variable

k-homogeneous Strongly Rayleigh:
I{i : £(i) = 1}| = k always



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song "18]
Fixed 4; € R%*4, positive semi-definite
¢ € {0,1}™ is k-homogeneous strongly Rayleigh

Random X = )3; £(i)A;
1 |[EX|| =
2. |4l <7

E.g. ife=0.5,r=1andu = 10log(d/t)log(k)

gives

2
P[l|X — EX|| > ue] < d 2exp ( r(lo‘uggk+8))

Scalar version: Peres-Pemantle ‘14



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song "18]
Fixed 4; € R%*4, positive semi-definite
¢ € {0,1}™ is k-homogeneous strongly Rayleigh

Random X = )3; £(i)A;
1 |[EX|| =
2. |4l <7

E.g. ife =log(k),r =1and u = 10 log(d/7)

gives

2
P[l|X — EX|| > ue] < d 2exp ( r(lo‘uggk+8))

Scalar version: Peres-Pemantle ‘14



An application:
Graph approximation using
random spanning trees



Spanning trees of a graph

Graph G = (V,E,w)
Edge weights w:E — R,
n=|V]

Spanning trees of G

TN N



Random spanning trees
Graph G

Tree distribu =\

Pick a random tree?




Random spanning trees

Does the sum of a few random spanning trees

resemble the graph?

E.g. is the weight across each cut similar?

Starter question:
Are the edge weights similar in expectation?



Random spanning trees
Graph G

Tree distribu =\

Pick a random tree




Random spanning trees
Graph G

Tree distribution

Pick a random tree De = 1/2

De: probability of edge present



Random spanning trees
Graph G

Tree distribution

Pick a random tree Pe = 5/8

De: probability of edge present



Sp oo oo oo oo ool

Getting the expectation right:

(1

p_eWG (e) w. probability p,

wr(e) = <

0
L O.W.

Ewr(e) = pe - ~-wg(e) = wg(e)



Reweighted random spanning trees

Original weights Tree weights
1 1 8/5
1 2
1 1

8/5



Reweighted random spanning trees

Original weights Tree weights

1 /"1 8/5 8/5
1

1 1 8/5



Reweighted random spanning trees

Original weights Tree weights

1 1 1/pe

1 1 random
tree




Reweighted random spanning trees

Original weights
1 1

The average weig

Tree weights

1/pe

random
tree

Nt over trees equals t

ne original weight

Does the tree “be

nave like” the origina

-1.96 0 1.96

graph?



Preserving cuts?

GivencutS € V,

we(S,S) = 2 Wap
(a,b)EENSXS

Want forall S €V ~ B
wr(S,S) = wg(S,S)

with high probability? 196 0 196

Too much to ask of one tree!

How many edges are necessary?



Independent edge samples

( graph Q}

Flip a coin for each edge to decide if present

H random graph, independent edges

<
-
<>
A



Independent edge samples

( graph Q}

Flip a coin for each edge to decide if present

H random graph, independent edges

NS RNV,

VDALY,

AN <\\\< N
oMl N



Independent edge samples

V
»
<

G H <>\></v<>
d'adad %%
AL

AN N

A
° ;V;\\\@

°>/>\>

Getting the expectation right:
(1
— Wg (e) -
w. probabilit
WH(B) _ < pe p ype

0
\ 0.W.

1

Ewy(e) = pe - EWG(Q) = wg(e)



Preserving cuts?

Benczur-Karger ‘96
Sample edges independently with

“well-chosen” coin probabilities p,,

s.t. H has on average O{c=2nlogZn) 0(c¢ *nlogn)

Edges then w.h.p. forallcuts S € V

(1—)wgs(S,S) <wy(S,S) <A+ )we(S,S)

Proof sketch

Count #cuts of each size
Chernoff concentration bound per cut

-1.96 0 1.96



Reweighted ra

Original weights
1 1

The average weig

ndom tree

Tree weights

1/pe

random
tree

Nt over trees equals t

ne original weight

Does the tree “be

nave like” the origina

-1.96 0 1.96

graph?



Combining trees

Maybe it’s better if we average a few trees?

1
2

f

8/5

2

8/5

_|_

8/5

8/5

8/5

\

8/5

4/5




Preserving cuts?

Fung-Harvey & Hariharan-Panigrahi ‘10
let H = % t_, T; be the average of t = 0(c~?log? n)

reweighted random spanning trees of G
then w.h.p. forall cuts S € V

(1—w:(S,S) <wy(S,S) <1 +aw:(Ss,S)

Proof sketch

Benczur-Karger cut counting
Scalar Chernoff works for negatively correlated variables

-196 O 1.96



Preserving cuts?

Goyal-Rademacher-Vempala ‘09
Given an unweighted bounded degree graph G,

let H = % ‘_1 T; be the average of 0(1) unweighted

random spanning trees of G
then w.h.p. forall cuts S € V

Q(1/logn)wg(S,S) < wy(S,S) < wg(S,S)

Proof sketch

Benczur-Karger cut counting + first tree gets small cuts
Scalar Chernoff works for negatively correlated variables

-1.96 0 1.96



Preserving more than cuts:
Matrices and quadratic forms



Laplacians: It’s springs!

Weighted, undirected graph G = (V,E,w), w:E - R,

The Laplacian L is a |V |X|V| matrix describing G

On each edge (a, b), put a spring between the vertices.
<o #

Nail down each vertex a at position x(a) along the real line.

L/
x(la) x(lb) x(lc)




Laplacians: It’s springs!

x(a ”3 ‘ x(b)
Length = |x(a) — x(b)| ,
Energy = spring const. - (length)? = wyg, (x(a) — x(b))

X"Lx = ¥4 pyer Wab (x(a) — x(b))2



Laplacians

x'Lx = ¥ (a,p)er Wab (x(@) - x(b))z “© ;

— Z(a,b)EE xTL(a,b)x c

L = Z(a,b)eg L ap) “baby Laplacian” per edge

a b

Liapy =Wap :
b




Laplacian of a graph

I -1 0
-1 1 0
0O 0 O
1
1
2
2 0 =2
0O 0 O
-2 0 2



Preserving matrices?

Suppose H is a random weighted graph s.t.
for every edge e, Ewy(e) = wg(e).

Then ELy = L

Does Ly “behave like” L;?



Preserving quadratic forms?

Forallx e RY

AT T T
GA = >~
(1—e)x' Lex<x'Lyx<(1+¢€)x L;x

-1.96 0 1.96

with high probability?

Useful?

Since 1. L;1¢ = w (S, S)

implies cuts are preserved by letting x = 1;.
Quadratic form crucial for solving linear equations



Preserving quadratic forms?

Spielman-Srivastava 08 (a la Tropp)
Sample edges independently with

“well-chosen” coin probabilities p,,
s.t. H has on average O(¢ *nlogn) edges
then w.h.p. forall x € RY

Q—e)x"Lex<x"Lyx<(1+&x"Lgx

Proof sketch A
Bound spectral norm of sampled edge “baby Laplacians”
Matrix Chernoff concentration



What sampling probabilities?

Spielman-Srivastava ‘08
“well-chosen” coin probabilities

x"L,x

cC max
Pe X xTLx

What is the marginal probability of edges being
present in a random spanning tree?

xTLox

Also proportional to max —
xr X'Lx

(')

Random spanning trees similar to sparsification?



Preserving quadratic forms?

K.-Song ‘18

let H = % t_, T; be the average of t = 0(c~?log? n)
reweighted random spanning trees of G

then w.h.p. forall x € RY

1—)x"Lex<x"Lyx<(1+&)x"Lgyx

-1.96 0 1.96

Proof sketch
Bound norms of sampled matrices (immediate via SS’08)

Strongly Rayleigh matrix Chernoff concentration



Random spanning trees

1
x' =

i1 Ly, x =, x"Lgx, t= e %log*n
Lower bound (K.-Song ’18)

t = Q(e % logn) needed for e-spectral sparsifier

Open question
Right number of logs?

Guess: O(¢ % logn) trees



Random spanning trees

More results (K.-Song ’18)

x"Lyx <0(ogn)x"L;x forallx w.h.p.
= in &-spectrally connected graphs

random tree is O (¢ log n)-spectrally thin

Lower bounds

In some graphs, w. prob. > 1 — e~ 94" there exists x s.t.

Tr 1 logn T
— X L;x
x Tx$810glogn G

and forsomey, y'L;y £y 'Ly

In a ring graph, there exists x, y s.t.

x"Lyx £ x"L;x and anz y'Ley £ y'Lry



Proving the strongly Rayleigh
matrix Chernoff bound



An illustrative case

x"Lyx < 0(ogn) x"Lyx forallx w.h.p.



Loewner order

A<XB iffforallx x"Ax < x'Bx
x"Lyx < 0(ogn)x"Lyx for all x

Ly < O(logn)L,



Proof strategy?

Convert problem to Doob martingales
Matrix martingale concentration

Control effect of conditioning via coupling
Norm bound from coupling

Variance bound: coupling symmetry + shrinking marginals



What is a martingale?

A sequence of random variables Yy, ..., Yk s.t.
E[Y;|Yy, ... Yioql =Yg !

A
um/ M\f }ﬂﬂ fA { (ﬁ w
M}"W\ { W \'AW\#”MM/\ \'\/m\y

M j /« xw”\

VR “*x mﬁ‘““ fW r}é‘“ww""w[ N mﬂr‘hg

’i\“; M ﬁ\{ *i l\
kl fh’ Mw{\ ﬁ'u"'f \va hjﬁ

1 1 1 1
0 100 200 300 400 500
Time

Many concentration bounds for independent random
variables can be generalized to the martingale case,

to show Y, = Yy w.h.p.

-1.96 0 1.96



Concentration of martingales

Why do martingales exhibit concentration?

Each difference is zero mean,

conditional on previous outcomes
IE[Y Y_]_lYO, l— ] =0

If each difference Y; — Y;_1 is small, then

Ve—Yo=2Yi—Yi-1=0

y .

-1.96 0 1.96



Doob martingales

Random variables Vi, o Vi NOT indep.

Goal: Prove concentration for  f (¥4, .., V%)

where f is “stable” under small changes to v, ..., V&

f(yl' '"i)/k) ~ IEf(Yl) ---;yk) ?

-1.96 0 1.96

Also need y4, ..., Y stable under conditioning



Doob martingales

Pick random outcome vy, ..., ¥; from distribution
Yo = Elf (v, 0 vi))
Y1 = Elf(va, o Vi V4]

Elf (y1, -, Vi) |y, vl

L) [\F
1

Yk — E[f(yl' ""]/k)lle V2, 'yk — f(ylr ---;yk)

EY; = Ey, [E[f (ry, -, vidlval] = E[f (1, - )] = Yo

- Martingale!
E[Y; — Y;_1|prev.steps| = 0 Despite y4, ..., Yk

NOT independent

Show Yy, ~ Yo, i.e. £(rts v Vi) ~ Ef s wrvi) AN




Our Doob martingale

Reveal one edge of tree at a time

_et y; denote the index of the ith edge of the tree

Pick random treeas T = y4,¥2, ..., Yn—-1

LT — f()/b V2, ---;yn—l)
Yy = E[Lr ]

Y, = E[Lr|y4]

Y1 =E[Lr|y1, V2 - Yn-1]=L7
E|Y; — Y;_{|prev.steps] = 0



Our Doob martingale

Want to show

Y,_1=LrisclosetoY, = E[L7] ‘
Yn_l — Y() — Zi Yi o Yi_l -196 0  1.96

Matrix martingale concentration?

Matrix Freedman (Tropp ‘11)

Norm Y, —-Y,_{l <1

Variance ||X; E[(Y;=Y;_1)#| prev.steps]|| < 0(logn)
implies w.h.p

Ly < O(logn)L,g



Our Doob martingale

Want to show

Y,_1=LrisclosetoY, = E[L7] ‘
Yn_l — Y() — Zi Yi o Yi_l -196 0  1.96

Matrix martingale concentration?

Matrix Freedman (Tropp ‘11)

Norm Y, —-Y,_{l <1

Variance ||X; E[(Y;=Y;_1)?| prev.steps]|| < 0(logn)
implies w.h.p

Ly < O(logn)L,g

How can we understand Y, = E[L7 |Vq, ..., Va2]?

difficult



How does conditioning change the distribution?
Graph

Tree distribution

Al .,:e

Conditional (D <\. o (D (D
) (0 @) O @& (1) ) O] & (1)
() © (3) () ()

Pick a random tree, conditional on red edge present?



How does conditioning change the distribution?

How similar are the distributions?

Tree distribution

A P A
Conditional : : :




How does conditioning change the distribution?

How similar are the distributions?

Tree distribution

All £

oo ofpale o s

Conditional
&)




How does conditioning change the distribution?

Tree distribution

How similar are the distributions?
All T © - ®

:
Cond. T’ e:e

Coupling  Pick pair (T, T') with marginals as above




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

A PR
Cond. T’ e:oo:oo:e

Coupling  Pick pair (T, T') with marginals as above



How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

A R
Cond. T’ e:o :

Coupling  Pick pair (T, T') with marginals as above




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

S A A
Cond. T’ o:ee:e

Coupling  Pick pair (T, T') with marginals as above

N we




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

T e ST A4
Cond. T’ o:e o:oe:e

Coupling  Pick pair (T, T') with marginals as above
O

N




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

T o ST
Cond. T’ e:e

Coupling  Pick pair (T, T') with marginals as above

g




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

0, () 0. O ® O (0 0,
All T Q‘Q d‘bd‘p
) ® O, ®) &) ®) ® ®)
(D 0 (D 0 (D
Cond. T’ g W & ‘ 0] (6] ‘ ®
O, ® ) ® ®)
Coupling  Pick pair (T, T') with marginals as above

\\/O\ o




How does conditioning change the distribution?

How similar are the distributions?
Tree distribution

T e S
Cond. T’

Coupling  Pick pair (T, T') with marginals as above

\\ / o




Coupling table — difference < 2

P ap oI P AP alpale oo ole

el’g 6374_0 eQ’E

@/@ -
.) & ©
o ©
Q)

o
oo~
Q)
(@)
Bl—
Q)
(\V)
SN

O]

0|

64,_ 617

(oI

3
647E 61,

©

€4, 20

oo

€1,



Good couplings

Stochastic covering property
For k-homogenous strongly Rayleigh distributions
a coupling of (T, T") with difference < 2 always exists.

[Borcea-Branden-Liggett '09]
[Peres-Pemantle ‘14]



Coupling table has more structure

Alice, Bob, Charlie want to form a tree,

by each selecting one edge: y1, V2, V3



Coupling table has more structure

Alice picks y4
How much does this restrict Bob and Charlie?

TP %G

©

©



Coupling table has more structure

Alice picks y4

How much does this restrict Bob and Charlie?

G <o S er o

@ @’?@C

©

©

After Bob and Charlie choose their edges,
they enlist Anna to pick an extra edge, ¥4

Anna can choose that edge s.t.
Anna, Bob, & Charlie, obtain original distribution



Coupling table has more structure

Recover the original distribution by adding
a “make-up edge” to conditional distribution

G <o & el o

’8 €3, 40 €2, 40

1 2
€65 10 €25 10

ool

€1,

@”Zﬁ@

©

ool

3
€4, 40 €1,

o=

3
6474_0 €1,

©

3
€4, 20

ool

€1,



Coupling table has more structure

Recover the original distribution by adding < 1
“make-up edge” to conditional distribution

G < & ey o

V1

A
p—
=

€3, 40 €2, 40

o

1 2
€6, 40 €2, 40

ool

€1,

@ @iﬂ(

ool

3
€4, 40 €1,

o=

3
6474_0 €1,

©

3
€4, 20

ool

€1,



Coupling table has more structure

Recover the original distribution by adding < 1
“make-up edge” to conditional distribution

G Ol

’8 €3, 40 €2, 40

1 2
€6, 40 €2, 40
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€1,
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©
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Coupling table has more structure

Recover the original distribution by adding < 1
“make-up edge” to conditional distribution

R

’8 €3, 40 €2, 40

1 2
€6, 40 €2, 40

ool

€1,

©

ool

3
€4, 40 €1,

o=

3
6474_0 €1,

©

3
€4, 20

ool

€1,



Coupling table has more structure

Alice, Bob, Charlie Anna, Bob, Charlie
V1 )71”makeup edge”

Conditional distribution Original distribution (!)
Y, - Y,

= E[L7|y1] — E[Lf]
= [E[Alice + Bob + Charlie|Alice] — [E[Anna + Bob + Charlie|Alice]
= Alice — [E[Anna|Alice]

= LY1 o E[L71|y1]



Coupling table has more structure

Alice, Bob, Charlie Anna, Bob, Charlie
V1 )71”makeup edge”
Conditional distribution Original distribution (!)
Y, - Y,
= E[Lr|y,] — E[L7]

1, Yo 5] | [E L, ] )

< max(||Ly, ||, E[[|Ly, [|Iy])
< max||L|| =1



Coupling table has more structure

Alice, Bob, Charlie Anna, Bob, Charlie
V1 )71”makeup edge”

Conditional distribution Original distribution (!)

IE:Yl _YO: — O

E[Y; — Yol =E|L, —E[Ly,[n:]| =0
So

E[L),| = E [IE[L%Wl”
Alice ‘ Anna, “makeup edge”

Important symmery



Coupling table has more structure

Alice, Bob, Charlie Anna, Bob, Charlie

~

Y1 V1 “makeup edge”

Conditional distribution Original distribution (!)

E[(Y1—Y)?] = E [(Lh B IE[L]71|)/1])2]
= [ [L% + E[L71|V1]2]
< E[Ly, + E[Ly, |14] |

< 2E|L,,|



Coupling table has more structure

E[(Y1—Y¢)?] < 2E|L,, ]

I 1 1
E|L,, | = —E[L;] = —Lg

n—1 n—1

2
So E[(Y1—Y()*] < — Lg



Later steps

What aboutY; — Y,_{?
Boils down to bounding IE[Lyt| V1, V2, o) )’t—1]



How does conditioning change the distribution?
Graph

Tree distribution

Al .,:e

Conditional (D <\. o (D (D
) (0 @) O @& (1) ) O] & (1)
() © (3) () ()

Pick a random tree, conditional on red edge present?



How does conditioning change the distribution?

Graph /

Tree distribution

" Gl fear e
Conditional e:g@:g

“Shrinking Marginals Lemma”
All other edges become less likely



How does conditioning change the distribution?

Graph /
Tree distribution

All .,:e
Conditional °:° e:e

“Shrinking Marginals Lemma”

All other edges become less likely % = 0.625 vs %z 0.6



How does conditioning change the distribution?

Graph /

Tree distribution

RO ST A
Conditional e:g@:g

“Shrinking Marginals Lemma”
All other edges become less likely g = 0.5 vs E: 0.4



Later steps

E[remaining edges| ¥4, V2, ., Vi—1] < E[Ly] = L

‘

Shrinking
marginals

[E[Lyil Y1, V2, "')yi—l] < ﬁLG

2
i ]E[(Yi—yi—1)2| prev. steps] < ZiELG = 0(logn) Lg



Our Doob martingale

Want to show

Y., i=LyisclosetoY, = E|[L ] ‘
Yoo —-Yo=2Yi Y4

-1.96 0 1.96

Matrix Freedman (Tropp ‘11)

Norm Y, —-Y._{ <1

Variance ||Y; E[(Y;=Y;_1)#]| prev.steps]|| < 0(logn)
implies

Ly < O(logn)L; w.h.p



Concentration of random matrices

Strongly Rayleigh matrix Chernoff [K. & Song 18]
Fixed 4; € R%*4, positive semi-definite

¢ € {0,1}™ is k-homogeneous strongly Rayleigh
Random X = )3; £(i)A;

L IEX]] = u

2. |4l <7

2
P[l|X — EX|| > ue] < d 2exp ( r(lo‘uggk+8))



Open Questions

Our bound for k-homogeneous strongly Rayéeigh
_ UE
Pl X — EX]|| > <d?2
I1X — EX|| > pe] < d 2exp | — oms

Remove the log k?

Remove homogeneity condition

Find more applications

Show log n sparsifier from O(1) spanning trees?



Thanks!



