Random Walk on Simplicial Complexes

Tali Kaufman (BIU) and Izhar Oppenheim (BGU)
Simplicial Complexes

Random walks on Simplicial Complexes
How well can the RW mix
High dimensional local spectral expanders
Decomposition Theorems for Random Walks on HD expanders
Simplicial Complexes - Abstract Definition

A d-dimensional simplicial complex X is defined as follows:

1. V is a set of vertices
2. For every $-1 \leq k \leq d$, the set of k-simplices of X, denoted $X(k)$, is a subset of $\binom{V}{k+1}$ and we denote $X = \bigcup_k X(k)$
3. If $\sigma \in X$, then for every $\tau \subseteq \sigma$, $\tau \in X$
A d-dimensional simplicial complex X is defined as follows:

1. V is a set of vertices.
2. For every $-1 \leq k \leq d$, the set of k-simplices of X, denoted $X(k)$, is a subset of $\binom{V}{k+1}$ and we denote $X = \bigcup_k X(k)$.
3. If $\sigma \in X$, then for every $\tau \subseteq \sigma$, $\tau \in X$.

Below X is always assumed to be finite ($|V| < \infty$) and pure d-dimensional (every k-simplex is contained in a d-dimensional simplex).
Geometric interpretation
Define $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$, e.g., $C^0(X)$ are functions from vertices of X to \mathbb{R}.
Define $C^k(X) = \{\phi : X(k) \to \mathbb{R}\}$, e.g., $C^0(X)$ are functions from vertices of X to \mathbb{R}.

Define the following inner-product on $C^k(X)$:

$$\langle \phi, \psi \rangle = \sum_{\eta \in X(k)} w(\eta)\phi(\eta)\psi(\eta),$$

where w is a weight function which "takes into account" the higher dimensional structure (explicitly, $w(\tau) = (d - k)! \sum_{\sigma \in X(d), \tau \subseteq \sigma} w(\sigma), \forall \tau \in X(k)$).
Random Walks on Simplicial Complexes
The k-random walk is a random walk on $X(k)$ defined as follows: for $\tau \in X(k)$

1. **Up step**: Choose $\eta \in X(k + 1)$ such that $\tau \subseteq \eta$ at random (according to the weight function w)

2. **Down step**: Choose at random $\tau' \in X(k)$ such that $\tau' \subseteq \eta$

We denote by $M_k^+ : C^k(X) \to C^k(X)$ the operator corresponding to this random walk.
Up and Down operators

Define the Up operator $U_k : C^k(X) \rightarrow C^{k+1}(X)$: for $\phi \in C^k(X), \eta \in X(k + 1)$,

$$(U_k \phi)(\eta) = \sum_{\tau \in X(k), \tau \subseteq \eta} \phi(\tau).$$
Up and Down operators

Define the Up operator $U_k : C^k(X) \to C^{k+1}(X)$: for $\phi \in C^k(X), \eta \in X(k+1)$,

$$(U_k \phi)(\eta) = \sum_{\tau \in X(k), \tau \subseteq \eta} \phi(\tau).$$

Define the $Down$ operator $D_{k+1} : C^{k+1}(X) \to C^k(X)$: for $\psi \in C^{k+1}(X), \tau \in X(k)$,

$$(D_{k+1} \psi)(\tau) = \sum_{\eta \in X(k+1), \tau \subseteq \eta} \frac{w(\eta)}{w(\tau)} \psi(\eta).$$
Up and Down operators

Define the \textit{Up} operator $U_k : C^k(X) \rightarrow C^{k+1}(X)$: for $\phi \in C^k(X), \eta \in X(k + 1)$,

$$(U_k \phi)(\eta) = \sum_{\tau \in X(k), \tau \subseteq \eta} \phi(\tau).$$

Define the \textit{Down} operator $D_{k+1} : C^{k+1}(X) \rightarrow C^k(X)$: for $\psi \in C^{k+1}(X), \tau \in X(k)$,

$$(D_{k+1} \psi)(\tau) = \sum_{\eta \in X(k+1), \tau \subseteq \eta} \frac{w(\eta)}{w(\tau)} \psi(\eta).$$

$U_k^* = D_{k+1}$, $M_k^+ = \frac{1}{k+2} D_{k+1} U_k$
The 0-random walk in graphs

Assume that X is a regular graph. What is M_0^+?
The 0-random walk in graphs

Assume that X is a regular graph. What is M_0^+?

1. Up step

2. Down step

Note: This is not the usual random walk, but a lazy RW (has probability 0.5 to stay at the vertex).
Motivating questions

Note:

- $M_k^+ 1 = 1$.
- M_k^+ is self-adjoint and all its eigenvalues are in $[0, 1]$.
- Under mild connectivity conditions on X, every eigenfunction $\phi \perp 1$ has eigenvalue < 1.

Questions:

1. Can we bound the second largest eigenvalue of $M_k^+ + k$, in other words, can we find μ such that for all $\phi \perp 1$, $\langle M_k^+ \phi, \phi \rangle \leq \mu \| \phi \|_2$?

2. What can we say about $\langle M_k^+ \phi, \phi \rangle$ for a specific ϕ beyond the bound on the second eigenvalue?
Motivating questions

Note:

- $M_k^+ 1 = 1$.
- M_k^+ is self-adjoint and all its eigenvalues are in $[0, 1]$.
- Under mild connectivity conditions on X, every eigenfunction $\phi \perp 1$ has eigenvalue < 1.

Questions:

1. Can we bound the second largest eigenvalue of M_k^+?
Motivating questions

Note:

- \(M_k^+ \mathbb{1} = \mathbb{1} \).
- \(M_k^+ \) is self-adjoint and all its eigenvalues are in \([0, 1]\).
- Under mild connectivity conditions on \(X \), every eigenfunction \(\phi \perp \mathbb{1} \) has eigenvalue \(< 1\).

Questions:

1. Can we bound the second largest eigenvalue of \(M_k^+ \), in other words, can we find \(\mu \) s.t. for all \(\phi \perp \mathbb{1} \),
\[
\langle M_k^+ \phi, \phi \rangle \leq \mu \| \phi \|^2?
\]
Motivating questions

Note:

- $M_k^+ 1 = 1$.
- M_k^+ is self-adjoint and all its eigenvalues are in $[0, 1]$.
- Under mild connectivity conditions on X, every eigenfunction $\phi \perp 1$ has eigenvalue < 1.

Questions:

1. Can we bound the second largest eigenvalue of M_k^+, in other words, can we find μ s.t. for all $\phi \perp 1$, $\langle M_k^+ \phi, \phi \rangle \leq \mu \| \phi \|^2$?

2. What can we say about $\langle M_k^+ \phi, \phi \rangle$ for a specific ϕ beyond the bound on the second eigenvalue?
How well can the RW mix
How well can the RW mix? (1)
How well can the RW mix? (2)

\[M_1^+ \phi = \]

\begin{array}{cccccc}
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{3}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{3}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{2}{3} & \frac{3}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
\end{array}
How well can the RW mix? (3)

\[
\phi = \\
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

\[
M_1^+ \phi = \\
\begin{bmatrix}
-1 & -1 & 0 \\
0 & -1 & -1 \\
0 & 0 & -1 \\
\end{bmatrix}
\]

\[
\langle M_1^+ \phi, \phi \rangle = \frac{2}{3} \| \phi \|^2
\]
Observe that the obstruction to $\frac{1}{3}$-mixing came from “below”: $\phi = U_0 \psi$ where ψ is 1 on one vertex and -1 on the other (0 everywhere else)
Observe that the obstruction to $\frac{1}{3}$-mixing came from “below”: $\phi = U_0 \psi$ where ψ is 1 on one vertex and -1 on the other (0 everywhere else).

\[\psi = \quad \vdots \quad \cdots\]

This is a general phenomenon: in general, for $k > 0$, in the k-walk we should expect to see $\frac{2}{k+2}, \ldots, \frac{k+1}{k+2}$ “obstructions” coming from dimensions $k - 1, \ldots, 0$.
High dimensional local spectral expanders
Given a simplex $\tau \in X$, the \textit{link} of τ is the subcomplex of X, denoted X_τ and defined as

$$X_\tau = \{ \sigma \in X : \sigma \cap \tau = \emptyset, \sigma \cup \tau \in X \}$$
Given a simplex $\tau \in X$, the link of τ is the subcomplex of X, denoted X_τ and defined as

$$X_\tau = \{ \sigma \in X : \sigma \cap \tau = \emptyset, \sigma \cup \tau \in X \}$$
1-Skeleton

The 1-Skeleton of a complex is the graph $(X(0), X(1))$:
High dimensional local spectral expanders - definition

For a constant $0 < \lambda < 1$, X is called a one-sided (two sided) λ-local spectral expander if:

1. The 1-skeleton of X is connected and normalized spectrum of the 1-skeleton of X is contained in $[-1, \lambda] \cup \{1\}$ (two-sided: $[-\lambda, \lambda] \cup \{1\}$).

2. For every $\tau \in X(k), k < d - 1$, 1-skeleton of X_τ is connected and normalized spectrum of the 1-skeleton of X_τ is contained in $[-1, \lambda] \cup \{1\}$ (two-sided: $[-\lambda, \lambda] \cup \{1\}$).

Normalized spectrum = normalized according to the weight function w.
Local spectral expansion can be deduces “very” locally

Theorem (O.): If X and all the links (of dim. ≥ 1) are connected and the second e.v. for all the 1-dimensional links is $\leq \frac{\lambda}{1+(d-1)\lambda}$, then X is λ-local spectral expander.
Local spectral expansion can be deduced “very” locally.

Theorem (O.): If X and all the links (of dim. ≥ 1) are connected and the second e.v. for all the 1-dimensional links is $\leq \frac{\lambda}{1+(d-1)\lambda}$, then X is λ-local spectral expander.

If in addition the smallest e.v. all the 1-dimensional links is $\geq \frac{-\lambda}{1+(d-1)\lambda}$, then X is a two-sided λ-local spectral expander.
Previous work on high order walks

- First introduced by Kaufman and Mass, who studied it for ONE sided local spectral expanders; they got $1 - \frac{1}{(k+2)^2} + f(\lambda, k)$ on second e.v of M_k^+.
- Later improved by Dinur and Kaufman who studied it for TWO sided local spectral expanders; they $1 - \frac{1}{k+2} + O(\lambda(k+1))$ on second e.v of M_k^+; This was useful for agreement expansion questions.
Decomposition Theorems for Random Walks on HD expanders.

Simplicial Complexes
Random walks on Simplicial Complexes
How well can the RW mix
High dimensional local spectral expanders
Decomposition Theorems for Random Walks on HD expanders
If X is λ-local spectral expander and $\phi \in C^k(X)$, $\phi \perp 1$, then

1. ϕ can be “projected” on $C^i(X)$, $0 \leq i \leq k$
2. These projections control how well the random walk mixes: the more ϕ is concentrated at the higher dimensions, the faster the mixing.
Decomposition Theorem - exact formulation

Main Theorem: Let X be a λ-local spectral expander and $0 \leq k \leq d - 1$ constant. For any $\phi \in C^k(X)$, $\phi \perp 1$ there are $\phi^k \in C^k(X), \phi^{k-1} \in C^{k-1}(X), \ldots, \phi^0 \in C^0(X)$ such that

$$\phi^k \perp 1, \ldots, \phi^0 \perp 1,$$

$$\|\phi\|^2 = \|\phi^k\|^2 + \|\phi^{k-1}\|^2 + \ldots + \|\phi^0\|^2,$$

$$\langle M_k^+ \phi, \phi \rangle \leq \sum_{i=0}^{k} \left(\frac{k+1-i}{k+2} + \lambda f(k, i) \right) \|\phi^i\|^2,$$

$$(f(k, i) = \frac{(k+i+2)(k+1-i)}{2(k+2)}).$$
Bound on the second eigenvalue

\[\langle M_k^+ \phi, \phi \rangle \leq \sum_{i=0}^{k} \left(\frac{k + 1 - i}{k + 2} + O((k + 1)\lambda) \right) \| \phi^i \|^2. \]

When \(\lambda \) is small, we note that the coefficients of the \(\| \phi^i \| \)'s in the sum above become larger as \(i \) becomes smaller. Therefore, the “worst case scenario” is when \(\| \phi \|^2 = \| \phi^0 \|^2. \)
Bound on the second eigenvalue

\[\langle M_k^+ \phi, \phi \rangle \leq \sum_{i=0}^{k} \left(\frac{k+1-i}{k+2} + O((k+1)\lambda) \right) \| \phi^i \|^2. \]

When \(\lambda \) is small, we note that the coefficients of the \(\| \phi^i \| \)'s in the sum above become larger as \(i \) becomes smaller. Therefore, the “worst case scenario” is when \(\| \phi \|^2 = \| \phi^0 \|^2 \). In that case

\[\langle M_k^+ \phi, \phi \rangle \leq \left(\frac{k+1}{k+2} + \lambda \frac{k+1}{2} \right) \| \phi \|^2, \]

and therefore the second eigenvalue is bounded by \(\frac{k+1}{k+2} + \lambda \frac{k+1}{2} \).
A more explicit decomposition for 2-sided λ-local spectral expanders

(Inspired by Dikstein, Dinur, Filmus and Harsha)

Assuming 2-sided λ-local spectral gap:

- The non-trivial spectrum of M_k^+ is contained in $\left[\frac{1}{k+2} - f(k)\lambda, \frac{1}{k+2} + f(k)\lambda\right] \cup \ldots \cup \left[\frac{k+1}{k+2} - f(k)\lambda, \frac{k+1}{k+2} + f(k)\lambda\right]$.

- The eigenspaces are $O(\lambda)$-approximated by the U operators images.
Some words about the proofs (if time permits)
Thank you for listening