Progress and Problems in Discrepancy

Nikhil Bansal
(CWI and Eindhoven)

Discrepancy

Universe: $\mathrm{U}=[1, \ldots, \mathrm{n}]$
Subsets: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}}$
Color elements red/blue so each set is colored as evenly as possible.

Given $\chi:[\mathrm{n}] \rightarrow\{-1,+1\}$
$\operatorname{Disc}(\chi)=\max _{S}\left|\sum_{i \in S} \chi(\mathbf{i})\right|=\max _{S}|\chi(S)|$
Disc $($ set system $)=\min _{\chi} \max _{S}|\chi(S)|$
Capture various properties of the set system.
Lots of questions/applications in various areas.

Discrepancy

Given an $m \times n$ matrix A, find $x \in\{-1,1\}^{n}$, to minimize $\operatorname{disc}(\mathrm{A})=|A x|_{\infty}$
Incidence matrix $A=\left(\begin{array}{cccc}1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \text { Rows: sets } \\ \text { Columns: elements } & 1 & \cdots & 0\end{array}\right)$

Vector balancing view: Given vectors $v_{1}, \ldots, v_{n} \in R^{m}$ find $x \in\{-1,1\}^{n}$ to minimize $\left|\sum_{i} x_{i} v_{i}\right|_{\infty}$

Can also consider more general norms K : symmetric convex body
Find $x \in\{-1,1\}^{n}$ to minimize $\left|\sum_{i} x_{i} v_{i}\right|_{K}$

Discrepancy: All about beyond the probabilistic method

Two problems: Spencer's setting, Komlos' problem
Open questions (could geometry of polynomials help?)

Classical methods from discrepancy:
Partial Coloring Method, Banaszczyk's method
(Non-constructive, argue about all colorings simultaneously)

Recent algorithmic approaches.
New algorithmic ways to go beyond the probabilistic method

Can they help for Kadison Singer, applications of interlacing poly?

Two examples

Spencer Setting: Discrepancy of any set system on n elements and m sets?
[Spencer'85]: (independently by Gluskin'87)
For $\mathrm{m}=\mathrm{n}$ discrepancy $\leq 6 \mathrm{n}^{1 / 2}$

Tight: Cannot beat $0.5 \mathrm{n}^{1 / 2}$ (Hadamard Matrix).

Random coloring gives $\mathrm{O}(\mathrm{n} \log \mathrm{n})^{1 / 2}$
Proof: For set $S, \operatorname{Pr}\left[\operatorname{disc}(S) \approx c|S|^{1 / 2}\right] \approx \exp \left(-c^{2}\right)$ Set $\mathrm{c}=\mathrm{O}(\log \mathrm{n})^{1 / 2}$ and apply union bound.

Tight. Random gives $\Omega(\mathrm{n} \log \mathrm{n})^{1 / 2}$ with very high prob.

Spencer setting

More generally: $\mathrm{O}\left(n^{1 / 2} \log ^{1 / 2}\left(\frac{m}{n}\right)\right)$ for m sets, n elements
Random: $(n \log m)^{1 / 2}$
Nothing special about $0 / 1$. e.g. $\left|a_{i j}\right| \leq 1$ also fine.
Invented the Partial Coloring Method (a key tool in discrepancy)

Open Problem: Matrix Spencer
Given (symmetric) A_{1}, \ldots, A_{n} with spectral norm ≤ 1
Is there a signing s.t. $\left|\sum_{i} x_{i} A_{i}\right|=O\left(n^{1 / 2}\right)$
For simultaneously diagonalizable matrices, follows from Spencer.

Komlos Problem

Given vectors $v_{1}, \ldots, v_{n} \in R^{m}$ with $\left|v_{i}\right|_{2} \leq 1$ find a signing to minimize $\left|\sum_{i} x_{i} v_{i}\right|_{\infty}$

Random coloring gives $\Omega\left(n^{1 / 2}\right)$
E.g. If $\mathrm{m}=1$, have $v_{i} \in[-1,1]$

Partial Coloring: O(log n)
Banaszczyk: $\mathrm{O}\left((\log n)^{1 / 2}\right)$

Conjectured bound: $\mathrm{O}(1)$

Beck Fiala Conjecture

Discrepancy of low degree set systems, where each element lies in at most t sets? (i.e. $0-1$ matrix where each column has $\leq t$ 1's).

Scaling by $\frac{1}{t^{1 / 2}}$ gives unit columns

Random: $\quad \Omega\left(\mathrm{n}^{1 / 2}\right) \quad$ (a row could have n 1 's)
Beck-Fiala' $81: 2 t-1,2 t-\log ^{\wedge *} \mathrm{t}$ [Bukh'16]
Banaszczyk'97: $t^{1 / 2}(\log n)^{1 / 2}$

Conjecture: $\mathrm{O}\left(t^{1 / 2}\right)$

Non-constructive methods

1) Partial Coloring Method:

Beck/Spencer early 80’s: Probabilistic Method + Pigeonhole Gluskin'87: Convex Geometric Approach

Very versatile
Loss adds over $\mathrm{O}(\log \mathrm{n})$ iterations

2) Banaszczyk'98: Based on a deep convex geometric result Produces full coloring directly

Spencer's O(n $\left.{ }^{1 / 2}\right)$ result

Partial Coloring suffices: For any set system with m sets, there exists a coloring on $\geq \mathrm{n} / 2$ elements with discrepancy
$\mathrm{O}\left(\mathrm{n}^{1 / 2} \log ^{1 / 2}(2 \mathrm{~m} / \mathrm{n})\right) \quad\left[\right.$ For $\mathrm{m}=\mathrm{n}$, disc $\left.=\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)\right]$

Algorithm for total coloring:

Repeatedly apply partial coloring lemma
Total discrepancy
$\mathrm{O}\left(\mathrm{n}^{1 / 2} \log ^{1 / 2} 2\right) \quad$ [Phase 1]
$+\mathrm{O}\left((\mathrm{n} / 2)^{1 / 2} \log ^{1 / 2} 4\right) \quad[$ Phase 2]
$+\mathrm{O}\left((\mathrm{n} / 4)^{1 / 2} \log ^{1 / 2} 8\right) \quad[$ Phase 3]
$+\ldots \quad=O\left(n^{1 / 2}\right)$

A geometric view

Spencer'85: Any 0-1 matrix ($\mathrm{n} \times \mathrm{n}$) has disc $\leq 6 \sqrt{n}$
Gluskin'87: Convex geometric approach

Consider polytope $\mathrm{P}(\mathrm{t})=-t \mathbf{1} \leq A x \leq t \mathbf{1}$ $\mathrm{P}(\mathrm{t})$ contains a point in $\{-1,1\}^{n}$ for $\mathrm{t}=6 \sqrt{n}$

Gluskin'87: If K symmetric, convex with large (Gaussian) volume (> $2^{-n / 100}$) then K contains a point with many coordinates $\{-1,+1\}$
d-dim Gaussian Measure: $\gamma_{d}(x)=\exp \left(-|x|^{2} / 2\right)(2 \pi)^{-d / 2}$ $\gamma_{d}(K): \operatorname{Pr}\left[\left(y_{1}, \ldots, y_{m}\right) \in K\right]$ each y_{i} iid $\mathrm{N}(0,1)$

What is the Gaussian volume of $[-1,1]^{n}$ cube

A geometric view

Gluskin'87: If K symmetric, convex with large (Gaussian) volume (> $2^{-n / 100}$) then K contains a point with many coordinates $\{-1,+1\}$

Similar to Minkowski's theorem:
K symmetric has a non-zero point in Z^{n}, if $\operatorname{Vol}(\mathrm{K})>2^{n}$

Proof: Look at $\mathrm{K}+\mathrm{x}$ for all $x \in\{-1,1\}^{n}$
Total volume of shifts $=2^{\Omega(n)} \quad \gamma_{n}(K+x) \geq \gamma_{n}(K) \exp \left(-|x|^{2} / 2\right)$
Some point z lies in $2^{\Omega(n)}$ copies
$z=k+x$ and $z=k^{\prime}+x^{\prime}$ where x, x^{\prime} have large hamming distance Gives $\left(x-x^{\prime}\right) / 2=\left(k-k^{\prime}\right) / 2 \in K$.

Gluskin for Polytopes

Gluskin'87: If K symmetric, convex with large (Gaussian) volume $\left(>2^{-n / 100}\right.$) then K contains a point with many coordinates $\{-1,+1\}$

Spencer's result proof:
Consider polytope $\mathrm{P}(\mathrm{t})=-t \mathbf{1} \leq A x \leq t \mathbf{1}$

Show Gaussian volume large enough for $\mathrm{t}=c \sqrt{n}$

Sidak's Thm: $\gamma_{n}(K) \geq \Pi_{i} \gamma_{n}\left(\right.$ Slab $\left._{i}\right) \quad \operatorname{Slab}_{i}=-t \leq a_{i} x \leq t$

Thm: Given an mxn matrix A, there is a partial coloring satisfying $\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$ for each row i, provided $\sum_{i} e^{-\lambda_{i}^{2}} \leq \frac{n}{5}$

Comparison w/ random coloring

Given an $m \mathrm{x}$ n matrix A , there is a partial coloring satisfying
$\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$ for each row i, provided $\sum_{i} e^{-\lambda_{i}^{2}} \leq \frac{n}{5}$

Can view as extending Chernoff bounds

1) $n / 5$ vs 1 (Chernoff)
2) Partial Coloring vs Full (Chernoff)
E.g. Can get 0 discrepancy on $\mathrm{n} / 10$ rows (very powerful) Key tool in most discrepancy problems

Application: Komlos

Claim: Get partial coloring with $\mathrm{O}(1)$ discrepancy.

Assume $n \leq m$ (linear algebraic argument)
For each column $\mathrm{j}, \quad \sum_{i} a_{i j}^{2} \leq 1$
Sum of $a_{i j}^{2}$ over all matrix entries $\leq n$
Average sum per row $\leq n / m \leq 1$.

Call a row i big if $\sum_{j} a_{i j}^{2}>10$. At most $\mathrm{n} / 10$ of these.
Set $\lambda_{i}=0$ for big rows. Else $\lambda_{i}=\mathrm{O}(1)$.
Gluskin: $\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$ for each row i, provided $\sum_{i} e^{-\lambda_{i}^{2}} \leq \frac{n}{5}$

Annoying loss of $\mathrm{O}(\log \mathrm{n})$ to get full coloring

Ideal case

Beck-Fiala Setting: At most $\mathrm{n} / 10$ big ($>10 \mathrm{t}$) sets

Partial Coloring: 0 for big sets.
About $s^{1 / 2}$ for small sets of size s.
"Ideal" life cycle of a set

Size $=\mathrm{t}$

Size t/2

\square Size $\mathrm{t} / 4$

Ideal case: Discrepancy $=t^{1 / 2}+(t / 2)^{1 / 2}+(t / 4)^{1 / 2}+\ldots$

What can go wrong

\square Size $=\mathrm{t}$
$\square \quad$ Size $=\mathrm{t}-t^{1 / 2}$

$$
\text { Size }=t-2 t^{1 / 2}
$$

Trouble: A set can get $t^{1 / 2}$ discrepancy, but very few elements colored.

Banaszczyk's method $O\left(\log ^{1 / 2} n\right)$ for Komlos

Banaszczyk's Theorem

Thm: Let A have columns $v_{1}, \ldots, v_{n} \in R^{m},\left|v_{i}\right|_{2} \leq 1 / 5$
$\mathrm{K}=$ symmetric convex body with $\gamma_{m}(K) \geq \frac{1}{2}$
$\exists x \in\{-1,1\}^{n}$ s.t. $\mathrm{Ax} \in K$

Constants somewhat arbitrary

For non-symmetric K, need
$\gamma_{m}(K)>1 / 2$ to ensure $0 \in K \quad$ (e.g. if halfspace)

Banaszczyk’s Theorem

Cube: $\mathrm{K}=\mathrm{O}(\log m)^{1 / 2}[-1,1]^{m} \quad \gamma_{\mathrm{m}}(\mathrm{K}) \geq 1 / 2$

Komlos: Given unit vectors in R^{m},

\exists signed sum $\mathrm{w} / \ell_{\infty}$-norm $\mathrm{O}(\log m)^{1 / 2}$

Surprising results for various bodies K.

Proof idea

Given v_{1}, \ldots, v_{n}, each $\left|v_{i}\right|<1 / 5 . \quad \gamma_{m}(K) \geq \frac{1}{2}$ Goal: Find signing $\sum_{i} x_{i} v_{i} \in K$

Key observation: Signing exists iff Some signing of v_{2}, \ldots, v_{n} with sum in $\left(K+v_{1}\right) \cup\left(K-v_{1}\right)$.

Convexify:

Remove regions of K width $<2\left|v_{1}\right|$ along v_{1}
Lose and gain volume. (non-trivial) computation to show volume stays $\geq 1 / 2$

Algorithmic history

Partial Coloring now constructive
Bansal' 10: \quad SDP + Random walk
Lovett Meka'12: Random walk + linear algebra
Rothvoss'14: Convex geometric
Many others by now [Harvey, Schwartz, Singh], [Eldan, Singh], [Lee], ...

Banaszczyk based approaches:
[B., Dadush, Garg' 16]: $O(\log n)^{1 / 2}$ algorithm for Komlos problem
[B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.

Useful View

Independent rounding.

$$
\text { Cube: }\{-1,+1\}^{\mathrm{n}}
$$

A (complicated) view
Brownian motion in cube.

Same as randomized rounding
Each coordinate rounded independently
(martingale property of the walk)

Useful View

If additional constraints. Can tailor walk accordingly.

Pick covariance matrix for Δx^{t} (slow down towards bad regions)

Design barrier functions

Lovett Meka Algorithm

Random walk, $\gamma \mathrm{N}(0,1)$ in each dimension
a) Fix jif $x_{j}= \pm 1$
b) If row a_{i} gets tight $\left(\operatorname{disc}\left(a_{i}\right)=\lambda_{i}\left|a_{i}\right|_{2}\right)$

Move in subspace $a_{i} \mathrm{x}=\lambda_{i}\left|a_{i}\right|_{2}$
(not violate discrepancy)

Thm: Given an mxn matrix A, finds a partial coloring satisfying $\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$ for each row i, provided $\sum_{i} e^{-\lambda_{i}^{2}} \leq \frac{n}{5}$

Lovett Meka Algorithm

Random walk, $\gamma \mathrm{N}(0,1)$ in each dimension
a) Fix jif $x_{j}= \pm 1$
b) If row a_{i} gets tight $\left(\operatorname{disc}\left(a_{i}\right)=\lambda_{i}\left|a_{i}\right|_{2}\right)$

Move in subspace $a_{i} \mathrm{x}=\lambda_{i}\left|a_{i}\right|_{2}$
(not violate discrepancy)

Idea: Walk makes progress as long as dimension $=\Omega(n)$ ($E\left[\sum_{i} x_{i}^{2}\right]$ rises by $\Omega(n) \gamma^{2}$ per step)

After $\frac{10}{\gamma^{2}}$ steps: $\operatorname{Pr}\left[\right.$ Row a_{i} tight $] \approx \exp \left(-\lambda_{i}^{2}\right)$
As $\sum_{i} \exp \left(-\lambda_{i}^{2}\right) \leq \frac{n}{5}$
so $\mathrm{n} / 5$ tight rows in expectation
As stays in cube, $\Omega(n)$ variables must have hit ± 1,

Recall trouble with Partial Coloring

Beck Fiala Setting

\square
\square
\square

Trouble: A set can get $t^{1 / 2}$ discrepancy, but very few elements colored.

Correlations in Lovett-Meka

Consider set $\mathrm{S}=\{1,2, \ldots, \mathrm{t}\}$

Ideal case: If randomly color each element

$$
\text { Progress }=t \quad \text { discrepancy } \approx t^{1 / 2}
$$

Suppose move in subspace $x_{1}=x_{2}=\cdots=x_{t}$

$$
\text { E.g. if have constraints } x_{1}-x_{2}=0, \quad x_{2}-x_{3}=0, \ldots
$$

Can only color all +1 or all -1 .
Progress $=\mathrm{t}$ discrepancy $=\mathrm{t}$

In Lovett-Meka, such sets hit subspace at $t^{1 / 2}$ discrepancy, but progress is only $t^{1 / 2}$

Suggests a solution

Used to get an algorithmic $O\left(\log ^{1 / 2} n\right)$ bound for Komlos
[B., Dadush, Garg' 16]

Can we design a walk that moves in some subspace, but still looks "random" enough?
E.g. If constrained to move in subspace $x_{1}=x_{2}=\cdots=x_{t}$

Just set $\Delta x_{i}=0$ for $\mathrm{i}=1,2, ., \mathrm{t}$
Can still do a random walk for $\mathrm{i}=\mathrm{t}+1, . ., \mathrm{n}$.

Better covariance matrices

W : arbitrary subspace $\operatorname{dim}(\mathrm{W}) \leq(1-\delta) n$
Need to walk in W^{\perp}

Property 1: $w^{T}(\Delta x)=0 \quad \forall w \in W$ -1/+1 cube

$$
E\left[w^{T} \Delta x \Delta x^{T} w\right]=0 \quad \text { or } \quad w^{T} Y w=0
$$

Covariance matrix $Y(i, j)=E\left[\Delta x_{i}, \Delta x_{j}\right]$
Property 2: Still looks almost independent.
For any direction $c=\left(c_{1}, \ldots, c_{n}\right)$

$$
\begin{aligned}
& E\left[\left(\sum_{i} c_{i} \Delta x_{i}\right)^{2}\right] \leq \frac{1}{\delta} \sum_{i} c_{i}^{2} E\left[\Delta x_{i}^{2}\right] \\
& c^{T} Y c \leq\left(\frac{1}{\delta}\right) c^{T} \operatorname{diag}(Y) c \quad \forall c \in R^{n} \\
& Y \preccurlyeq\left(\frac{1}{\delta}\right) \operatorname{diag}(Y)
\end{aligned}
$$

Can find such a good walk

Key Thm: If $\operatorname{dim}(W) \leq(1-\delta) n$
There is a non-zero solution Y to the SDP
$w^{T} Y w=0 \quad \forall w \in W$
$Y \preccurlyeq\left(\frac{1}{\delta}\right) \operatorname{diag}(Y)$
$Y \succcurlyeq 0$
Proof: Using SDP duality

Algorithm for Komlos

Time t: If n_{t} variables alive, at most $n_{t} / 10$ big rows
Pick $\mathrm{W}=$ span of these constraints.

Run the SDP walk.
No phases, continue till all variables $-1 /+1$ (i.e. $n_{t}=0$).

If row big $=$ discrepancy 0
When becomes small, just like a random walk.
"Freedman type" martingale analysis (avoid dependence on time steps), gives the result.

Making Banaszczyk Algorithmic

Thm [Banaszczyk 97]: Input $v_{1}, \ldots, v_{n} \in R^{d},\left|v_{i}\right|_{2} \leq 1$ \forall convex body K , with $\gamma_{d}(K) \geq \frac{1}{2}$
\exists coloring $x \in\{-1,1\}^{n}$ s.t. $\sum_{i} x(i) v_{i} \in 5 K$
K

Coloring depends on the convex body K.
How is K specified? (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov'16]: Minimax Thm. (2-player game) Universal distribution on colorings that works for all convex bodies

Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov'16]:
\exists distribution on colorings $x \in\{-1,1\}^{n}$,
s.t. $\mathrm{Y}=\sum_{i} x(i) v_{i}$ is $\approx \mathrm{N}(0,1)$ in every direction
$\mathrm{O}(1)$ subgaussian
$Y \in R^{d}$ is σ-subgaussian if in all directions $\theta \in R^{d},|\theta|_{2}=1$,
$\langle\theta, Y\rangle$ has same tails as $N\left(0, \sigma^{2}\right) \quad$ i.e. $\operatorname{Pr}[|\langle\theta, Y\rangle| \geq \lambda] \leq 2 \exp \left(-\lambda^{2} / 2 \sigma^{2}\right)$

Lemma: $Y \in K$ (for K convex, $\gamma_{d}(K) \geq \frac{1}{2}$) with constant prob.

Suffices to sample x implicitly from such a distribution.

Goal: \exists distribution on colorings $x \in\{-1,1\}^{n}$,
s.t. random vector $\mathrm{Y}=\sum_{i} x(i) v_{i}$ is $\mathrm{O}(1)$ subgaussian
$\forall \theta \in S^{m-1}, \quad\langle Y, \theta\rangle=\sum_{i} x(i)\left\langle v_{i}, \theta\right\rangle$ decays like $\mathrm{N}(0,1)$.

Special cases:

1) v_{i} are Orthogonal: Random \pm coloring x_{i} works

As $\sum_{i} c_{i} x_{i} \approx N\left(0, \sum_{i} c_{i}^{2}\right)$

$\operatorname{Var}(\langle Y, \theta\rangle)=\sum_{i}\left\langle v_{i}, \theta\right\rangle^{2} \leq|\theta|^{2} \leq 1$
2) All equal vectors

$v_{1}=\cdots=v_{n}=v$ random coloring bad: $\Omega(\sqrt{n})$ in direction v
Need dependent coloring: $n / 2+1$'s and $n / 2-1$'s

Gram Schmidt Walk

Algorithm: Consider vectors v_{1}, \ldots, v_{n} Write $v_{n}=c_{1} v_{1}+\ldots c_{n-1} v_{n-1}+w_{n}$
 where $w_{n} \in \operatorname{span}\left(v_{1}, \ldots, v_{n-1}\right)^{\perp}$

Let direction $c=\left(c_{1}, \ldots, c_{n-1},-1\right)$
Update coloring x as $\delta \mathrm{c}$ s.t. $E[\delta]=0$
i.e. $\Delta x=+\delta_{1} c$ or $-\delta_{2} c$

Key Point: $\Delta Y=\sum_{i} \Delta x(i) v_{i}=\delta\left(\sum_{i=1}^{n-1} c_{i} v_{i}-v_{n}\right)=-\delta w_{n}$.

As $\delta \leq 2$ and $E[\delta]=0$
$\Delta\langle Y, \theta\rangle$ evolves as a martingale with variance $\mathrm{O}\left(\left\langle\theta, w_{n}\right\rangle^{2}\right)$

Proof Idea (ideal case)

v_{1}, \ldots, v_{n}
Pivot v_{n}
Pivot v_{n-1}

Suppose pivot is the one to freeze every time
$\Delta Y: \delta_{n} w_{n}$
$\Delta Y: \delta_{n-1} w_{n-1}$
w_{1}, \ldots, w_{n} obtained by Gram Schmidt process.

$$
\begin{array}{ll}
w_{1}=v_{1} & \widehat{w}_{1}=w_{1} /\left|w_{1}\right| \\
w_{2}=v_{2}-\left\langle v_{2}, \widehat{w}_{1}\right\rangle \widehat{w}_{1} & \widehat{w}_{2}=w_{2} /\left|w_{2}\right| \\
w_{3}=v_{3}-\left\langle v_{3}, \widehat{w}_{1}\right\rangle \widehat{w}_{1}-\left\langle v_{3}, \widehat{w}_{2}\right\rangle \widehat{w}_{2} & \widehat{w}_{3}=w_{3} /\left|w_{3}\right| \\
Y & =\delta_{n} w_{n}+\delta_{n-1} w_{n-1}+\cdots+\delta_{1} w_{1}
\end{array} \quad .
$$

Some more details

$v_{1}, \ldots, x_{5}, \ldots, v_{n}$
No reason why pivot should get fixed.

Suppose v_{5} gets fixed.
w_{n} becomes w_{n}^{\prime} which can be longer.

Proof idea: Can charge increase in $\left|w_{n}\right|^{2}$ to v_{5} disappearing.

Track evolution of $E\left[e^{\lambda\langle\theta, Y\rangle}\right]$ by a suitable potential and show $E\left[e^{\lambda\langle\theta, Y\rangle}\right]=e^{O\left(\lambda^{2}\right)} \quad$ for each θ, λ
(Recall Z is σ-subgaussian iff $E\left[e^{\lambda Z}\right]=e^{O\left(\lambda^{2} \sigma^{2}\right)}$ for all λ)

Concluding remarks

Besides Matrix Spencer and Komlos conjecture, many problems in discrepancy still open
(Steinitz problem, Tusnady's problem, $\ldots(\log n)^{1 / 2}$ gap)

Lots of progress on lower bounds (SDP duality, convex geometry)
[Rothvoss'14] Algorithm for Gluskin (general convex bodies)
[Nikolov, Talwar'15] Approximating hereditary discrepancy

Various new uses in algorithm design, beating "union bound" Bin-packing [Rothvoss'13], iterated + randomized rounding [B.' 19]

Questions!

