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Discrepancy

Universe: U= [1,…,n]         

Subsets: S1,S2,…,Sm

Color elements  red/blue so each

set is colored as evenly as possible.

Given : [n] ! { -1,+1}  

Disc (𝜒) = maxS |i2S (i)|  = maxS | 𝑆 |

Disc (set system) = min𝜒 maxS | 𝑆 |

Capture various properties of the set system.

Lots of questions/applications in various areas.
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S2

S3

S4



Discrepancy

Given an  𝑚 × 𝑛 matrix A, 

find 𝑥 ∈ −1,1 𝑛, to minimize

disc(A) = 𝐴𝑥 ∞

Vector balancing view:  Given vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚

find 𝑥 ∈ −1,1 𝑛 to minimize  𝑖 𝑥𝑖𝑣𝑖 ∞

Can also consider more general norms

K: symmetric convex body  

Find 𝑥 ∈ −1,1 𝑛 to minimize   𝑖 𝑥𝑖𝑣𝑖 𝐾

K

𝑣1

𝑣2

Rows: sets

Columns: elements



Discrepancy:  All about beyond the probabilistic method

Two problems: Spencer’s setting, Komlos’ problem

Open questions (could geometry of polynomials help?)

Classical methods from discrepancy:

Partial Coloring Method, Banaszczyk’s method 

(Non-constructive, argue about all colorings simultaneously)

Recent algorithmic approaches.  

New algorithmic ways to go beyond the probabilistic method

Can they help for Kadison Singer, applications of interlacing poly?



Two examples

Spencer Setting:  Discrepancy of any set system on 

n elements and m sets?

[Spencer’85]: (independently by Gluskin’87)

For m = n discrepancy · 6n1/2   

Tight: Cannot beat 0.5 n1/2 (Hadamard Matrix). 

Random coloring gives O n log n 1/2

Proof:  For set S,    Pr [disc(S) ≈ 𝑐|𝑆|1/2 ]  ≈ exp −𝑐2

Set  c = O log n 1/2 and apply union bound. 

Tight. Random gives Ω n log n 1/2 with very high prob.

𝑆1
𝑆2
…
𝑆𝑚

1 2 … n



Spencer setting

More generally: O 𝑛1/2 log1/2
𝑚

𝑛
for m sets,  n elements

Random:  𝑛 log𝑚 1/2

Nothing special about 0/1.   e.g.  𝑎𝑖𝑗 ≤ 1 also fine.

Invented the Partial Coloring Method  (a  key tool in discrepancy)

Open Problem:  Matrix Spencer

Given (symmetric) 𝐴1, … , 𝐴𝑛 with spectral norm ≤ 1

Is there a signing s.t.  𝑖 𝑥𝑖𝐴𝑖 = 𝑂 𝑛1/2

For simultaneously diagonalizable matrices, follows from Spencer.  



Komlos Problem

Given vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚 with   𝑣𝑖 2 ≤ 1

find a signing  to minimize  𝑖 𝑥𝑖𝑣𝑖 ∞

Random coloring gives Ω 𝑛1/2

E.g.  If m=1, have  𝑣𝑖 ∈ −1,1

Partial Coloring: O(log n)

Banaszczyk: O( log 𝑛 1/2)

Conjectured bound: O(1)



Beck Fiala Conjecture

Discrepancy of low degree set systems,  where each element lies in at 

most t sets? (i.e. 0-1 matrix where each column  has ≤ 𝑡 1’s).

Scaling by 
1

𝑡1/2
gives unit columns

Random:           Ω(n1/2)                           (a row could have n 1’s)

Beck-Fiala’81:  2𝑡 − 1,    2t – log^* t  [Bukh’16]   

Banaszczyk’97:   𝑡1/2 log 𝑛 1/2

Conjecture :  O(𝑡1/2)



Non-constructive methods

1)  Partial Coloring Method: 

Beck/Spencer early 80’s:  Probabilistic Method + Pigeonhole

Gluskin’87:  Convex Geometric Approach

Very versatile

Loss adds over O(log n) iterations 

2)  Banaszczyk’98: Based on a deep convex geometric result

Produces full coloring directly  



Spencer’s O(n1/2) result

Partial Coloring suffices: For any set system with m sets,  there exists

a coloring on ¸ n/2 elements with discrepancy 

O(n1/2 log1/2 (2m/n)) [For m=n,  disc = O(n1/2)]

Algorithm for total coloring:

Repeatedly apply partial coloring lemma  

Total discrepancy  

O( n1/2 log1/2 2 )       [Phase 1]

+ O( (n/2)1/2 log1/2 4 )   [Phase 2] 

+ O((n/4)1/2 log1/2 8 )   [Phase 3]

+ …                               = O(n1/2) 



A geometric view

Spencer’85: Any 0-1  matrix (n x n ) has disc ≤ 6 𝑛

Gluskin’87: Convex geometric approach

Consider polytope P(t)  =  −𝑡 𝟏 ≤ 𝐴𝑥 ≤ 𝑡 𝟏

P(t) contains a point in  −1,1 𝑛 for t = 6 𝑛

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

d-dim Gaussian Measure: 𝛾𝑑 𝑥 =  exp − 𝑥 2/2 (2𝜋)−𝑑/2

𝛾𝑑 𝐾 : Pr (𝑦1, … , 𝑦𝑚) ∈ 𝐾 each 𝑦𝑖 iid  N(0,1)

What is the Gaussian volume of −1,1 𝑛 cube

K

−1,1 𝑛 cube

𝑎𝑖𝑥 ≤ 𝑡

𝑎𝑖𝑥 ≥ −𝑡



A geometric view

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

Similar to Minkowski’s theorem: 

K symmetric has a non-zero point in 𝑍𝑛, if Vol(K) > 2𝑛

Proof: Look at  K+x for all 𝑥 ∈ −1,1 𝑛

Total volume of shifts = 2Ω 𝑛 𝛾𝑛 𝐾 + 𝑥 ≥ 𝛾𝑛 𝐾 exp − 𝑥 2/2

Some point 𝑧 lies in 2Ω 𝑛 copies

𝑧 = 𝑘 + 𝑥 and  𝑧 = 𝑘’ + 𝑥’ where 𝑥, 𝑥’ have large hamming distance

Gives  (𝑥 − 𝑥′)/2 = (𝑘 − 𝑘′)/2 ∈ 𝐾.

K



Gluskin for Polytopes

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

Spencer’s result proof:

Consider polytope P(t)  =  −𝑡 𝟏 ≤ 𝐴𝑥 ≤ 𝑡 𝟏

Show Gaussian volume large enough for t = 𝑐 𝑛

Sidak’s Thm:  𝛾𝑛(𝐾) ≥ Π𝑖 𝛾𝑛(𝑆𝑙𝑎𝑏𝑖) 𝑆𝑙𝑎𝑏𝑖 = −𝑡 ≤ 𝑎𝑖𝑥 ≤ 𝑡

Thm:  Given an m x n matrix A, there is a partial coloring satisfying  

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2 for each row i, provided   𝑖 𝑒
−𝜆𝑖

2

≤
𝑛

5

K



Comparison w/ random coloring

Given an m x n matrix A, there is a partial coloring satisfying    

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2 for each row i, provided   𝑖 𝑒
−𝜆𝑖

2

≤
𝑛

5

Can view as extending Chernoff bounds

1) n/5 vs 1 (Chernoff)

2) Partial Coloring vs  Full (Chernoff)

E.g. Can get 0 discrepancy on  n/10 rows (very powerful)

Key tool in most discrepancy problems



Application: Komlos

Claim: Get partial coloring with O(1) discrepancy.

Assume  𝑛 ≤ 𝑚 (linear algebraic argument)

For each column j,    𝑖 𝑎𝑖𝑗
2 ≤ 1

Sum of 𝑎𝑖𝑗
2 over all matrix entries ≤ 𝑛

Average sum per row  ≤ 𝑛/𝑚 ≤ 1.

Call a row i big if   𝑗 𝑎𝑖𝑗
2 > 10.           At most n/10 of these. 

Set 𝜆𝑖=0 for big rows.  Else  𝜆𝑖= O(1). 

Gluskin:  𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2 for each row i, provided   𝑖 𝑒
−𝜆𝑖

2

≤
𝑛

5



Annoying loss of O(log n)

to get full coloring

16/35



Ideal case

Beck-Fiala Setting:  At most n/10 big  (>10t)  sets                 

Partial Coloring:  0  for big sets. 

About  𝑠1/2 for  small sets of size s.

Ideal case:  Discrepancy = 𝑡1/2 + (𝑡/2)1/2 + (𝑡/4)1/2 + …

big

Size = t 

Size t/2 

Size  t/4 

“Ideal” life cycle of a set



What can go wrong 

Trouble: A set can get 𝑡1/2discrepancy,  but very few elements 

colored.

big

Size = t 

Size = t – 𝑡1/2

Size = t – 2𝑡1/2



Banaszczyk’s method

𝑂(log1/2 𝑛) for Komlos



Banaszczyk’s Theorem

Thm: Let A have columns 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚,   𝑣𝑖 2 ≤ 1/5

K = symmetric convex body with 𝛾𝑚 𝐾 ≥
1

2

∃ 𝑥 ∈ −1,1 𝑛 s.t. Ax ∈ 𝐾

Constants somewhat arbitrary

For non-symmetric K, need

𝛾𝑚 𝐾 >  ½ to ensure  0 ∈ 𝐾 (e.g. if halfspace)  

K

𝑣1

𝑣2



Banaszczyk’s Theorem

Cube:   K = O log𝑚 1/2 −1,1 𝑚 γm K ≥ 1/2

Komlos: Given unit vectors in 𝑅𝑚,  

∃ signed sum w/ ℓ∞-norm O log𝑚 1/2

Surprising results for various bodies K.



Proof idea

Given 𝑣1, … , 𝑣𝑛,  each 𝑣𝑖 < 1/5.    𝛾𝑚 𝐾 ≥
1

2

Goal: Find signing   𝑖 𝑥𝑖𝑣𝑖 ∈ 𝐾

Key observation:  Signing exists iff

Some signing of 𝑣2, … . , 𝑣𝑛 with sum in  

(𝐾 + 𝑣1) ∪ (𝐾 − 𝑣1).

Convexify:

Remove regions of K width < 2 𝑣1 along 𝑣1
Lose and gain volume.  

(non-trivial) computation to show volume stays ≥ ½

K

𝑣1

𝑣2

𝑣3

𝑣4

𝐾 + 𝑣1
𝐾 − 𝑣1



Algorithmic history

Partial Coloring now constructive

Bansal’10:            SDP + Random walk 

Lovett Meka’12:  Random walk + linear algebra

Rothvoss’14:        Convex geometric

Many others by now [Harvey, Schwartz, Singh],  [Eldan, Singh], [Lee], …

Banaszczyk based approaches:

[B., Dadush, Garg’16]: 𝑂 log 𝑛 1/2 algorithm for   Komlos problem 

[B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.



Useful View

Independent rounding.

A (complicated) view

Brownian motion in cube.

Same as randomized rounding

Each coordinate rounded independently

(martingale property of the walk)

start

𝑥𝑡−1
Δ𝑥𝑡

𝑥1, … , 𝑥𝑛

Cube: {-1,+1}n

dimension: element

vertex: coloring



Useful View

If additional constraints.

Can tailor walk accordingly.

Pick covariance matrix for Δ𝑥𝑡

(slow down towards bad regions)

Design barrier functions

…

start

𝑥𝑡−1
Δ𝑥𝑡

𝑥1, … , 𝑥𝑛

Cube: {-1,+1}n

dimension: element

vertex: coloring

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2

𝑎𝑖𝑥 ≥ −𝜆𝑖 𝑎𝑖 2



Lovett Meka Algorithm

Random walk,  𝛾 N(0,1) in each dimension

a) Fix j if  𝑥𝑗 = ±1

b) If row 𝑎𝑖 gets tight (disc(𝑎𝑖) = 𝜆𝑖 𝑎𝑖 2)

Move in subspace  𝑎𝑖x = 𝜆𝑖 𝑎𝑖 2

(not violate discrepancy)

Thm: Given an m x n matrix A,  finds  a partial coloring satisfying    

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2 for each row i, provided   𝑖 𝑒
−𝜆𝑖

2

≤
𝑛

5

start



Lovett Meka Algorithm

Random walk,  𝛾 N(0,1) in each dimension

a) Fix j if  𝑥𝑗 = ±1

b) If row 𝑎𝑖 gets tight (disc(𝑎𝑖) = 𝜆𝑖 𝑎𝑖 2)

Move in subspace  𝑎𝑖x = 𝜆𝑖 𝑎𝑖 2

(not violate discrepancy)

Idea: Walk makes progress as long as dimension = Ω 𝑛

(𝐸  𝑖 𝑥𝑖
2 rises by Ω 𝑛 𝛾2 per step) 

After 
10

𝛾2
steps:     Pr[ Row 𝑎𝑖 tight]  ≈ exp −𝜆𝑖

2

As  𝑖 𝑒𝑥𝑝 −𝜆𝑖
2 ≤

𝑛

5
so  n/5 tight rows in expectation

As  stays in cube,   Ω 𝑛 variables must have hit ±1,

start



Recall trouble with Partial Coloring

Trouble: A set can get 𝑡1/2discrepancy,  but very few elements 

colored.

big

Size = t 

Size = t – 𝑡1/2

Size = t – 2𝑡1/2

Beck Fiala Setting



Correlations in Lovett-Meka

Consider set S  = {1,2,…,t}

Ideal case: If randomly color each element  

Progress = t discrepancy ≈ 𝑡1/2

Suppose move in subspace  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑡
E.g. if have constraints  𝑥1 - 𝑥2 = 0,         𝑥2 - 𝑥3= 0, …  

Can only color all  +1 or all -1.

Progress = t  discrepancy = t

In Lovett-Meka, such sets hit subspace at 𝑡1/2 discrepancy, but 

progress is only 𝑡1/2
229/35



Suggests a solution

Used to get an algorithmic 𝑂 log1/2 𝑛 bound for Komlos

[B., Dadush, Garg’16]

Can we design a walk that moves in some subspace, but still looks 

“random” enough?

E.g.  If constrained to move in subspace  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑡

Just set Δ𝑥𝑖 = 0 for i=1,2,..,t

Can still do a random walk for  i = t+1,..,n.

230/35



Better covariance matrices

Property 1:  𝑤𝑇 Δ𝑥 = 0 ∀𝑤 ∈ 𝑊

𝐸 𝑤𝑇Δ𝑥 Δ𝑥𝑇𝑤 = 0 or    𝑤𝑇𝑌𝑤 = 0

Property 2:  Still looks almost independent. 

For any direction 𝑐 = (𝑐1, … , 𝑐𝑛)

𝐸[  𝑖 𝑐𝑖Δ𝑥𝑖
2
] ≤

1

𝛿
 𝑖 𝑐𝑖

2 𝐸 Δ𝑥𝑖
2

𝑐𝑇𝑌 𝑐 ≤
1

𝛿
𝑐𝑇𝑑𝑖𝑎𝑔 𝑌 𝑐 ∀𝑐 ∈ 𝑅𝑛.

𝑌 ≼
1

𝛿
𝑑𝑖𝑎𝑔 𝑌

Covariance matrix 

𝑌 𝑖, 𝑗 = 𝐸 Δ𝑥𝑖 , Δ𝑥𝑗

x

-1/+1 cube

W: arbitrary subspace  dim(W) ≤ 1 − 𝛿 𝑛
Need to walk in 𝑊⊥

𝑊⊥



Can find such a good walk

Key Thm:   If  dim 𝑊 ≤ 1 − 𝛿 𝑛

There is a non-zero solution Y to the SDP

𝑤𝑇𝑌𝑤 = 0 ∀𝑤 ∈ 𝑊

𝑌 ≼
1

𝛿
𝑑𝑖𝑎𝑔 𝑌

𝑌 ≽ 0

Proof: Using SDP duality 



Algorithm for Komlos

Time t:  If  𝑛𝑡 variables  alive, at most  𝑛𝑡/10 big rows

Pick W = span of these constraints.

Run the SDP walk.

No phases, continue till all variables -1/+1  (i.e. 𝑛𝑡 = 0).

If row big = discrepancy 0

When becomes small,  just like a random walk. 

“Freedman type” martingale analysis  (avoid dependence on time 

steps),  gives  the result.



Making Banaszczyk Algorithmic

Thm [Banaszczyk 97]: Input 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑,   𝑣𝑖 2 ≤ 1

∀ convex body K, with 𝛾𝑑 𝐾 ≥
1

2

∃ coloring 𝑥 ∈ −1,1 𝑛 s.t.  𝑖 𝑥 𝑖 𝑣𝑖 ∈ 5𝐾

Coloring depends on the convex body K.

How is K specified?   (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov’16]: Minimax Thm. (2-player game)

Universal distribution on colorings that works for all convex bodies

K

𝑣1

𝑣2



Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov’16]: 

∃ distribution on colorings 𝑥 ∈ −1,1 𝑛,

s.t. Y =   𝑖 𝑥 𝑖 𝑣𝑖 is ≈ N(0,1) in every direction

𝑌 ∈ 𝑅𝑑 is  𝜎-subgaussian if  in all directions 𝜃 ∈ 𝑅𝑑 , 𝜃 2 = 1,    

〈𝜃, 𝑌〉 has same tails as 𝑁 0, 𝜎2 i.e.  Pr 〈𝜃, 𝑌〉 ≥ 𝜆 ≤ 2 exp −𝜆2/2𝜎2

Lemma: Y ∈ 𝐾 (for K convex, 𝛾𝑑 𝐾 ≥
1

2
)  with constant prob.

Suffices to sample x implicitly from such a distribution.
35/16

No body K 

anymore

O(1) subgaussian



Goal: ∃ distribution on colorings 𝑥 ∈ −1,1 𝑛,

s.t. random vector Y =   𝑖 𝑥 𝑖 𝑣𝑖 is  O(1) subgaussian

∀𝜃 ∈ 𝑆𝑚−1, 〈𝑌, 𝜃〉 =  𝑖 𝑥 𝑖 〈𝑣𝑖 , 𝜃〉 decays like N(0,1).

Special cases:

1) 𝑣𝑖 are Orthogonal:  Random ± coloring 𝑥𝑖 works

As   𝑖 𝑐𝑖𝑥𝑖 ≈ 𝑁 0, 𝑖 𝑐𝑖
2

Var(〈𝑌, 𝜃〉) =  𝑖 𝑣𝑖 , 𝜃
2 ≤ 𝜃 2 ≤ 1

2) All equal vectors 

𝑣1 = ⋯ = 𝑣𝑛 = 𝑣 random coloring bad:   Ω 𝑛 in direction v

Need dependent coloring:   n/2  +1’s   and n/2   -1’s



Gram Schmidt Walk

Algorithm:  Consider vectors 𝑣1, … , 𝑣𝑛
Write  𝑣𝑛 = 𝑐1𝑣1 + …𝑐𝑛−1𝑣𝑛−1 + 𝑤𝑛

where 𝑤𝑛 ∈ 𝑠𝑝𝑎𝑛 𝑣1, … , 𝑣𝑛−1
⊥

Let direction 𝑐 = 𝑐1, … , 𝑐𝑛−1 , −1

Update coloring x as 𝛿c s.t. 𝐸 𝛿 = 0

i.e.  Δ𝑥 = +𝛿1𝑐 or   −𝛿2 𝑐

Key Point:  Δ𝑌 =  𝑖 Δ𝑥 𝑖 𝑣𝑖 = 𝛿( 𝑖=1
𝑛−1 𝑐𝑖𝑣𝑖 − 𝑣𝑛)  =  −𝛿𝑤𝑛. 

As  𝛿 ≤ 2 and 𝐸 𝛿 = 0

Δ 𝑌, 𝜃 evolves as a martingale with variance    O( 𝜃,𝑤𝑛
2)

x

𝑣1
𝑣2

𝑣3 𝑤3

𝛿1

𝛿2



Proof Idea (ideal case)

𝑣1, … , 𝑣𝑛 Suppose pivot is the one to freeze every time                  

Pivot 𝑣𝑛 Δ𝑌: 𝛿𝑛𝑤𝑛

Pivot 𝑣𝑛−1 Δ𝑌: 𝛿𝑛−1 𝑤𝑛−1

….

𝑤1, … , 𝑤𝑛 obtained by Gram Schmidt process.

𝑤1 = 𝑣1  𝑤1 = 𝑤1/|𝑤1|

𝑤2 = 𝑣2 – 〈𝑣2,  𝑤1〉  𝑤1  𝑤2 = 𝑤2/|𝑤2|

𝑤3 = 𝑣3 – 〈𝑣3,  𝑤1〉  𝑤1 - 〈𝑣3,  𝑤2〉  𝑤2  𝑤3 = 𝑤3/|𝑤3|

𝑌 = 𝛿𝑛𝑤𝑛 + 𝛿𝑛−1𝑤𝑛−1 +⋯+ 𝛿1 𝑤1

𝑉𝑎𝑟 𝑌, 𝜃 = 

𝑖

𝛿𝑖
2 𝑤𝑖 , 𝜃

2 ≤  

𝑖

𝛿𝑖
2  𝑤𝑖 , 𝜃

2 ≤ 4 𝜃 2 = 4



Some more details

𝑣1, … , 𝑣5, … , 𝑣𝑛 No reason why pivot should get fixed.

Suppose 𝑣5 gets fixed. 

𝑤𝑛 becomes 𝑤𝑛
′ which can be longer.

Proof idea:  Can charge increase in 𝑤𝑛
2 to 𝑣5 disappearing.

Track evolution of 𝐸 𝑒𝜆〈𝜃,𝑌〉 by a suitable  potential   

and show 𝐸 𝑒𝜆〈𝜃,𝑌〉 = 𝑒𝑂 𝜆2 for each 𝜃, 𝜆

(Recall Z is 𝜎-subgaussian iff 𝐸 𝑒𝜆𝑍 = 𝑒𝑂 𝜆2𝜎2 for all  𝜆)



Concluding remarks

Besides Matrix Spencer and Komlos conjecture, many problems in 

discrepancy still open

(Steinitz problem, Tusnady’s problem, …  log 𝑛 1/2 gap)

Lots of progress on lower bounds (SDP duality, convex geometry)

[Rothvoss’14] Algorithm for Gluskin (general convex bodies)

[Nikolov, Talwar’15] Approximating hereditary discrepancy 

Various new uses in algorithm design,  beating “union bound” 

Bin-packing [Rothvoss’13], iterated + randomized rounding [B.’19]   



Questions!


