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• Thank you for the invitation!
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Geometry and Combinatorics. Two visionary remarks.

Gelfand–Goresky–MacPherson–Serganova, 1987

R. C. Bose (quoted by Kelly–Rota, 1973)
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Summary.
Matroids are geometric.
Geometry and matroid theory help each other a lot.
Geometry can prove log concavity.

My work here is joint with
Carly Klivans (06), Graham Denham + June Huh (17-19).
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Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B= {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. (Nakasawa, Whitney, 35)
A set E and a collection B of subsets of E are a
matroid if they satisfies properties (B1) and (B2).
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Many matroids in “nature":

1. Linear matroids
E= set of vectors spanning Rd .
B = bases of Rd in E .

E = abcde
B= {abc,abd ,abe,acd ,ace}

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

2. Graphical matroids
E= edges of a connected graph G.
B = spanning trees of G.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

3. Algebraic matroids (field extensions)

4. Transversal matroids (matchings)

5. Gammoids (routings)

Thm for matroids 7→ Thms for vectors, graphs, field exts, matchings, routings. . .
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Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

Many points of view.

1. Bases (polytope)
B = {abc,abd ,abe,acd ,ace}

2. Independent sets (simplicial complex)
I = {abc,abd ,abe,acd ,ace,
ab,ac,ad ,ae,bc,bd ,be,cd ,ce,
a,b,c,d ,e,
/0}

3. (Broken) Circuits – minl dependences (simplicial complex.)
C = {de,bcd ,bce} BC = {d ,bc,bc}

4. Flats – spanned sets (lattice)
F = {abcde
ab,ac,ade,bcde,
a,b,c,de,
/0}
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Log-concavity: f -vectors.

IN(M) = {independent sets}
BC<(M) = {independent sets containing no broken circuit}

f -vector: fi(∆) = # of sets F ∈∆ with |F |= i + 1.

Conjectures. (Welsh 71 Mason 72, Rota 71 Heron 72 Welsh 76)
The sequences {fi(IN(M))} and {fi(BC<(M))} are

unimodal⇐ log-concave⇐ strongly log-concave.

Remark. IN(M) = BC<(M ∗e) so it is enough to prove it for BC.
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f -vector: fi(∆) = # of sets F ∈∆ with |F |= i + 1.

Theorems. The sequences {fi(IN(M))} and {fi(BC<(M))} are
• log-concave. (Adiprasito–Huh–Katz 2015)
−→ Hodge theory of matroids.

• strongly. (Anari–Liu–OveisGharan–Vinzant, Bränden–Huh 2018)
−→ Completely log-concave / Lorentzian polynomials.

Corollaries: – approximating the number of bases of a matroid
– expansion of basis exchange graph is at least 1
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Log-concavity: h-vectors.

IN(M) = {independent sets}
BC<(M) = {independent sets containing no broken circuit}

f -vector: |coeffs| of χ(q) =⇒ h-vector: |coeffs| of χ(q + 1)

Conjectures. (Brylawski 82, Dawson 83, Hibi 89)
The sequences {hi(IN(M))} and {hi(BC<(M))} are

unimodal⇐ log-concave.

Remark. (Oveis Gharan) They are not strongly log-concave.
Remark. (Lenz) h(∆) log-concave⇒ f (∆) strictly log-concave .
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Log-concavity: h-vectors.

IN(M) = {independent sets}
BC<(M) = {independent sets containing no broken circuit}

f -vector: |coeffs| of χ(q) =⇒ h-vector: |coeffs| of χ(q + 1)

Theorem. The sequences {hi(IN(M))} and {hi(BC<(M))} are
log-concave. (FA – Denham – Huh)
−→ Lagrangian theory of matroids
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Log-concavity: Why does alg. combinatorics care?

There are many combinatorial sequences that are (sometimes
conjecturally) positive, unimodal, or log-concave.

Sometimes the proofs are quite easy.

If they are not easy, they are often quite hard, and require a
fundamentally new construction or connection.

We:
• understand something new about our structures.
• derive the conjectures as a consequence.
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Are matroids geometric?

A linear matroid comes from a set of vectors. Are they all linear?

(linear matroids) vs. (all matroids):

• Almost any matroid we think of is linear.
• (Nelson, 2018) 100% of matroids are not linear.

• “Missing axiom" for linear matroids? No. (Mayhew et al, ’14)
• This is not a flaw! Matroids are natural geometric objects.
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The geometry of matroids.

My main point today.
Matroids are natural geometric objects.

Gian-Carlo Rota, Combinatorial Theory, Fall 1998. (Thanks to John Guidi.)
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Model 1: Matroid polytopes

Def. (Edmonds 70; Gelfand Goresky MacPherson Serganova 87)
The matroid polytope of a matroid M on E is

PM = conv{eB : B is a basis of M} ⊂ RE

where eB is the 0−1 indicator vector of B.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

10110

10101

11010

11001 11100

E = abcde
B = {abc,abd ,abe,acd ,ace}
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The matroid polytope of M is

PM = conv{eB : B is a basis of M}

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.
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Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)
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B= {abc,abd ,abe,acd ,ace}

Matroid polytopes in “nature":

1. Optimization. (Edmonds 70) For a cost function c : E → R, find the
bases {b1, . . . ,br} of minimal cost c(b1)+ · · ·+c(br ).

2. Algebraic geometry. (Gelfand Goresky MacPherson Serganova 87)
Understand the action of the torus (C∗)n on the Grassmannian Gr(k ,n).
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A Coxeter–geometric characterization of matroids

Theorem. (GGMS 87) A collection B of r -subsets of [n] is a
matroid if and only if every edge of the polytope

PM = conv{eB : B ∈B} ⊂ Rn

is a translate of vectors ei −ej for some i , j .
Def. A matroid is a 0-1 polytope with edge directions ei −ej .
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ij : ei −ej

From this geometric viewpoint, all matroids are equally natural.
Matroids provide the correct level of generality!
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Model 2: Bergman fan

Def/Theorem. (FA-Klivans 06)
The Bergman fan ΣM of M is the polyhedral complex with
• rays: eF := ef1 + · · ·+ efk for each flat F = {f1, . . . , fk}
• faces: cone{eF : F ∈F} for each flag F = { /0(F1 ( · · ·(Fl (E}.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   
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(The bases of the vector configuration.)
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(The bases of the vector configuration.)
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Bergman fans in “nature": Tropical geometry.
algebraic variety V 7→ Trop(V ) polyhedral complex

Trop(V ) still knows information about V , and can be studied combinatorially.

Question. (Sturmfels 2002) Describe Trop(linear space).

Theorem. (FA-Klivans 2006)
The tropicalization of a linear space V ⊆ Rn is the Bergman fan ΣM(V ).
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A tropical characterization of matroids

A tropical variety is a polyhedral complex “with zero-tension".
It has a tropical degree, and AlgDeg(V) = TropDeg(Trop V).

Theorem. (Fink 2013) A tropical variety has degree 1 if and only
if it is the Bergman fan of a matroid.
Definition. A matroid is a tropical variety of degree 1.
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From this geometric viewpoint, all matroids are equally natural.
Matroids provide the correct level of generality!
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Towards Model 3: Orthogonality for matroids
Theorem / Definition. If B is a matroid on E , then

B⊥ = {E −B : B ∈B}

is also a matroid, the orthogonal or dual matroid M⊥.

This generalizes:

• Dual graphs:
abe spanning tree of G

l
cd spanning tree of G∗

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

A theorem in matroid theory gives us theorems in � 5 areas!

Theorem. If M = (E , B) is a matroid, then M⇤ = (E , B⇤) is the
dual matroid, where

B⇤ = {E \ B : B is a basis of M}

Examples. GRAPHS.

• If M is the matroid of a planar graph G, then M⇤ is the
matroid of the dual graph G⇤.

 a   
 b   

 c   

 f   
 e   

 d   

 a   
 f   

 c   

 e   
 b   

 d   

Wednesday, October 2, 13

B⇤ = {def , cef , cdf , bef , bdf}.
• Orthogonal complements:

abe basis of W
l

cd basis of W⊥

W = rowspace

0 1 0 .5 1
0 0 1 .5 1
1 0 0 0 0


W⊥ = rowspace

[
0 1 1 0 −1
0 0 0 2 −1

]
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Model 3: conormal fan
Definition. (FA-Denham-Huh)
The conormal fan ΣM,M⊥ is the polyhedral complex in REtE with
• rays eF + fG for each flat F and coflat G with F ∪G = E
• cone(F,G) := cone{eFi + fGi : 1≤ i ≤ l} for each biflag (F,G).

where

Definition. (FA-Denham-Huh)
A biflag of M consists of a flag F = {F1 ⊆ ·· · ⊆ Fl} of flats and a
flag G = {G1 ⊇ ·· · ⊇Gl} of coflats (flats of M⊥) such that

l⋂
i=1

(Fi ∪Gi) = E ,
l⋃

i=1

(Fi ∩Gi) 6= E .

Fact. All maximal biflags have length n−2.

(Motivation: toric + tropical geometry, hyperplane arrs, Coxeter combinatorics)
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Tropical applications.

1. A tropical manifold is a tropical variety that looks locally like
a (Bergman fan of a) matroid. (Mikhalkin, Rau, Shaw, ...)

de

c

b
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bcde

ade

ac

ab

2. The conormal fan is a Lagrangian analog of the Bergman fan.
Expectation: Conormal fans should play a similar role for
tropical Lagrangian submanifolds (Mikhalkin, ...)
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Log-concavity strategy 1: geometric models

To prove log-concavity of invariants of a linear matroid M:

1. Build an algebro-geometric model X (M) for M.
2. (Combin invariants of M) = (Geom invariants of X (M)).
3. Algebraic-geometric inequalities for geometric invariants.

Two algebro-geometric models.
fi(BC<(M)): wonderful compactification DP(A).

De Concini–Procesi 95

hi(BC<(M)): critical set variety X(A).
Varchenko 95, Orlik–Terao 95, Denham–Garrousian–Schulze 12

Good news: This strategy works! (Huh, 2012, 15)
Bad news: ...only when M is a linear matroid.
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Log-concavity strategy 2: tropical geometric models

To prove log-concavity of invariants of any matroid M:

1. Build a tropical algebro-geometric model X (M) for M.
2. (Combin invariants of M) = (Trop geom invariants of X (M)).
3. Algebro-geom inequalities for tropical geometric invariants.

Two tropical geometric models.
fi(BC<(M)): Bergman fan ΣM .

Sturmfels 02, A.–Klivans 03

hi(BC<(M)): conormal fan ΣM,M⊥ .
A.–Denham–Huh

Good news: This works even when M is not realizable!
Good? Bad? news: We have to work harder for our inequalities.
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Cohomology of the Bergman fan

Def/Thm. (Adiprasito–Huh–Katz 18) The Chow ring of ΣM is

AM = Z[xF : F proper flat ]/(IM + JM)

where
IM =

(
xF xF ′ : F and F ′ are incomparable

)
JM =

(
∑
F3i

xF −∑
F3j

xF : i , j ∈ E

)

It behaves like the Chow ring of a smooth proj. algebraic variety:

Poincaré duality : A = A0⊕·· ·⊕Ar , Ai ∼= An−1−i

Hard Lefschetz theorem : ·`r−2i : Ai ∼= An−1−i for ` strictly submodular

Hodge-Riemann relations : a bilinear form on Ai is pos. def. on Ker`r−2i+1
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Tropical intersections and log-concavity

Theorem. (Adiprasito – Huh – Katz 18) In the Chow ring of ΣM

AM = Z[xF : F proper flat]/(IM + JM)

the classes
α = ∑

i∈F
xF , β = ∑

i /∈F
xF

satisfy
α

r−i
β

i = fi(BC<(M)) (1≤ i ≤ r)

Hodge-Riemann relations ⇒ f0, f1, . . . , fr is log-concave.

Note: Ar ∼= A0 = Z ⇒ degree r elements are just scalars!
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Cohomology of the conormal fan

Def/Thm. (FA–Denham–Huh) The Chow ring of ΣM,M⊥ is

AM,M⊥ = Z[xF ,G : F flat,G coflat,F ∪G = E ]/(IM + JM)

where
IM =

(
xF1 ,G1

· · ·xFk ,Gk
: {Fi} and {Gi} do not form a biflag

)
JM =

(
∑

i∈F 6=E
xF ,G− ∑

j∈F 6=E
xF ,G, ∑

i∈G 6=E
xF ,G− ∑

j∈G 6=E
xF ,G : i , j ∈ E

)

It behaves like the Chow ring of a smooth proj. algebraic variety:
Poincaré duality
Hard Lefschetz theorem
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Tropical intersections and log-concavity

Theorem. (FA–Denham–Huh) In the Chow ring of ΣM,M⊥

AM,M⊥ = Z[xF ,G : F flat,G coflat,F ∪G = E ]/(IM + JM)

the classes
a = ∑

i∈F 6=E
xF ,G, d = ∑

i∈F ,G
xF ,G

satisfy

aidn−2−i = hr−i(BC<(M)) (1≤ i ≤ r −1)

Hodge-Riemann relations ⇒ h0,h1, . . . ,hr is log-concave.
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New ingredients

We need several new structural results:

•Whether a simplicial fan satisfies (PD + HL + HR) depends
only on its support.

• Two simplicial complexes with the same support can be
obtained from each other via edge subdivisions + inverses.
(Strengthens Alexander’s Thm in topology, Morelli’s WFT for toric varieties.)

• It is much harder to prove aidn−2−i = hr−i now.
– lots of new (intricate, interesting) matroid theory, or
– new Lagrangian interpretation of CSM classes of matroids.

(Chern-Simons-MacPherson classes (LópezdeMedrano–Rincón–Shaw 2017))
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– new Lagrangian interpretation of CSM classes of matroids.

(Chern-Simons-MacPherson classes (LópezdeMedrano–Rincón–Shaw 2017))
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So how can I think about these fans?

(If there is time.)
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muchas gracias.
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