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\Brief Intro to Interlacing Families /

Example 1 Ela.]

> Exponentially large set {as}se(o,11n- Eb]
> There is always an s such that /
as < Elag] Elas|s1=0] Elas|si=1]
[b |S1 OJ E[b ‘S]Z]

Example 2

> Exponentially large set {§}sef0, 13-

Elas|s1=0,s2=0] E[las|s;=0,s,=1]

> There is always an s such that E[bs[s1=0,5,=0] E[bs[s1=0,5,= 1]
/N I
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ps(x) =bsx — as. Then
root(ps) = g—z and

root(Blps]) = prest.

Instead of chasing
fractions in the
hierarchy, chase roots
of polynomials.

Interlacing families are
the generalization of
this idea to
polynomials of
[Marcus-
Spielman-Srivastava™3].

root; (E[ps])

N\

oot (Elps | s1 = 0]) ooty (Elps | s1 = 1))

rooti (E[ps [ s1 = 0,52 =0]) root;i(Elps|s1 =0,s2 =1])
/\ \

Works as long as all nodes are and so

are all convex combinations of siblings.
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T is a-thin w.rt. G iff >
for every subset of vertices S.
Spectral Thinness S
T is a-spectrally thin w.rt. G iff oc-spectrollg thin
Lt R« Lg, — OC-ThIﬂ
[on board ...]
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\Structure of the Talk /

Thin Trees

> Random Spanning Trees
> Statement Needed from Interlacing Families
> Wwell-Conditioning

Interlacing Families on Strongly Rayleigh Distributions

> Statement Needed from Interlacing Families
> Proof Sketch
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> Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.

> 0O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh'17],
but thin tree remains open.

> Weighted random spanning trees are O(logn/ loglogn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi10] [on board ... ].

[A-Oveis Gharan’15]
There is always a log log® ") (n) /k-thin tree.
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\Obstocles /

> Problem: Edge connectivity does not imply electrical connectivity.

C=C=0=0=0=0=0=0=C=0=0

> Problem: Electrical connectivity is needed for the existence of spectrally

thin trees. Forany e = (u,v) € T:

1
1 > Reffy(u,v) = eTlybe > — -bILsbe = = Reffg (u,v).

1
o
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. Well-condition the graph spectrally
without changing cuts much.
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& If G + H admits an a-spectrally thin tree T, then
[T(S,5) = 1{Lrls < o~ 1§(Lg + Ln)Ls = O(a) - |G(S, S)]

> Goal: Find H that brings Reff down.
> Problem 1: How do we ensure T does not use any newly added edges?
> Problem 2: How do we certify H is O(1)-thin w.rt. G?
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Ensuring only original edges are picked ...
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Interlacing Families on Strongly Rayleigh
Distributions

Corollary of [Marcus-Spielman-Srivastava’14, Harvey-Olver’14]
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Reff(e) < «,

then G has an O(«)-spectrally thin tree.
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Reff. () < «,

and F is k-edge-connected, then G has a O(« + 1/k)-spectrally thin tree T C F.

[on board...]
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Ensuring cuts do not blow up ...
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Mdeo 1. Using Shortcuts /

> If H can be routed over G with congestion O(1), then for every S
H(S,S) < O(1)- G(S,S).
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\Idea 2. Check All Constraints /

> Instead of Ly, we can add any PSD matrix D, as long as for all S

1ID1s < |G(S, S)!.

(> Just turn the problem into an exponential-sized semidefinite program:

mi %{maé Reffp (e)

vS:1{D1s <1 LG]ls}

> Pro: Can use dudlity to facilitate analysis.
> Con: Adds another obstacle to making the construction algorithmic.
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Puzzle Interlude: Degree-thinness ...
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Degree-Thin Trees (Toy Example)
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Degree-Thin Trees (Toy Example)

Suppose that we want a tree which is thin only in degree cuts, i.e.,

for all singletons S.

> There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen3, Furer-Raghavachari’94, ... 7], nevertheless ...

> Is there an easy well-conditioner H?
> An expander!

[on board ...]
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Do well-conditioners always exist?
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> What is the worst possible answer to the convex program?

Burg){reneaé Reffp (e)
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> What is the worst possible answer to the convex program?

i Reff
i magRetote

VS : ]lgD]lg < ]lng]ls}

> Bad News: There are k-edge-connected graphs where the answer is Q(1).
> New Strategy: Change the objective to average effective resistance in cuts

max E[Reffp(e) | e € G(S,S)].

> Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]

For every k-edge-connected graph G there is a 1-thin matrix D = 0 such that
for every singleton S

(loglogn)©O (")

E[Reffp(e) | e € G(S,S)] < =
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\When Degree Cuts are Enough /

In expanders, degree cuts are enough.

> Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.

O If a cut has few low-effective-resistance edges, its expansion must be low.
Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.
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\Exomple: Planar Graphs /
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\Rest of the Ideas

\VAV VARV,

There is always a Q(k)-edge-connected 1/ log n-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

Key Observation: Expansion goes up by a constant factor after
contracting.
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\Rest of the Ideas

v v ¢

There is always a Q(k)-edge-connected 1/ log n-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

. Expansion goes up by a constant factor after
contracting.

Repeat this log log n times until expansion is Q(1).

22/25
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Goal Statement
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> What happens if we look at thinness w.rt. a family of cuts? For what
families is it easy to construct well-conditioners?

> Can we extend interlacing families to settings where roots are not real?

Log-concave polynomials?
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