
Thin Trees and Interlacing Families
on Strongly Rayleigh Distributions

Nima Anari

/
based on joint work with

Shayan Oveis Gharan

1 / 25

Brief Intro to Interlacing Families

Example 1
Exponentially large set {as}s∈{0,1}n .

There is always an s such that

as ⩽ E[as]

Example 2

Exponentially large set {as

bs
}s∈{0,1}n .

There is always an s such that

as

bs
⩽ E[as]

E[bs]

2 / 25

Brief Intro to Interlacing Families

Example 1
Exponentially large set {as}s∈{0,1}n .
There is always an s such that

as ⩽ E[as]

Example 2

Exponentially large set {as

bs
}s∈{0,1}n .

There is always an s such that

as

bs
⩽ E[as]

E[bs]

2 / 25

Brief Intro to Interlacing Families

Example 1
Exponentially large set {as}s∈{0,1}n .
There is always an s such that

as ⩽ E[as]

Example 2
Exponentially large set {as

bs
}s∈{0,1}n .

There is always an s such that

as

bs
⩽ E[as]

E[bs]

2 / 25

Brief Intro to Interlacing Families

Example 1
Exponentially large set {as}s∈{0,1}n .
There is always an s such that

as ⩽ E[as]

Example 2
Exponentially large set {as

bs
}s∈{0,1}n .

There is always an s such that

as

bs
⩽ E[as]

E[bs]

2 / 25

Brief Intro to Interlacing Families

Example 1
Exponentially large set {as}s∈{0,1}n .
There is always an s such that

as ⩽ E[as]

Example 2
Exponentially large set {as

bs
}s∈{0,1}n .

There is always an s such that

as

bs
⩽ E[as]

E[bs]

E[as]
E[bs]

E[as|s1=0]
E[bs|s1=0]

E[as|s1=1]
E[bs|s1=1]

E[as|s1=0,s2=0]
E[bs|s1=0,s2=0]

E[as|s1=0,s2=1]
E[bs|s1=0,s2=1]

...
...

...
...

...
...

2 / 25

Polynomials: Let
ps(x) = bsx− as. Then
root(ps) =

as

bs
and

root(E[ps]) =
E[as]
E[bs]

.

Instead of chasing
fractions in the
hierarchy, chase roots
of polynomials.
Interlacing families are
the generalization of
this idea to
polynomials of higher
degree [Marcus-
Spielman-Srivastava’13].

3 / 25

Polynomials: Let
ps(x) = bsx− as. Then
root(ps) =

as

bs
and

root(E[ps]) =
E[as]
E[bs]

.

Instead of chasing
fractions in the
hierarchy, chase roots
of polynomials.

Interlacing families are
the generalization of
this idea to
polynomials of higher
degree [Marcus-
Spielman-Srivastava’13].

3 / 25

Polynomials: Let
ps(x) = bsx− as. Then
root(ps) =

as

bs
and

root(E[ps]) =
E[as]
E[bs]

.

Instead of chasing
fractions in the
hierarchy, chase roots
of polynomials.
Interlacing families are
the generalization of
this idea to
polynomials of higher
degree [Marcus-
Spielman-Srivastava’13].

rooti(E[ps])

rooti(E[ps | s1 = 0]) rooti(E[ps | s1 = 1])

rooti(E[ps | s1 = 0, s2 = 0]) rooti(E[ps | s1 = 0, s2 = 1])

...
...

...
...

...
...

3 / 25

Polynomials: Let
ps(x) = bsx− as. Then
root(ps) =

as

bs
and

root(E[ps]) =
E[as]
E[bs]

.

Instead of chasing
fractions in the
hierarchy, chase roots
of polynomials.
Interlacing families are
the generalization of
this idea to
polynomials of higher
degree [Marcus-
Spielman-Srivastava’13].

rooti(E[ps])

rooti(E[ps | s1 = 0]) rooti(E[ps | s1 = 1])

rooti(E[ps | s1 = 0, s2 = 0]) rooti(E[ps | s1 = 0, s2 = 1])

...
...

...
...

...
...

Works as long as all nodes are real-rooted and so
are all convex combinations of siblings.

3 / 25

Thin Tree and Spectrally Thin Tree

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

4 / 25

Thin Tree and Spectrally Thin Tree

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

4 / 25

Thin Tree and Spectrally Thin Tree

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

α-spectrally thin
=⇒ α-thin
[on board . . .]

4 / 25

Structure of the Talk

1 Thin Trees
Random Spanning Trees
Statement Needed from Interlacing Families
Well-Conditioning

2 Interlacing Families on Strongly Rayleigh Distributions
Statement Needed from Interlacing Families
Proof Sketch

5 / 25

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.
O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh’17],
but thin tree remains open.
Weighted random spanning trees are O(logn/ log logn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi’10] [on board . . .].

[A-Oveis Gharan’15]

There is always a log logO(1)(n)/k-thin tree.

6 / 25

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.

O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh’17],
but thin tree remains open.
Weighted random spanning trees are O(logn/ log logn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi’10] [on board . . .].

[A-Oveis Gharan’15]

There is always a log logO(1)(n)/k-thin tree.

6 / 25

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.
O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh’17],
but thin tree remains open.

Weighted random spanning trees are O(logn/ log logn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi’10] [on board . . .].

[A-Oveis Gharan’15]

There is always a log logO(1)(n)/k-thin tree.

6 / 25

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.
O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh’17],
but thin tree remains open.
Weighted random spanning trees are O(logn/ log logn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi’10] [on board . . .].

[A-Oveis Gharan’15]

There is always a log logO(1)(n)/k-thin tree.

6 / 25

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for asymmetric traveling salesman problem.
O(1) integrality gap already proved for ATSP [Svensson-Tarnawski-Végh’17],
but thin tree remains open.
Weighted random spanning trees are O(logn/ log logn)/k-thin
[Asadpour-Goemans-Madry-Oveis Gharan-Saberi’10] [on board . . .].

[A-Oveis Gharan’15]

There is always a log logO(1)(n)/k-thin tree.

6 / 25

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

7 / 25

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

7 / 25

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

7 / 25

Obstacles
Problem: Edge connectivity does not imply electrical connectivity.

· · · · · ·

Problem: Electrical connectivity is needed for the existence of spectrally
thin trees. For any e = (u, v) ∈ T :

1 ⩾ ReffT (u, v) = e⊺L−T be ⩾ 1

α
· b⊺

eL
−
Gbe =

1

α
· ReffG(u, v).

8 / 25

Obstacles
Problem: Edge connectivity does not imply electrical connectivity.

· · · · · ·

Problem: Electrical connectivity is needed for the existence of spectrally
thin trees. For any e = (u, v) ∈ T :

1 ⩾ ReffT (u, v) = e⊺L−T be ⩾ 1

α
· b⊺

eL
−
Gbe =

1

α
· ReffG(u, v).

8 / 25

Key Idea : Well-condition the graph spectrally
without changing cuts much.

9 / 25

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

10 / 25

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

10 / 25

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.

Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

10 / 25

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?

Problem 2: How do we certify H is O(1)-thin w.r.t. G?

10 / 25

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

10 / 25

Ensuring only original edges are picked . . .

11 / 25

Interlacing Families on Strongly Rayleigh
Distributions
Corollary of [Marcus-Spielman-Srivastava’14, Harvey-Olver’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

12 / 25

Interlacing Families on Strongly Rayleigh
Distributions
Corollary of [Marcus-Spielman-Srivastava’14, Harvey-Olver’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

12 / 25

Interlacing Families on Strongly Rayleigh
Distributions
Corollary of [Marcus-Spielman-Srivastava’14, Harvey-Olver’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

[on board . . .]
12 / 25

Ensuring cuts do not blow up . . .

13 / 25

Idea 1: Using Shortcuts
If H can be routed over G with congestion O(1), then for every S

H(S, S̄) ⩽ O(1) ·G(S, S̄).

· · · · · ·

14 / 25

Idea 1: Using Shortcuts
If H can be routed over G with congestion O(1), then for every S

H(S, S̄) ⩽ O(1) ·G(S, S̄).

· · · · · ·

14 / 25

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

15 / 25

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}

Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

15 / 25

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.

Con: Adds another obstacle to making the construction algorithmic.

15 / 25

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

15 / 25

Puzzle Interlude: Degree-thinness . . .

16 / 25

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?
An expander!

[on board . . .]

17 / 25

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .

Is there an easy well-conditioner H?
An expander!

[on board . . .]

17 / 25

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?

An expander!
[on board . . .]

17 / 25

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?
An expander!

[on board . . .]

17 / 25

Do well-conditioners always exist?

18 / 25

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}

Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

19 / 25

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).

New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

19 / 25

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

19 / 25

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

19 / 25

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

19 / 25

When Degree Cuts are Enough

In expanders, degree cuts are enough.

Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.

If a cut has few low-effective-resistance edges, its expansion must be low.
Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

20 /25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Example: Planar Graphs
If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

21 / 25

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

22 / 25

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.

Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

22 / 25

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

22 / 25

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.

Repeat this log logn times until expansion is Ω(1).

22 / 25

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

22 / 25

Structure of the Talk

1 Thin Trees
Random Spanning Trees
Statement Needed from Interlacing Families
Well-Conditioning

2 Interlacing Families on Strongly Rayleigh Distributions
Statement Needed from Interlacing Families
Proof Sketch

23 / 25

Goal Statement
If L1, . . . , Lm ⪰ 0 are rank 1 and µ :

([m]
d

)
→ R⩾0 is Strongly Rayleigh then

PT∼µ

[∑
i∈T

Li ⪯ O(α)(L1 + · · ·+ Lm)

]
⩾ 0,

assuming
∀i : Li ⩽ α · (L1 + · · ·+ Lm),

∀i : PT∼µ[i ∈ T] ⩽ α.

Follow the footsteps of [Marcus-Spielman-Srivastava’13,14]:
1 Let pT (z) = det(zLG − LT).
2 Prove the family interlaces.
3 Prove the maximum root at top is bounded.

[on board . . .]

24 / 25

Goal Statement
If L1, . . . , Lm ⪰ 0 are rank 1 and µ :

([m]
d

)
→ R⩾0 is Strongly Rayleigh then

PT∼µ

[∑
i∈T

Li ⪯ O(α)(L1 + · · ·+ Lm)

]
⩾ 0,

assuming
∀i : Li ⩽ α · (L1 + · · ·+ Lm),

∀i : PT∼µ[i ∈ T] ⩽ α.

Follow the footsteps of [Marcus-Spielman-Srivastava’13,14]:
1 Let pT (z) = det(zLG − LT).

2 Prove the family interlaces.
3 Prove the maximum root at top is bounded.

[on board . . .]

24 / 25

Goal Statement
If L1, . . . , Lm ⪰ 0 are rank 1 and µ :

([m]
d

)
→ R⩾0 is Strongly Rayleigh then

PT∼µ

[∑
i∈T

Li ⪯ O(α)(L1 + · · ·+ Lm)

]
⩾ 0,

assuming
∀i : Li ⩽ α · (L1 + · · ·+ Lm),

∀i : PT∼µ[i ∈ T] ⩽ α.

Follow the footsteps of [Marcus-Spielman-Srivastava’13,14]:
1 Let pT (z) = det(zLG − LT).
2 Prove the family interlaces.
3 Prove the maximum root at top is bounded.

[on board . . .]

24 / 25

Goal Statement
If L1, . . . , Lm ⪰ 0 are rank 1 and µ :

([m]
d

)
→ R⩾0 is Strongly Rayleigh then

PT∼µ

[∑
i∈T

Li ⪯ O(α)(L1 + · · ·+ Lm)

]
⩾ 0,

assuming
∀i : Li ⩽ α · (L1 + · · ·+ Lm),

∀i : PT∼µ[i ∈ T] ⩽ α.

Follow the footsteps of [Marcus-Spielman-Srivastava’13,14]:
1 Let pT (z) = det(zLG − LT).
2 Prove the family interlaces.
3 Prove the maximum root at top is bounded.

[on board . . .]

24 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?
Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!

25 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?

Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?
Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!

25 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?

What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?
Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!

25 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!

25 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?
Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!

25 / 25

Conclusion and Questions
Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?
Can we extend interlacing families to settings where roots are not real?
Log-concave polynomials?

Thank you!
25 / 25

