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Singular vector computation

Given matrix A,
find u maximizing |Aul/|u]

Top k singular vectors u,,...,u,
defined recursively
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* privacy concerns




Matrix Completion
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Goal: Reconstruct missing entries
l.e: Approximate dominant SVs of unknown matrix



Matrix Completion aka Netflix Problem
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Goal: Reconstruct missing entries
l.e: Approximate dominant SVs of unknown matrix



Feasibility Assumptions
[CT,CR,R,KMO,........ (long line of work)....]

 Matrix A approximately rank k << n

* Top singular space U is incoherent |

Twin
assumptions

foralle;: |e U] small

—

e Subsample uniformly random

—

| SR S-S

Strong, but lead to informative theory!



State of the Art

Space/ (Provable)

Algorithm

Running time | sample bounds

Nuclear Norm

Alternating Minimization method of choice in practice!
First bounds due to Keshavan12, Jain-Netrapalli-Sanghavil3

Not too far from
optimal

H'13]

Based on Alternating Minimization
See arXiv:1312.0925 for details.



Privacy: The other Netflix Problem

Dramatic reference to [Narayanan-Shmatikov’'08]

Basic Question: Given matrix A,

approximate top k singular vectors
subject to differential privacy

Lots of work, e.g., BDMNO5,MMO09,CSS12,
HR12,BBDS12,KT13, HR13,DTTZ



Results [H'13]

Nearly linear time algorithm with following
guarantees:

Entry-level privacy Unit spectral norm

Nearly optimal error in  Nearly optimal error
k and coherence in kand n

* Only logarithmicinn + for both (€,0) and (€,5)-dp
* (g,6)-diff priv * running time down from

* resolved main question >n* [Kapralov-Talwar 13]

of H-Roth (2013)
See arXiv:1311.2495 for details.



Main message

Noisy Power Method

solves both AltMin and Private SVD

Incoherence

controls error rates in both problems

Techniques

transfer from one problem to the other



Noisy Power Method

Input: n x n matrix A symmetric, target rank k
X, random orthonormal matrix

Fort=1toT:
— Nature chooses perturbation G,
— We observe Y, = AX, , + G,

— X, = Orthonormalize(Y,)

Output X;  (approx top k singular vectors)



Principle Angle Between Subspaces

Let U, X subspaces of dimension k

k=1

In general

s\
— [T 6\\3\
cos O(U,X) = |U'X]| &
........ > U
cos O(U,X) =o,,..(UX)
sin O(U,X) =0, (VX)

where V orthog. complement of U

tan ©(U,X) =sin ©(U,X) / cos O(U,X)



Main Convergence Lemma

Ok+1SINO(U, Xt—1)
tan 8(U, X¢) < —— . 1fG.=0
Ok cosO(U, Xt—1) -

v
A
sin@(U, Xt-1)




So, what can we do with this?




Alternating Minimization

Input: Subsample P, A of unknown matrix A
Pick X, uniformly at random
Fort=1toL:

Ye = argmin [IPa(A = Xe-1Y )|
where P, is projection on subsample
X, = Orthonormalize(Y,)

Output: B =X ,Y,T



AltMin as Noisy Power Method

* Update step in AltMin

Yt = argmin||Pa(A — Xe—1Y ")

where P, is projection on subsample

With full information, Y, = AX, _,

Observation. We can write Y, = AX, ; + G,
where G, captures “sampling error”



Main hurdle

Observation. We can write Y, = AX, ; + G,
where G, captures “sampling error”

Norm of G, is controlled
by coherence of X, ,

Def: Coherence p(X) = (n/k) max. |e;'X|?



Reasoning about Coherence

Coherence propagation:
If A is incoherent, then so is every iterate X,

AltMin:

Incoherent X, ensures low sample complexity
Argue via Smooth Orthonormalization [H-Roth12]
Private SVD:

Incoherent X, ensures small Gaussian noise

* Argue via rotational invariance of Gaussians



Recap

Noisy Power Method

solves both AltMin and Private SVD

Incoherence

controls error rates in both problems

Techniques

transfer from one problem to the other



Conclusion and Open Problems

* Robustness is the common denominator
between privacy and machine learning

— Focus on finding the “right” robust analysis of
algorithms

* Lots of technical problems:
— Weaker coherence notion sufficient for privacy?
— Tight sample complexity bounds for AltMin?
— Privacy-preserving AltMin?
— Robustness of gradient descent?



Thank you.



Results

Tight dependence
on k and p(A)

Recall a = | (I — UUT)X]| 2

Entry-level privacy:

H'13 a=0c s = vku(A))

H-Roth13: o = Oc,5( ok /rk(A)u(A))

Settings of [Kapralov-Talwar 13] and [Chaudhuri-Sarwate-Sinha 12]
This work: Tight dependence on k, n.

Applies to (g,6)-dp as well.
Worst-case running time linear in n. Down from > n3.






