

# ALGORITHMS FOR ANSWERING LINEAR QUERIES

Sasho Nikolov (U of Toronto) Gerome Miklau (UMass Amherst) Ryan McKenna (Umass Amherst)

# OUTLINE

#### **Basic Notions**

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

# DATABASE MODEL & COUNTING QUERIES

Data Universe  $\mathfrak{U}$ , i.e. set of all possible database rows

•  $\mathfrak{U} = \{\text{possible IDs}\} \times \{M, F\} \times \{\text{High School, BSc, MSc, PhD}\} \times \{0, ..., 150\}$ 

Database  $X = (x^1, ..., x^n) \in \mathfrak{U}^n$ ,  $x^i$  are the database rows

each rows corresponds to the data of one person

Predicate  $q: \mathfrak{U} \to \{0,1\}$ 

• E.g.  $IsMale(x) = 1 \iff Gender$  attribute of x is Male.

• Weighted version:  $q: \mathfrak{U} \rightarrow [0,1]$ 

Counting query:  $q(X) = \sum_{i=1}^{n} q(x^{i})$ , i.e. number of db rows satisfying q. Normalized counting query:  $q(X) = \frac{1}{n} \sum_{i=1}^{n} q(x^{i})$ 

| ID #  | Gender | Education   | Age |
|-------|--------|-------------|-----|
| 15737 | Μ      | BSc         | 24  |
| 13555 | F      | PhD         | 35  |
| 63323 | F      | High School | 20  |
| 12984 | Μ      | High School | 19  |
| 16750 | Μ      | MSc         | 27  |
| 46188 | Μ      | BSc         | 40  |



Query Workload: a collection  $Q = \{q_1, \dots, q_k\}$  of counting queries

$$Q(X) = \begin{pmatrix} q_1(X) \\ q_2(X) \\ \vdots \\ q_k(X) \end{pmatrix}$$

### HISTOGRAM

The histogram of  $X = (x^1, ..., x^n)$  is a vector  $h \in \mathbb{N}^{\mathfrak{U}}$ :

$$\forall x \in \mathfrak{U}: \ h_x = |\{i: x^i = x\}|$$

• i.e.  $h_x$  is the number of copies of x in X

E.g.  $\mathfrak{U} = \{0,1\}^3$ , X = (001,100,101,111,001,101):

|      | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| h =( | 0   | 2   | 0   | 0   | 1   | 2   | 0   | 1   |  |

$$\|h\|_1 = \sum_{x \in \mathfrak{U}} |h_x| = n$$

If X and X' are neighboring, then  $||h - h'||_1 \le 1$ .

# QUERY MATRIX

We can encode a query workload Q by a matrix  $W \in [0,1]^{Q \times \mathfrak{U}}$ :

 $\forall q \in \mathcal{Q}, \forall x \in \mathfrak{U}: \ W_{q,x} = q(x)$ 

E.g.  $\mathfrak{U} = \{0,1\}^3$  and Q are 1-way marginals:  $q_i(x) = i$ -th bit of x

|     |       | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|
| W = | $q_1$ | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 1   |
|     | $q_2$ | 0   | 0   | 1   | 1   | 0   | 0   | 1   | 1   |
|     | $q_3$ | 0   | 1   | 0   | 1   | 0   | 1   | 0   | 1   |

Then the workload answers are the product Q(X) = Wh:

$$q(X) = \sum_{i=1}^{n} q(x^i) = \sum_{x \in \mathfrak{U}} q(x) |\{i: x^i = x\}| = (Wh)_q$$

### **MEASURING ERROR**

<u>Worst-Case Error</u> of a mechanism  $\mathcal{M}$ :

$$\operatorname{err}^{\infty}(Q, \mathcal{M}, n) = \max_{X \in \mathfrak{U}^{n}} \mathbb{E} \max_{q \in Q} |q(X) - \mathcal{M}(Q, X)_{q}|$$
  
i.e. 
$$\operatorname{err}^{\infty}(W, \mathcal{M}, n) = \max_{\|h\|_{1} \le n} \mathbb{E} \|Wh - \mathcal{M}(W, h)\|_{\infty}$$
(Experimentation)

Expectations over the randomness of  $\mathcal{M}.$ )

<u>Mean Squared Error</u> of a mechanism  $\mathcal{M}$ :

$$\operatorname{err}^{2}(\mathcal{Q}, \mathcal{M}, n) = \max_{X \in \mathfrak{U}^{n}} \sqrt{\mathbb{E} \frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \left| q(X) - \mathcal{M}(\mathcal{Q}, X)_{q} \right|^{2}}$$
  
i.e. 
$$\operatorname{err}^{2}(W, \mathcal{M}, n) = \max_{\|h\|_{1} \leq n} \left( \mathbb{E} \frac{1}{|\mathcal{Q}|} \|Wh - \mathcal{M}(W, h)\|_{2}^{2} \right)^{1/2}.$$

# TYPES OF MECHANISMS

Data and Workload Independent: noise only depends on the sensitivity

Gaussian and Laplace noise mechanisms

Postprocessing a data independent mechanism can introduce data dependence.

Data Independent, adapted to the Workload: noise optimized for the workload

Matrix Mechanism

Adapted to the Data: mechanism learns the database

Private Multiplicative Weights Mechanism

# OUTLINE

**Basic Notions** 

#### Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

# **GAUSSIAN NOISE MECHANISM**

 $\ell_2$  Sensitivity:  $\Delta_2(Q) = \max_{X \sim X'} \|Q(X) - Q(X')\|_2$  $\Delta_2(W) = \max\{\|Wh - Wh'\|_2 : \|h - h'\|_1 \le 1\}$ Equivalently:  $= \max\{\|Wv\|_2 : \|v\|_1 \le 1\}$  $\Delta_2(W) = \sqrt{3}$ 0 0 0 0 1 This is just the largest  $\ell_2$ -norm of a column of W. •  $\Delta_2(Q) = \Delta_2(W) \le \sqrt{|Q|}.$ 0 1 1 0 0 1 0 Gaussian Noise Mechanism [Dinur Nissim 03, Dwork Nissim 04, DMNS 06] 1 0 1 0 1 0 0  $\mathcal{M}_{\text{gm}}(W,h) = Wh + G, \quad G_i \sim N(0, \sigma_{\epsilon,\delta}^2 \Delta_2(W)^2)$ 

1

1

 $\sigma_{\epsilon,\delta} = \Theta(\epsilon^{-1}\sqrt{\log(1/\delta)}).$ 

# HOW WELL DOES IT DO?

On any workload W of k queries:

 $\operatorname{err}^{\infty}(W, \mathcal{M}_{\operatorname{gm}}, n) \leq \Delta_2(W) \sqrt{\log(k)} \leq \sqrt{k \log(k)}.$ 

[Bun, Ullman, Vadhan 14] Optimal for 1-way marginals on d-dimensional data

The same query repeated k times?

Threshold Queries:  $\mathfrak{U} = \{1, ..., N\}$ ,  $Q = \{q_t\}$ ,  $q_t(x) = 1$  if  $x \leq t$ . • Can do  $\Theta(\log(N)^{1.5})$ 

| 1 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

Will ignore

dependence on  $\epsilon$  and  $\delta$  from now on.



# ERROR BOUNDS

 $\mathcal{M}(h) = R(Ah + G), \text{ where } W = RA$ Error vector:  $\mathcal{M}(h) - Wh = RG \sim N(0, \sigma_{\epsilon,\delta}^2 \Delta_2(A)^2 \cdot RR^{\mathsf{T}})$ Error for k queries:  $\mathsf{Max row norm} \quad \mathsf{Max column norm}$  $\mathsf{err}^{\infty}(W, \mathcal{M}, n) \leq \rho(R) \Delta_2(A) \sqrt{\log(k)}$ 

 $\rho(R) = \max_{i} \left\| r^{i} \right\|_{2} = \max_{i} \sqrt{(RR^{\mathsf{T}})_{ii}}$ 

### MATRIX MECHANISM [LI, MIKLAU, MCGREGOR, RASTOGI 10]



How to choose R and A?

Just optimize the above error bound:

 $\gamma(W) = \min\{\rho(R)\Delta_2(A) \colon W = RA\}$ 

 $\mathcal{M}_{\text{mm}}(h) = R(Ah + G)$ , where R and A achieve  $\gamma(W)$ .

Then

$$\operatorname{err}^{\infty}(W, \mathcal{M}_{\operatorname{mm}}, n) \leq \gamma(W) \sqrt{\log(k)}.$$

Similarly for mean squared error.

# **GEOMETRIC INTERPRETATION**

For neighboring databases with histograms h, h',

 $Wh - Wh' = W(h - h') \in WB_1^N = \operatorname{conv}\{\pm w_1, \pm w_2, \dots, \pm w_N\}$ 

 $B_1^N = \{ v: \|v\|_1 \le 1 \}$ 

where  $W_1, W_2, \ldots, W_N$  are the columns of W.

 $K_W = WB_1^N$  is called the sensitivity polytope •  $\Delta_2(W)$  = radius of smallest Euclidean ball containing  $K_W$ 

If W = RA, then the ellipsoid  $E = RB_2^k(0, \Delta_2(A))$  contains  $K_W$ 

The Matrix Mechanism finds the smallest ellipsoid that contains  $K_W$ • Smallest = contained in the smallest cube.

### **OPTIMIZATION PROBLEM**

We need to solve:  $\gamma(W) = \min\{\rho(R)\Delta_2(A): W = RA\}$ 

Observation: we can always replace R and A by tR and A/t. • Can assume that  $\rho(R) = \Delta_2(A) = \sqrt{\gamma(W)}$ .



# **OPTIMALITY OF THE MATRIX MECHANISM**

Best achievable error:  $\operatorname{opt}_{\epsilon,\delta}(W,n) = \inf\{\operatorname{err}^{\infty}(W,\mathcal{M},n):\mathcal{M} \text{ is } (\epsilon,\delta) - \mathrm{DP}\}$ 



#### Proof sketch:

- If  $\gamma(W)$  is large, then W has a submatrix with large minimum singular value
- [Dinur Nissim 03] A mechanism for W with error too small relative to the smallest singular value allows a reconstruction attack.



# OUTLINE

**Basic Notions** 

Data Independent Mechanisms

#### Gaussian Noise + Projection

Learning the database

### SMALL DATABASES

2-way marginals:  $\mathfrak{U} = \{0,1\}^d$ ,  $q_{i,j}(x) = x_i \wedge x_j$ •  $\gamma(W) = \Theta(d)$  so the Matrix Mechanism has error  $\operatorname{err}^{\infty}(W, \mathcal{M}_{\operatorname{mm}}, n) \approx d\sqrt{\log(d)}$ • Can achieve error  $\sqrt{n}d^{\frac{1}{4}}\sqrt{\log(d)}$ : MM is suboptimal if  $n \ll d^{1.5}$ .

The Matrix Mechanism can be suboptimal for small n.



# **PROJECTION MECHANISM**

Recall: if database has size n, then  $||h||_1 \le n$ . So,  $Wh \in nWB_1^N = nK_W$ 

Gaussian noise mechanism:  $\mathcal{M}_{gm}(W, h) = \tilde{Y} = Wh + G$ • If n is small, then very likely  $\tilde{Y} \notin nK_W$ 

Postprocess to "bring it back"!

Projection Mechanism [Nikolov Talwar Zhang 13]

$$\widetilde{Y} = \mathcal{M}_{\text{gm}}(W, h)$$
$$\mathcal{M}_{\text{pr}}(W, h) = \widehat{Y} = \arg\min\left\{ \left\| \widetilde{Y} - z \right\|_2 : z \in nK_W \right\}$$



# ERROR BOUND

Using some high school geometry + probability:

$$\operatorname{err}^{2}(W, \mathcal{M}_{\mathrm{pr}}, n) \leq \sqrt{n}(\log|\mathfrak{U}|)^{\frac{1}{4}}$$

[Bun, Ullman, Vadhan 14] Optimal for 2-way marginals

#### **Remarks:**

- Projection does not affect privacy, but can improve error for small n
- Projection turns a data independent mechanism into a data dependent one



# **IMPLICIT QUERIES**

Often queries of interest are defined compactly: e.g. r-way marginals

- We want algorithms that run much faster than  $O(|\mathfrak{U}|)$  time.
- Dwork, Naor, Reingold, Rothblum, Vadhan 09] Computationally hard for artificial queries

Test case: 2-way marginals on d-dimensional data in time poly(d, n)

• We will use the Projection Mechanism to get mean sq error  $O(\sqrt{n}d^{1/4})$ 

Projecting on  $nK_W$  reduces to solving  $\max\{c^Tz: z \in K_W\}$  for arbitrary c• NP-hard for 2-way marginals!

- [Dwork, Nikolov, Talwar 14] Project on some nL,  $K_W \subseteq L \subseteq O(1) \cdot K_W$
- Projecting on L is efficient: SDP relaxation of  $K_W$
- Error is the same as projecting on  $K_W$ , up to constants

Open: Is there an algorithm with  $O(\sqrt{n}d^{1/4})$  error that computes 3-way marginals on d-dimensional data in time poly(d, n)?

 $\hat{V}$ 

Y = Wh

 $nK_W$ 

 $nK_{\rm V}$ 

# COARSE PROJECTION [BLASIOK, BUN, NIKOLOV, STEINKE 19]

Suppose we want error at most  $\alpha n$ .

Take an  $\alpha n$ -net:

• Points  $v_1, \ldots, v_N \in K_W$  such that any vertex of  $K_W$  is within  $\alpha n$  from some  $v_i$ 

Project on  $conv\{v_1, ..., v_N\}$ 

- Can have much smaller mean width than  $K_W$
- Y can be outside but this cannot introduce more than  $\alpha n$  error
- Error after projection is smaller

Achieves error n/100 with nearly the smallest possible n among CDP mechanisms.

• Open: similar guarantee for approximate DP.



# **PROJECTION AND MATRIX MECHANISM**

[Nikolov Talwar Zhang 13, Nikolov 15] Combine Matrix Mechanism and Projection Mechanism:

• Optimize the upper bound on error over factorizations W = RA

- Mechanism with mean sq. error  $\leq (\log(n)\log(|\mathfrak{U}|))^{\frac{1}{4}} \cdot \operatorname{opt}_{\epsilon,\delta}(W,n)$  for every n.
- Open: An efficient mechanism whose error for every n is  $\leq \log(nk)^{O(1)} \cdot \operatorname{opt}_{\epsilon,\delta}(W, n)$

In fact projection is

slightly modified.

• Open: Similar guarantee for worst-case error?

• Add noise:  $\widetilde{Y} = R(Ah + G)$ 

• Project  $\widetilde{Y}$  to  $nK_W$ 

# OUTLINE

**Basic Notions** 

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

### QUERY RELEASE AS LEARNING [BLUM, LIGETT, ROTH 08]

We know how to answer few queries on large database X.

Given a large workload Q, can we <u>generalize</u> from few query answers to all of Q?

A change in perspective: X is a function from queries to query answers •  $X: Q \to \mathbb{R}$  defined by X(q) = q(X) for every  $q \in Q$ 

<u>Learning problem</u>: given a few examples (q, X(q)), learn  $X: Q \to \mathbb{R}$ 

Reduces answering many queries to answering few queries.

# **BOOSTING AVERAGE ERROR GUARANTEES**

Mean squared error  $\eta$ :

$$\frac{1}{|\mathcal{Q}|} \sum_{q \in \mathcal{Q}} \left| q(X) - \mathcal{M}(\mathcal{Q}, X)_q \right|^2 \leq \eta^2$$

Chebyshev: for all but |Q|/4 queries q,  $|q(X) - \mathcal{M}(Q, X)_q| \le 2\eta$ 

Gives an efficient algorithm for 2-way marginals with optimal worst case error

I.e. we can approximate X(q) = q(X) on most of Q: we have weakly learned X

We want to strongly learn X, i.e. learn it on all of Q

[Freund Schapire 95] Boosting reduces strong learning to weak learning

[Dwork Rothblum Vadhan 10] Private Boosting reduces worst-case error to mean sq. error

• Running a base mechanism with good mean sq. error  $O(\log |Q|)$  times gives a mechanism with good worst case error.

### THE DATABASE AS A DISTRIBUTION

The normalized histogram  $p = \frac{1}{n}h$  is a probability distribution on  $\mathfrak{U}$ •  $\forall x \in \mathfrak{U}: p_x = \frac{|\{i:x^i=x\}|}{n}$ 

 $Wp = \frac{1}{n}Wh$  are the normalized query answers • Approximating Wp within error  $\alpha \Leftrightarrow$  Approximating Wh within error  $\alpha n$ 

Notation:  $q(p) = (Wp)_q = \sum_{x \in \mathfrak{U}} q(x)p_x$ 

Learning  $X \Leftrightarrow$  Learning p

# PRIVATE MULTIPLICATIVE WEIGHTS [HARDT, ROTHBLUM 10]



Finding a distinguishing query: exponential mechanism with score  $|q(p) - q(p^t)|$ 

Update rule:

• 
$$\sigma = \operatorname{sign}(q(p) - q(p^t))$$
  
•  $\tilde{p}_x^{t+1} = p_x^t \exp\left(\frac{\alpha \sigma q(x)}{2}\right) \text{ and } p_x^{t+1} = \tilde{p}_x^{t+1} / \sum_{y \in \mathfrak{U}} \tilde{p}_y^{t+1}$ 

If  $q(p^t)$  overshoots, we clamp down the probability of the contributing x.

# WHY IT WORKS

PMW answers (unnormalized) queries with worst-case error  $\alpha n$  if  $n \gtrsim \frac{\sqrt{\log |\mathfrak{U}| \log k}}{\alpha^2}$ 

Relative entropy  $D(p||q) = \sum_{x \in \mathfrak{U}} p_x \log\left(\frac{p_x}{q_x}\right)$  as a potential Initially  $D(p||p^0) \le \log|\mathfrak{U}|$ , and  $D(p||q) \ge 0$  always

Every update decreases  $D(p||p^t)$  by at least  $\frac{\alpha^2}{4}$ : no more than  $\frac{4 \log |\mathfrak{U}|}{\alpha^2}$  updates • We need to run the exponential mechanism at most  $\frac{4 \log |\mathfrak{U}|}{\alpha^2}$  times

If  $n \gtrsim \frac{\sqrt{\log |\mathfrak{U}|} \log k}{\alpha^2}$ , we can identify  $q \in Q$  such that  $|q(p) - q(p^t)| > \alpha$  for every update.

Advanced composition + exponential mechanism analysis

 $\operatorname{err}^{\infty}(\mathcal{Q}, \mathcal{M}, n) \leq \sqrt{n \log(k)} (\log |\mathfrak{U}|)^{\frac{1}{4}}$ 

# WHAT WE DID NOT COVER

#### Synthetic data

- Projection M and PMW can generate synthetic data
- Dual Query, GANs, etc.

#### Answering queries online

- PMW can be adapted to queries that arrive online
- Replace exponential mechanism with Sparse Vector

Other ways to answer implicit queries efficiently (e.g. [Thaler Ullman Vadhan 12])

- Approximate  $X: \mathcal{Q} \to \mathbb{R}$  by a low degree polynomial
- Privately compute coefficients

Information theoretic and computational lower bounds

Applied work and much of the work outside the theory community

Stay for Gerome!