
ALGORITHMS FOR ANSWERING
LINEAR QUERIES

Sasho Nikolov (U of Toronto)
Gerome Miklau (UMass Amherst)
Ryan McKenna (Umass Amherst)

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

DATABASE MODEL &
COUNTING QUERIES

Data Universe !, i.e. set of all possible database rows
 ! = {possible IDs} × {M, F} × {High School, BSc, MSc, PhD} × {0, …, 150}

Database " = $%, … , $(∈ !(, $* are the database rows
 each rows corresponds to the data of one person

Predicate +: ! → 0,1
 E.g. IsMale $ = 1 ⇔ Gender attribute of $ is Male.
 Weighted version: +: ! → [0,1]

Counting query: + " = ∑*4%(+ $* , i.e. number of db rows satisfying +.

Normalized counting query: + " = %
(∑*4%

(+ $*

ID # Gender Education Age

15737 M BSc 24

13555 F PhD 35

63323 F High School 20

12984 M High School 19

16750 M MSc 27

46188 M BSc 40

QUERY WORKLOAD

Query Workload: a collection ! = {$%, … , $(} of counting queries

! * =
$%(*)
$-(*)
⋮

$((*)

2017 US Census

Normalized

HISTOGRAM

The histogram of ! = ($%, … , $() is a vector ℎ ∈ ℕ-:

∀$ ∈ -: ℎ0 = | 2: $3 = $ |
 i.e. ℎ0 is the number of copies of $ in !

E.g. - = 0,1 6, ! = (001,100,101,111,001,101):

ℎ =()

ℎ % = ∑0∈- |ℎ0| = 8
If ! and !′ are neighboring, then ℎ − ℎ′ % ≤ 1.

000 001 010 011 100 101 110 111

0 2 0 0 1 2 0 1

QUERY MATRIX
We can encode a query workload ! by a matrix W ∈ 0,1 !×(:

∀* ∈ !, ∀+ ∈ (: -.,/ = *(+)
E.g. (= 0,1 3 and ! are 1-way marginals: *4 + = 5-th bit of +

- =

Then the workload answers are the product ! 6 = -ℎ:

* 6 = ∑49:; * +4 = ∑/∈(* + | 5: +4 = + | = -ℎ .

000 001 010 011 100 101 110 111

*: 0 0 0 0 1 1 1 1

*= 0 0 1 1 0 0 1 1

*3 0 1 0 1 0 1 0 1

MEASURING ERROR

Worst-Case Error of a mechanism ℳ:

err$ %,ℳ, ' = max,∈./ 0max1∈% |3 4 −ℳ %,4 1|
i.e. err$ 6,ℳ, ' = max

7 89:
0 6ℎ −ℳ 6,ℎ $

Mean Squared Error of a mechanism ℳ:

err< %,ℳ, ' = max,∈./ 0 =
|%| ∑1∈% 3 4 −ℳ %,4 1

<

i.e. err< 6,ℳ, ' = max7 89:
0 =
|%| 6ℎ −ℳ 6,ℎ <<

⁄8 @
.

(Expectations over the
randomness of ℳ.)

TYPES OF MECHANISMS

Data and Workload Independent: noise only depends on the sensitivity
 Gaussian and Laplace noise mechanisms

Data Independent, adapted to the Workload: noise optimized for the workload
 Matrix Mechanism

Adapted to the Data: mechanism learns the database
 Private Multiplicative Weights Mechanism

Postprocessing a data
independent mechanism

can introduce data
dependence.

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

GAUSSIAN NOISE MECHANISM

ℓ" Sensitivity: Δ" $ = max
)∼)+

$, − $,. "

Equivalently: Δ" / = max{ /ℎ −/ℎ′ " : ℎ − ℎ
.
4 ≤ 1}

= max{ /8 " : 8 4 ≤ 1}

This is just the largest ℓ"-norm of a column of /.
 Δ" $ = Δ" / ≤ $.

Gaussian Noise Mechanism [Dinur Nissim 03, Dwork Nissim 04, DMNS 06]

ℳgm /, ℎ = /ℎ + =, => ∼ ?(0, BC,D
" Δ" /

")

BC,D = Θ GH4 log 1/L .

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Δ" / = 3

HOW WELL DOES IT DO?

On any workload ! of " queries:

err% !,ℳgm, * ≲ Δ- ! log " ≤ " log " .

[Bun, Ullman, Vadhan 14] Optimal for 1-way marginals on 1-dimensional data

The same query repeated " times?

Threshold Queries: 2 = {1,… ,7}, 9 = {:;}, :; < = 1 if < ≤ =.
 Can do Θ(log 7 @.B)

Will ignore
dependence on D

and E from now on.

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

FACTORING THE QUERIES

How do you beat the Gaussian Mechanism on Threshold Queries?

Factor workload as: ! = #$

ℳ ℎ = #($ℎ +)), where)+ ∼ -(0, 01,2
3 Δ3 $ 3)

Error vector: ℳ ℎ −!ℎ = #)
 #) + ∼ -(0, 01,2

3 Δ3 $ 3 6+ 3
3
) , where 6+ = 7-th row of #

Threshold queries: Δ3 $ 3,max
+

6+ 3
3 = Θ log -

 Θ log - noise per query

Reconstruction
Matrix

Strategy
Matrix

ℎ?:A

ℎ?:B

ℎ?:3

ℎ? ℎ3

ℎC:A

ℎD:B

ℎD ℎB

ℎC:E

ℎC ℎE

ℎF:A

ℎF ℎA

GF H = ℎ?:B + ℎC:E + hF

ERROR BOUNDS

ℳ ℎ = $(&ℎ + (), where * = $&
Error vector: ℳ ℎ −*ℎ = $(∼ -(0, 01,23 Δ3 & 3 ⋅ $$⊺)
Error for 7 queries:

err: *,ℳ, ; ≲ = $ Δ3 & log 7

= $ = maxD ED 3 = maxD $$⊺ DD

Max row norm Max column norm

MATRIX MECHANISM [LI, MIKLAU, MCGREGOR, RASTOGI 10]

err# $,ℳ, ' ≲) * Δ, - log 1
How to choose * and -?

Just optimize the above error bound:

2 $ = min) * Δ, - :$ = *-
ℳmm ℎ = *(-ℎ + ;), where * and - achieve 2 $.

Then

err# $,ℳmm, ' ≲ 2 $ log 1 .

Similarly for mean squared error.

Max row norm Max column norm

GEOMETRIC INTERPRETATION

For neighboring databases with histograms ℎ, ℎ#,
$ℎ −$ℎ# = $(ℎ − ℎ#) ∈ $*+, = conv{±3+,±34,… ,±3,}

where 3+,34, … ,3, are the columns of $.

78 = $*+, is called the sensitivity polytope
 Δ4 $ = radius of smallest Euclidean ball containing 78
If $ = :;, then the ellipsoid < = :*4= 0, Δ4 ; contains 78
The Matrix Mechanism finds the smallest ellipsoid that contains 78
 Smallest = contained in the smallest cube.

1 0

1 1

$ℎ′

$ℎ

*+, = {@: @ + ≤ 1}

OPTIMIZATION PROBLEM

We need to solve: ! " = min ' (Δ* + :" = (+
Observation: we can always replace (and + by t(and +//.
 Can assume that ' (= Δ* + = ! " .

Semidefinite Program for ! " :
 01 = 2-th row of (
 34 = 5-th column of +
 optimal / = ! "

min /
subject to
01 6 34 = 714 ∀2, 5
01 6 01 ≤ / ∀2
34 6 34 ≤ / ∀5

" = (+

' (* ≤ /

Δ* (* ≤ /

OPTIMALITY OF THE MATRIX MECHANISM

Best achievable error: opt$,&((,)) = inf{err2 (,ℳ,) :ℳ is (6, 7)−DP}

[Nikolov, Talwar, Zhang 13]
< =
>?@ A

≲ sup
D
opt$,&((,)) ≲ E (log H

Proof sketch:
 If E (is large, then (has a submatrix with large minimum singular value
 [Dinur Nissim 03] A mechanism for (with error too small relative to the smallest singular value allows a

reconstruction attack.

Matrix Mechanism
Reconstruction

Attack

Proof shows that
< =
>?@ A

≲ opt$,& (, H/6

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

SMALL DATABASES

2-way marginals: ! = 0,1 & , '(,) * = *(∧ *)
 , - = Θ(0) so the Matrix Mechanism has error err4 -,ℳmm, 7 ≈ 0 log 0
 Can achieve error 70

<
= log 0 : MM is suboptimal if 7 ≪ 0?.A.

The Matrix Mechanism can
be suboptimal for small 7.

7

error

optD,E(-, 7)

Want to match the entire curve,
rather than just the limit as 7 → ∞

PROJECTION MECHANISM

Recall: if database has size !, then ℎ # ≤ !.

So, %ℎ ∈ !%'#(= !*+
Gaussian noise mechanism: ℳgm %, ℎ = 01 = %ℎ + 3
 If ! is small, then very likely 01 ∉ !*+
 Postprocess to “bring it back”!

Projection Mechanism [Nikolov Talwar Zhang 13]

01 = ℳgm %, ℎ

ℳpr %, ℎ = 71 = argmin 01 − < =: < ∈ !*+

71

1 = %ℎ

01

!*+

Just postprocessing:
does not affect

privacy.

ERROR BOUND

Using	some	high	school	geometry	+	probability:

err5 6,ℳpr, 9 ≲ 9 log ;
<
=

[Bun, Ullman, Vadhan 14] Optimal for 2-way marginals

Remarks:
 Projection does not affect privacy, but can improve error for small 9
 Projection turns a data independent mechanism into a data dependent one

>?

?

@?

9AB

C
D

IMPLICIT QUERIES

Often queries of interest are defined compactly: e.g. !-way marginals
 We want algorithms that run much faster than " # time.
 [Dwork, Naor, Reingold, Rothblum, Vadhan 09] Computationally hard for artificial queries

Test case: 2-way marginals on %-dimensional data in time poly(%, ()
 We will use the Projection Mechanism to get mean sq error "((%*/,)
Projecting on (-. reduces to solving max{3⊺5: 5 ∈ -.} for arbitrary 3
 NP-hard for 2-way marginals!

[Dwork, Nikolov, Talwar 14] Project on some n:, -. ⊆ : ⊆ " 1 ⋅ -.
 Projecting on : is efficient: SDP relaxation of -.
 Error is the same as projecting on -. , up to constants

Open: Is there an algorithm with "((%*/,) error that computes 3-way marginals on %-
dimensional data in time poly(%, ()?

>?

? = Aℎ

C?

(-.

>?

(-.

COARSE PROJECTION [BLASIOK, BUN, NIKOLOV, STEINKE 19]

Suppose we want error at most !".

Take an !"-net:
 Points #$, … , #' ∈)* such that any vertex of)* is within !" from some #+
Project on conv{#$, … , #'}
 Can have much smaller mean width than)*
 2 can be outside but this cannot introduce more than !" error
 Error after projection is smaller

Achieves error "/100 with nearly the smallest possible " among CDP mechanisms.
 Open: similar guarantee for approximate DP.

62

2

72

")*
8

!"

PROJECTION AND MATRIX MECHANISM

[Nikolov Talwar Zhang 13, Nikolov 15] Combine Matrix Mechanism and Projection Mechanism:
 Optimize the upper bound on error over factorizations ! = #$
 Add noise: %Y = #($ℎ + *)
 Project %Y to ,-.

Mechanism with mean sq. error ≲ log n log 4
5
6 ⋅ opt:,<(!, ,) for every n.

 Open: An efficient mechanism whose error for every n is ≲ log ,= > ? ⋅ opt:,<(!, ,)
 Open: Similar guarantee for worst-case error?

In fact projection is
slightly modified.

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

QUERY RELEASE AS LEARNING [BLUM, LIGETT, ROTH 08]

We know how to answer few queries on large database !.

Given a large workload ", can we generalize from few query answers to all of "?

A change in perspective: ! is a function from queries to query answers
 !: " → ℝ defined by ! & = &(!) for every & ∈ "

Learning problem: given a few examples (&, ! &), learn !:" → ℝ
 Reduces answering many queries to answering few queries.

BOOSTING AVERAGE ERROR GUARANTEES

Mean squared error !: "|$| ∑&∈$ () −ℳ $,) &
- ≤ !-

Chebyshev: for all but $ /4 queries (, () −ℳ $,) & ≤ 2!
I.e. we can approximate X (= (()) on most of $: we have weakly learned)
We want to strongly learn X, i.e. learn it on all of $
[Freund Schapire 95] Boosting reduces strong learning to weak learning

[Dwork Rothblum Vadhan 10] Private Boosting reduces worst-case error to mean sq. error
 Running a base mechanism with good mean sq. error 6 log $ times gives a mechanism with good

worst case error.

Gives an efficient algorithm for
2-way marginals with optimal

worst case error

THE DATABASE AS A DISTRIBUTION

The normalized histogram ! = #
$ ℎ is a probability distribution on &

 ∀(∈ &: !+ = ,:+-.+
$

/! = #
$/ℎ are the normalized query answers

 Approximating /! within error 0 ⟺ Approximating /ℎ within error 02

Notation: 3 ! = /! 4 = ∑+∈& 3 (!+

Learning 6 ⟺ Learning !

PRIVATE MULTIPLICATIVE WEIGHTS [HARDT, ROTHBLUM 10]
[HARDT, LIGETT, MCSHERRY 12]

Strategy: keep guessing distributions !", !$, … , !&
 Privately find a ' ∈) such that |' ! − ' !, | > .
 If not found, we are done: return current !,
 If found, update !, to !,/$

Finding a distinguishing query: exponential mechanism with score |' ! − ' !, |

Update rule:
 0 = sign ' ! − ' !,
 6!7,/$ = !7, exp ;<= 7

> and !7,/$ = 6!7,/$/∑A∈B 6!A,/$

uniform

Distinguisher
between ! and !,

If ' !, overshoots, we
clamp down the probability

of the contributing C.

Sensitivity $D

WHY IT WORKS

PMW answers (unnormalized) queries with worst-case error !" if n ≳ %&' |)| %&' *
+,

Relative entropy -(/| 0 = ∑3∈) /3 log
89
:9

as a potential

Initially -(/| /; ≤ log |)|, and -(/| 0 ≥ 0 always

Every update decreases -(/| /? by at least +
,

@
: no more than @ %&')

+,
updates

 We need to run the exponential mechanism at most @ %&')
+,

times

If n ≳ %&' |)| %&' *
+,

, we can identify 0 ∈ A such that |0 / − 0 /? | > ! for every
update.

Advanced
composition +
exponential

mechanism analysis

errF A,ℳ, " ≲ " log J log |)|
K
@

WHAT WE DID NOT COVER

Synthetic data
 Projection M and PMW can generate synthetic data
 Dual Query, GANs, etc.

Answering queries online
 PMW can be adapted to queries that arrive online
 Replace exponential mechanism with Sparse Vector

Other ways to answer implicit queries efficiently (e.g. [Thaler Ullman Vadhan 12])
 Approximate !: # → ℝ by a low degree polynomial
 Privately compute coefficients

Information theoretic and computational lower bounds

Applied work and much of the work outside the theory community
 Stay for Gerome!

