

ALGORITHMS FOR ANSWERING LINEAR QUERIES

Sasho Nikolov (U of Toronto)
Gerome Miklau (UMass Amherst)
Ryan McKenna (Umass Amherst)

OUTLINE

Basic Notions

Data Independent Mechanisms
Gaussian Noise + Projection
Learning the database

DATABASE MODEL \& COUNTING QUERIES

Data Universe \mathfrak{U}, i.e. set of all possible database rows

- $\mathfrak{U}=\{$ possible IDs $\} \times\left\{M_{1}, F\right\} \times\{$ High School, BSc, MSc, PhD $\} \times\{0, \ldots, 150\}$

ID \#	Gender	Education	Age
15737	M	BSc	24
13555	F	PhD	35
63323	F	High School	20
12984	M	High School	19
16750	M	MSc	27
46188	M	BSc	40

Database $X=\left(x^{1}, \ldots, x^{n}\right) \in \mathfrak{U}^{n}, x^{i}$ are the database rows
" each rows corresponds to the data of one person
Predicate $q: \mathfrak{U} \rightarrow\{0,1\}$
" E.g. IsMale $(x)=1 \Leftrightarrow$ Gender atribute of x is Male.

- Weighted version: $q: \mathfrak{U} \rightarrow[0,1]$

Counting query: $q(X)=\sum_{i=1}^{n} q\left(x^{i}\right)$, i.e. number of db rows satisfying q.
Normalized counting query: $q(X)=\frac{1}{n} \sum_{i=1}^{n} q\left(x^{i}\right)$

\section*{QUERY WORKLOAD
 | | 18 years and over | 6,765,428 |
| :---: | :---: | :---: |
| Normalized | Male | 3,164,326 |
| | Female | 3,601,102 |
| | Sex ratio (males per 100 females) | 87.9 |
| | | |
| | 65 years and over | 1,168,268 |
| | Male | 475,903 |
| | Female | 692,365 |

Query Workload: a collection $\mathcal{Q}=\left\{q_{1}, \ldots, q_{k}\right\}$ of counting queries

$$
Q(X)=\left(\begin{array}{c}
q_{1}(X) \\
q_{2}(X) \\
\vdots \\
q_{k}(X)
\end{array}\right)
$$

HISTOGRAM

The histogram of $X=\left(x^{1}, \ldots, x^{n}\right)$ is a vector $h \in \mathbb{N}^{24}$:

$$
\forall x \in \mathfrak{U}: \quad h_{x}=\left|\left\{i: x^{i}=x\right\}\right|
$$

" i.e. h_{x} is the number of copies of x in X
E.g. $\mathfrak{U}=\{0,1\}^{3}, X=(001,100,101,111,001,101)$:
$h=\left(\begin{array}{|l|l|l|l|l|l|l|l|}\hline 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\ \hline 0 & 2 & 0 & 0 & 1 & 2 & 0 & 1\end{array}\right)$
$\|h\|_{1}=\sum_{x \in \mathfrak{U}}\left|h_{x}\right|=n$
If X and X^{\prime} are neighboring, then $\left\|h-h^{\prime}\right\|_{1} \leq 1$.

QUERY MATRIX

We can encode a query workload Q by a matrix $\mathrm{W} \in[0,1]^{Q \times 2}$:

$$
\forall q \in \mathcal{Q}, \forall x \in \mathfrak{U}: \quad W_{q, x}=q(x)
$$

E.g. $\mathfrak{U}=\{0,1\}^{3}$ and Q are 1 -way marginals: $q_{i}(x)=i$-th bit of x

$W=$| | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| q_{1} | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| q_{2} | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| q_{3} | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Then the workload answers are the product $Q(X)=W h$:

$$
q(X)=\sum_{i=1}^{n} q\left(x^{i}\right)=\sum_{x \in \mathfrak{U}} q(x)\left|\left\{i: x^{i}=x\right\}\right|=(W h)_{q}
$$

MEASURING ERROR

Worst-Case Error of a mechanism \mathcal{M} :

$$
\operatorname{err}^{\infty}(Q, \mathcal{M}, n)=\max _{X \in \mathcal{U}^{n}} \mathbb{E} \max _{q \in Q}\left|q(X)-\mathcal{M}(Q, X)_{q}\right|
$$

i.e. $\operatorname{err}^{\infty}(W, \mathcal{M}, n)=\max _{\|h\|_{1} \leq n} \mathbb{E}\|W h-\mathcal{M}(W, h)\|_{\infty}$

Mean Squared Error of a mechanism \mathcal{M} :

$$
\operatorname{err}^{2}(Q, \mathcal{M}, n)=\max _{X \in \mathcal{U}^{n}} \sqrt{\mathbb{E} \frac{1}{|Q|} \sum_{q \in Q}\left|q(X)-\mathcal{M}(Q, X)_{q}\right|^{2}}
$$

i.e. $\operatorname{err}^{2}(W, \mathcal{M}, n)=\max _{\|h\|_{1} \leq n}\left(\mathbb{E} \frac{1}{|Q|}\|W h-\mathcal{M}(W, h)\|_{2}^{2}\right)^{1 / 2}$.

TYPES OF MECHANISMS

Data and Workload Independent: noise only depends on the sensitivity

- Gaussian and Laplace noise mechanisms

Postprocessing a data independent mechanism can introduce data dependence.

Data Independent, adapted to the Workload: noise optimized for the workload

- Matrix Mechanism

Adapted to the Data: mechanism learns the database
" Private Multiplicative Weights Mechanism

OUTLINE

Basic Notions

Data Independent Mechanisms
Gaussian Noise + Projection
Learning the database

GAUSSIAN NOISE MECHANISM

ℓ_{2} Sensitivity:

Equivalently:

$$
\begin{aligned}
\Delta_{2}(Q) & =\max _{X \sim X^{\prime}}\left\|Q(X)-\mathcal{Q}\left(X^{\prime}\right)\right\|_{2} \\
\Delta_{2}(W) & =\max \left\{\left\|W h-W h^{\prime}\right\|_{2}:\left\|h-h^{\prime}\right\|_{1} \leq 1\right\} \\
& =\max \left\{\|W v\|_{2}:\|v\|_{1} \leq 1\right\}
\end{aligned}
$$

This is just the largest ℓ_{2}-norm of a column of W.

- $\Delta_{2}(Q)=\Delta_{2}(W) \leq \sqrt{|Q|}$.

Gaussian Noise Mechanism [Dinur Nissim 03, Dwork Nissim 04, DMNS 06]

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{gm}}(W, h)=W h+G, \quad G_{i} \sim N\left(0, \sigma_{\epsilon, \delta}^{2} \Delta_{2}(W)^{2}\right) \\
& \sigma_{\epsilon, \delta}=\Theta\left(\epsilon^{-1} \sqrt{\log (1 / \delta)}\right)
\end{aligned}
$$

HOW WELL DOES IT DO?

On any workload W of k queries:

$$
\operatorname{err}^{\infty}\left(W, \mathcal{M}_{\mathrm{gm}}, n\right) \lesssim \Delta_{2}(W) \sqrt{\log (k)} \leq \sqrt{k \log (k)}
$$

[Bun, Ullman, Vadhan 14] Optimal for 1-way marginals on d-dimensional data

The same query repeated k times?

Threshold Queries: $\mathfrak{U}=\{1, \ldots, N\}, \mathcal{Q}=\left\{q_{t}\right\}, q_{t}(x)=1$ if $x \leq t$.

- Can do $\Theta\left(\log (N)^{1.5}\right)$

1	0	0	0	0
1	1	0	0	0
1	1	1	0	0
1	1	1	1	0
1	1	1	1	1

FACTORING THE QUERIES

$$
q_{7}(X)=h_{1: 4}+h_{5: 6}+\mathrm{h}_{7}
$$

How do you beat the Gaussian Mechanism on Threshold Queries? Factor workload as: $W=R A$

Error vector: $\mathcal{M}(h)-W h=R G$
" $(R G)_{i} \sim N\left(0, \sigma_{\epsilon, \delta}^{2} \Delta_{2}(A)^{2}\left\|r^{i}\right\|_{2}^{2}\right)$, where $r^{i}=i$-th row of R
Threshold queries: $\Delta_{2}(A)^{2}, \max _{i}\left\|r^{i}\right\|_{2}^{2}=\Theta(\log N)$

- $\Theta(\log N)$ noise per query

ERROR BOUNDS

$$
\mathcal{M}(h)=R(A h+G), \text { where } W=R A
$$

Error vector: $\mathcal{M}(h)-W h=R G \sim N\left(0, \sigma_{\epsilon, \delta}^{2} \Delta_{2}(A)^{2} \cdot R R^{\top}\right)$
Error for k queries:
Max row norm

$$
\operatorname{err}^{\infty}(W, \mathcal{M}, n) \lesssim \rho(R) \Delta_{2}(A) \sqrt{\log (k)}
$$

$$
\rho(R)=\max _{i}\left\|r^{i}\right\|_{2}=\max _{i} \sqrt{\left(R R^{\top}\right)_{i i}}
$$

How to choose R and A ?
Just optimize the above error bound:

$$
\gamma(W)=\min \left\{\rho(R) \Delta_{2}(A): W=R A\right\}
$$

$\mathcal{M}_{\mathrm{mm}}(h)=R(A h+G)$, where R and A achieve $\gamma(W)$.
Then

$$
\operatorname{err}^{\infty}\left(W, \mathcal{M}_{\mathrm{mm}}, n\right) \lesssim \gamma(W) \sqrt{\log (k)}
$$

Similarly for mean squared error.

GEOMETRIC INTERPRETATION

For neighboring databases with histograms h, h^{\prime},

$$
W h-W h^{\prime}=W\left(h-h^{\prime}\right) \in W B_{1}^{N}=\operatorname{conv}\left\{ \pm w_{1}, \pm w_{2}, \ldots, \pm w_{N}\right\}
$$

where $w_{1}, w_{2}, \ldots, w_{N}$ are the columns of W.
$K_{W}=W B_{1}^{N}$ is called the sensitivity polytope

- $\Delta_{2}(W)=$ radius of smallest Euclidean ball containing K_{W}

If $W=R A$, then the ellipsoid $E=R B_{2}^{k}\left(0, \Delta_{2}(A)\right)$ contains K_{W}

The Matrix Mechanism finds the smallest ellipsoid that contains K_{W}

- Smallest = contained in the smallest cube.

OPTIMIZATION PROBLEM

We need to solve: $\gamma(W)=\min \left\{\rho(R) \Delta_{2}(A): W=R A\right\}$
Observation: we can always replace R and A by $\mathrm{t} R$ and A / t.

- Can assume that $\rho(R)=\Delta_{2}(A)=\sqrt{\gamma(W)}$.

Semidefinite Program for $\gamma(W)$:

- $r^{i}=i$-th row of R
- $a_{j}=j$-th column of A
- optimal $t=\gamma(W)$

OPTIMALITY OF THE MATRIX MECHANISM

Best achievable error: $\quad \operatorname{opt}_{\epsilon, \delta}(W, n)=\inf \left\{\operatorname{err}^{\infty}(W, \mathcal{M}, n): \mathcal{M}\right.$ is $\left.(\epsilon, \delta)-\mathrm{DP}\right\}$

Proof sketch:

- If $\gamma(W)$ is large, then W has a submatrix with large minimum singular value
* [Dinur Nissim 03] A mechanism for W with error too small relative to the smallest singular value allows a reconstruction attack.

Proof shows that
$\frac{\gamma(W)}{\log (k)} \lesssim \operatorname{opt}_{\epsilon, \delta}(W, k / \epsilon)$

OUTLINE

Basic Notions

Data Independent Mechanisms
Gaussian Noise + Projection
Learning the database

SMALL DATABASES

2-way marginals: $\mathfrak{U}=\{0,1\}^{d}, q_{i, j}(x)=x_{i} \wedge x_{j}$

- $\gamma(W)=\Theta(d)$ so the Matrix Mechanism has error $\operatorname{err}^{\infty}\left(W, \mathcal{M}_{\mathrm{mm}}, n\right) \approx d \sqrt{\log (d)}$
- Can achieve error $\sqrt{n} d^{\frac{1}{4}} \sqrt{\log (d)}$: $M M$ is suboptimal if $n \ll d^{1.5}$.

The Matrix Mechanism can be suboptimal for small n.

Want to match the entire curve, rather than just the limit as $n \rightarrow \infty$

PROJECTION MECHANISM

Recall: if database has size n, then $\|h\|_{1} \leq n$.
So, $W h \in n W B_{1}^{N}=n K_{W}$
Gaussian noise mechanism: $\mathcal{M}_{\mathrm{gm}}(W, h)=\tilde{Y}=W h+G$

- If n is small, then very likely $\tilde{Y} \notin n K_{W}$
" Postprocess to "bring it back"!
Projection Mechanism [Nikolov Talwar Zhang 13]

$$
\begin{aligned}
& \tilde{Y}=\mathcal{M}_{\mathrm{gm}}(W, h) \\
& \mathcal{M}_{\mathrm{pr}}(W, h)=\hat{Y}=\arg \min \left\{\|\tilde{Y}-z\|_{2}: z \in n K_{W}\right\}
\end{aligned}
$$

ERROR BOUND

Using some high school geometry + probability:

$$
\operatorname{err}^{2}\left(W, \mathcal{M}_{\mathrm{pr}}, n\right) \lesssim \sqrt{n}(\log | | \mathfrak{X} \mid)^{\frac{1}{4}}
$$

[Bun, Ullman, Vadhan 14] Optimal for 2-way marginals

Remarks:

- Projection does not affect privacy, but can improve error for small n
- Projection turns a data independent mechanism into a data dependent one

IMPLICIT QUERIES

Often queries of interest are defined compactly: e.g. r-way marginals

- We want algorithms that run much faster than $O(|\mathfrak{U}|)$ time.
- [Dwork, Naor, Reingold, Rothblum, Vadhan 09] Computationally hard for artificial queries

Test case: 2 -way marginals on d-dimensional data in time poly (d, n)

- We will use the Projection Mechanism to get mean sq error $O\left(\sqrt{n} d^{1 / 4}\right)$

Projecting on $n K_{W}$ reduces to solving $\max \left\{c^{\top} z: z \in K_{W}\right\}$ for arbitrary c
" NP-hard for 2-way marginals!
[Dwork, Nikolov, Talwar 14] Project on some $\mathrm{n} L, K_{W} \subseteq L \subseteq O(1) \cdot K_{W}$

- Projecting on L is efficient: SDP relaxation of K_{W}
" Error is the same as projecting on K_{W}, up to constants

Open: Is there an algorithm with $O\left(\sqrt{n} d^{1 / 4}\right)$ error that computes 3 -way marginals on d dimensional data in time poly (d, n) ?

Suppose we want error at most αn.
Take an αn-net:

- Points $v_{1}, \ldots, v_{N} \in K_{W}$ such that any vertex of K_{W} is within αn from some v_{i}

Project on $\operatorname{conv}\left\{v_{1}, \ldots, v_{N}\right\}$

- Can have much smaller mean width than K_{W}
- Y can be outside but this cannot introduce more than αn error
- Error after projection is smaller

Achieves error $n / 100$ with nearly the smallest possible n among CDP mechanisms.

- Open: similar guarantee for approximate DP.

PROJECTION AND MATRIX MECHANISM

[Nikolov Talwar Zhang 13, Nikolov 15] Combine Matrix Mechanism and Projection Mechanism:
" Optimize the upper bound on error over factorizations $W=R A$

- Add noise: $\widetilde{\mathrm{Y}}=R(A h+G)$

In fact projection is

- Project \widetilde{Y} to $n K_{W}$ slightly modified.
Mechanism with mean sq. error $\lesssim(\log (\mathrm{n}) \log (|\mathfrak{U}|))^{\frac{1}{4}} \cdot$ opt $_{\epsilon, \delta}(W, n)$ for every n.
- Open: An efficient mechanism whose error for every n is $\lesssim \log (n k)^{O(1)} \cdot \operatorname{opt}_{\epsilon, \delta}(W, n)$
- Open: Similar guarantee for worst-case error?

OUTLINE

Basic Notions

Data Independent Mechanisms
Gaussian Noise + Projection
Learning the database

QUERY RELEASE AS LEARNING
 [BLUM, LIGETT, ROTH 08]

We know how to answer few queries on large database X.
Given a large workload Q, can we generalize from few query answers to all of Q ?

A change in perspective: X is a function from queries to query answers - $X: Q \rightarrow \mathbb{R}$ defined by $X(q)=q(X)$ for every $q \in Q$

Learning problem: given a few examples $(q, X(q))$, learn $X: Q \rightarrow \mathbb{R}$

- Reduces answering many queries to answering few queries.

BOOSTING AVERAGE ERROR GUARANTEES

$$
\text { Mean squared error } \eta: \quad \frac{1}{|Q|} \sum_{q \in Q}\left|q(X)-\mathcal{M}(Q, X)_{q}\right|^{2} \leq \eta^{2}
$$

Gives an efficient algorithm for 2-way marginals with optimal worst case error
Chebyshev: for all but $|\mathcal{Q}| / 4$ queries $q,\left|q(X)-\mathcal{M}(Q, X)_{q}\right| \leq 2 \eta$
l.e. we can approximate $\mathrm{X}(q)=q(X)$ on most of \mathcal{Q} : we have weakly learned X

We want to strongly learn X , i.e. learn it on all of \mathcal{Q}
[Freund Schapire 95] Boosting reduces strong learning to weak learning
[Dwork Rothblum Vadhan 10] Private Boosting reduces worst-case error to mean sq. error

- Running a base mechanism with good mean sq. error $O(\log |Q|)$ times gives a mechanism with good worst case error.

THE DATABASE AS A DISTRIBUTION

The normalized histogram $p=\frac{1}{n} h$ is a probability distribution on \mathfrak{U}

- $\forall x \in \mathfrak{U}: p_{x}=\frac{\left|\left\{i: x^{i}=x\right\}\right|}{n}$
$W p=\frac{1}{n} W h$ are the normalized query answers
- Approximating $W p$ within error $\alpha \Leftrightarrow$ Approximating $W h$ within error αn

Notation: $q(p)=(W p)_{q}=\sum_{x \in \mathfrak{U}} q(x) p_{x}$

Learning $X \Leftrightarrow$ Learning p

PRIVATE MULTIPLICATIVE WEIGHTS

[HARDT, LIGETT, MCSHERRY 12]

uniform

Strategy: keep guessing distributions $p^{0}, p^{1}, \ldots, p^{T}$

- Privately find a $q \in \mathcal{Q}$ such that $\left|q(p)-q\left(p^{t}\right)\right|>\alpha$

Distinguisher between p and p^{t}

- If not found, we are done: return current p^{t}
- If found, update p^{t} to p^{t+1}

Finding a distinguishing query: exponential mechanism with score $\left|q(p)-q\left(p^{t}\right)\right|$

Update rule:

- $\sigma=\operatorname{sign}\left(q(p)-q\left(p^{t}\right)\right)$
- $\tilde{p}_{x}^{t+1}=p_{x}^{t} \exp \left(\frac{\alpha \sigma q(x)}{2}\right)$ and $p_{x}^{t+1}=\tilde{p}_{x}^{t+1} / \sum_{y \in \mathfrak{l}} \tilde{p}_{y}^{t+1}$

> If $q\left(p^{t}\right)$ overshoots, we clamp down the probability of the contributing x.

WHY IT WORKS

$$
\operatorname{err}^{\infty}(Q, \mathcal{M}, n) \lesssim \sqrt{n \log (k)}(\log |\mathcal{X}|)^{\frac{1}{4}}
$$

PMW answers (unnormalized) queries with worst-case error αn if $\mathrm{n} \gtrsim \frac{\sqrt{\log |\mathfrak{X}|} \log k}{\alpha^{2}}$

Relative entropy $D(p \| q)=\sum_{x \in \mathfrak{L}} p_{x} \log \left(\frac{p_{x}}{q_{x}}\right)$ as a potential
Initially $D\left(p \| p^{0}\right) \leq \log |\mathfrak{U}|$, and $D(p \| q) \geq 0$ always
Every update decreases $D\left(p \| p^{t}\right)$ by at least $\frac{\alpha^{2}}{4}$: no more than $\frac{4 \log |\mathfrak{x}|}{\alpha^{2}}$ updates

Advanced
composition +
exponential
mechanism analysis

If $\mathrm{n} \gtrsim \frac{\sqrt{\log |\mathfrak{X}|} \log k}{\alpha^{2}}$, we can identify $q \in \mathcal{Q}$ such that $\left|q(p)-q\left(p^{t}\right)\right|>\alpha$ for every update.

WHAT WE DID NOT COVER

Synthetic data

- Projection M and PMW can generate synthetic data
- Dual Query, GANs, etc.

Answering queries online

- PMW can be adapted to queries that arrive online
- Replace exponential mechanism with Sparse Vector

Other ways to answer implicit queries efficiently (e.g. [Thaler Ullman Vadhan 12])
" Approximate $X: Q \rightarrow \mathbb{R}$ by a low degree polynomial

- Privately compute coefficients

Information theoretic and computational lower bounds
Applied work and much of the work outside the theory community

- Stay for Gerome!

