
ALGORITHMS FOR ANSWERING
LINEAR QUERIES

Sasho Nikolov (U of Toronto)
Gerome Miklau (UMass Amherst)
Ryan McKenna (Umass Amherst)

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

DATABASE MODEL &
COUNTING QUERIES

Data Universe !, i.e. set of all possible database rows
­ ! = {possible IDs} × {M, F} × {High School, BSc, MSc, PhD} × {0, …, 150}

Database " = $%, … , $(∈ !(, $* are the database rows
­ each rows corresponds to the data of one person

Predicate +: ! → 0,1
­ E.g. IsMale $ = 1 ⇔ Gender attribute of $ is Male.
­ Weighted version: +: ! → [0,1]

Counting query: + " = ∑*4%(+ $* , i.e. number of db rows satisfying +.

Normalized counting query: + " = %
(∑*4%

(+ $*

ID # Gender Education Age

15737 M BSc 24

13555 F PhD 35

63323 F High School 20

12984 M High School 19

16750 M MSc 27

46188 M BSc 40

QUERY WORKLOAD

Query Workload: a collection ! = {$%, … , $(} of counting queries

! * =
$%(*)
$-(*)
⋮

$((*)

2017 US Census

Normalized

HISTOGRAM

The histogram of ! = ($%, … , $() is a vector ℎ ∈ ℕ-:

∀$ ∈ -: ℎ0 = | 2: $3 = $ |
­ i.e. ℎ0 is the number of copies of $ in !

E.g. - = 0,1 6, ! = (001,100,101,111,001,101):

ℎ =()

ℎ % = ∑0∈- |ℎ0| = 8
If ! and !′ are neighboring, then ℎ − ℎ′ % ≤ 1.

000 001 010 011 100 101 110 111

0 2 0 0 1 2 0 1

QUERY MATRIX
We can encode a query workload ! by a matrix W ∈ 0,1 !×(:

∀* ∈ !, ∀+ ∈ (: -.,/ = *(+)
E.g. (= 0,1 3 and ! are 1-way marginals: *4 + = 5-th bit of +

- =

Then the workload answers are the product ! 6 = -ℎ:

* 6 = ∑49:; * +4 = ∑/∈(* + | 5: +4 = + | = -ℎ .

000 001 010 011 100 101 110 111

*: 0 0 0 0 1 1 1 1

*= 0 0 1 1 0 0 1 1

*3 0 1 0 1 0 1 0 1

MEASURING ERROR

Worst-Case Error of a mechanism ℳ:

err$ %,ℳ, ' = max,∈./ 0max1∈% |3 4 −ℳ %,4 1|
i.e. err$ 6,ℳ, ' = max

7 89:
0 6ℎ −ℳ 6,ℎ $

Mean Squared Error of a mechanism ℳ:

err< %,ℳ, ' = max,∈./ 0 =
|%| ∑1∈% 3 4 −ℳ %,4 1

<

i.e. err< 6,ℳ, ' = max7 89:
0 =
|%| 6ℎ −ℳ 6,ℎ <<

⁄8 @
.

(Expectations over the
randomness of ℳ.)

TYPES OF MECHANISMS

Data and Workload Independent: noise only depends on the sensitivity
­ Gaussian and Laplace noise mechanisms

Data Independent, adapted to the Workload: noise optimized for the workload
­ Matrix Mechanism

Adapted to the Data: mechanism learns the database
­ Private Multiplicative Weights Mechanism

Postprocessing a data
independent mechanism

can introduce data
dependence.

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

GAUSSIAN NOISE MECHANISM

ℓ" Sensitivity: Δ" $ = max
)∼)+

$, − $,. "

Equivalently: Δ" / = max{ /ℎ −/ℎ′ " : ℎ − ℎ
.
4 ≤ 1}

= max{ /8 " : 8 4 ≤ 1}

This is just the largest ℓ"-norm of a column of /.
­ Δ" $ = Δ" / ≤ $.

Gaussian Noise Mechanism [Dinur Nissim 03, Dwork Nissim 04, DMNS 06]

ℳgm /, ℎ = /ℎ + =, => ∼ ?(0, BC,D
" Δ" /

")

BC,D = Θ GH4 log 1/L .

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Δ" / = 3

HOW WELL DOES IT DO?

On any workload ! of " queries:

err% !,ℳgm, * ≲ Δ- ! log " ≤ " log " .

[Bun, Ullman, Vadhan 14] Optimal for 1-way marginals on 1-dimensional data

The same query repeated " times?

Threshold Queries: 2 = {1,… ,7}, 9 = {:;}, :; < = 1 if < ≤ =.
­ Can do Θ(log 7 @.B)

Will ignore
dependence on D

and E from now on.

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

FACTORING THE QUERIES

How do you beat the Gaussian Mechanism on Threshold Queries?

Factor workload as: ! = #$

ℳ ℎ = #($ℎ +)), where)+ ∼ -(0, 01,2
3 Δ3 $ 3)

Error vector: ℳ ℎ −!ℎ = #)
­ #) + ∼ -(0, 01,2

3 Δ3 $ 3 6+ 3
3
) , where 6+ = 7-th row of #

Threshold queries: Δ3 $ 3,max
+

6+ 3
3 = Θ log -

­ Θ log - noise per query

Reconstruction
Matrix

Strategy
Matrix

ℎ?:A

ℎ?:B

ℎ?:3

ℎ? ℎ3

ℎC:A

ℎD:B

ℎD ℎB

ℎC:E

ℎC ℎE

ℎF:A

ℎF ℎA

GF H = ℎ?:B + ℎC:E + hF

ERROR BOUNDS

ℳ ℎ = $(&ℎ + (), where * = $&
Error vector: ℳ ℎ −*ℎ = $(∼ -(0, 01,23 Δ3 & 3 ⋅ $$⊺)
Error for 7 queries:

err: *,ℳ, ; ≲ = $ Δ3 & log 7

= $ = maxD ED 3 = maxD $$⊺ DD

Max row norm Max column norm

MATRIX MECHANISM [LI, MIKLAU, MCGREGOR, RASTOGI 10]

err# $,ℳ, ' ≲) * Δ, - log 1
How to choose * and -?

Just optimize the above error bound:

2 $ = min) * Δ, - :$ = *-
ℳmm ℎ = *(-ℎ + ;), where * and - achieve 2 $.

Then

err# $,ℳmm, ' ≲ 2 $ log 1 .

Similarly for mean squared error.

Max row norm Max column norm

GEOMETRIC INTERPRETATION

For neighboring databases with histograms ℎ, ℎ#,
$ℎ −$ℎ# = $(ℎ − ℎ#) ∈ $*+, = conv{±3+,±34,… ,±3,}

where 3+,34, … ,3, are the columns of $.

78 = $*+, is called the sensitivity polytope
­ Δ4 $ = radius of smallest Euclidean ball containing 78
If $ = :;, then the ellipsoid < = :*4= 0, Δ4 ; contains 78
The Matrix Mechanism finds the smallest ellipsoid that contains 78
­ Smallest = contained in the smallest cube.

1 0

1 1

$ℎ′

$ℎ

*+, = {@: @ + ≤ 1}

OPTIMIZATION PROBLEM

We need to solve: ! " = min ' (Δ* + :" = (+
Observation: we can always replace (and + by t(and +//.
­ Can assume that ' (= Δ* + = ! " .

Semidefinite Program for ! " :
­ 01 = 2-th row of (
­ 34 = 5-th column of +
­ optimal / = ! "

min /
subject to
01 6 34 = 714 ∀2, 5
01 6 01 ≤ / ∀2
34 6 34 ≤ / ∀5

" = (+

' (* ≤ /

Δ* (* ≤ /

OPTIMALITY OF THE MATRIX MECHANISM

Best achievable error: opt$,&((,)) = inf{err2 (,ℳ,) :ℳ is (6, 7)−DP}

[Nikolov, Talwar, Zhang 13]
< =
>?@ A

≲ sup
D
opt$,&((,)) ≲ E (log H

Proof sketch:
­ If E (is large, then (has a submatrix with large minimum singular value
­ [Dinur Nissim 03] A mechanism for (with error too small relative to the smallest singular value allows a

reconstruction attack.

Matrix Mechanism
Reconstruction

Attack

Proof shows that
< =
>?@ A

≲ opt$,& (, H/6

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

SMALL DATABASES

2-way marginals: ! = 0,1 & , '(,) * = *(∧ *)
­ , - = Θ(0) so the Matrix Mechanism has error err4 -,ℳmm, 7 ≈ 0 log 0
­ Can achieve error 70

<
= log 0 : MM is suboptimal if 7 ≪ 0?.A.

The Matrix Mechanism can
be suboptimal for small 7.

7

error

optD,E(-, 7)

Want to match the entire curve,
rather than just the limit as 7 → ∞

PROJECTION MECHANISM

Recall: if database has size !, then ℎ # ≤ !.

So, %ℎ ∈ !%'#(= !*+
Gaussian noise mechanism: ℳgm %, ℎ = 01 = %ℎ + 3
­ If ! is small, then very likely 01 ∉ !*+
­ Postprocess to “bring it back”!

Projection Mechanism [Nikolov Talwar Zhang 13]

01 = ℳgm %, ℎ

ℳpr %, ℎ = 71 = argmin 01 − < =: < ∈ !*+

71

1 = %ℎ

01

!*+

Just postprocessing:
does not affect

privacy.

ERROR BOUND

Using	some	high	school	geometry	+	probability:

err5 6,ℳpr, 9 ≲ 9 log ;
<
=

[Bun, Ullman, Vadhan 14] Optimal for 2-way marginals

Remarks:
­ Projection does not affect privacy, but can improve error for small 9
­ Projection turns a data independent mechanism into a data dependent one

>?

?

@?

9AB

C
D

IMPLICIT QUERIES

Often queries of interest are defined compactly: e.g. !-way marginals
­ We want algorithms that run much faster than " # time.
­ [Dwork, Naor, Reingold, Rothblum, Vadhan 09] Computationally hard for artificial queries

Test case: 2-way marginals on %-dimensional data in time poly(%, ()
­ We will use the Projection Mechanism to get mean sq error "((%*/,)
Projecting on (-. reduces to solving max{3⊺5: 5 ∈ -.} for arbitrary 3
­ NP-hard for 2-way marginals!

[Dwork, Nikolov, Talwar 14] Project on some n:, -. ⊆ : ⊆ " 1 ⋅ -.
­ Projecting on : is efficient: SDP relaxation of -.
­ Error is the same as projecting on -. , up to constants

Open: Is there an algorithm with "((%*/,) error that computes 3-way marginals on %-
dimensional data in time poly(%, ()?

>?

? = Aℎ

C?

(-.

>?

(-.

COARSE PROJECTION [BLASIOK, BUN, NIKOLOV, STEINKE 19]

Suppose we want error at most !".

Take an !"-net:
­ Points #$, … , #' ∈)* such that any vertex of)* is within !" from some #+
Project on conv{#$, … , #'}
­ Can have much smaller mean width than)*
­ 2 can be outside but this cannot introduce more than !" error
­ Error after projection is smaller

Achieves error "/100 with nearly the smallest possible " among CDP mechanisms.
­ Open: similar guarantee for approximate DP.

62

2

72

")*
8

!"

PROJECTION AND MATRIX MECHANISM

[Nikolov Talwar Zhang 13, Nikolov 15] Combine Matrix Mechanism and Projection Mechanism:
­ Optimize the upper bound on error over factorizations ! = #$
­ Add noise: %Y = #($ℎ + *)
­ Project %Y to ,-.

Mechanism with mean sq. error ≲ log n log 4
5
6 ⋅ opt:,<(!, ,) for every n.

­ Open: An efficient mechanism whose error for every n is ≲ log ,= > ? ⋅ opt:,<(!, ,)
­ Open: Similar guarantee for worst-case error?

In fact projection is
slightly modified.

OUTLINE

Basic Notions

Data Independent Mechanisms

Gaussian Noise + Projection

Learning the database

QUERY RELEASE AS LEARNING [BLUM, LIGETT, ROTH 08]

We know how to answer few queries on large database !.

Given a large workload ", can we generalize from few query answers to all of "?

A change in perspective: ! is a function from queries to query answers
­ !: " → ℝ defined by ! & = &(!) for every & ∈ "

Learning problem: given a few examples (&, ! &), learn !:" → ℝ
­ Reduces answering many queries to answering few queries.

BOOSTING AVERAGE ERROR GUARANTEES

Mean squared error !: "|$| ∑&∈$ () −ℳ $,) &
- ≤ !-

Chebyshev: for all but $ /4 queries (, () −ℳ $,) & ≤ 2!
I.e. we can approximate X (= (()) on most of $: we have weakly learned)
We want to strongly learn X, i.e. learn it on all of $
[Freund Schapire 95] Boosting reduces strong learning to weak learning

[Dwork Rothblum Vadhan 10] Private Boosting reduces worst-case error to mean sq. error
­ Running a base mechanism with good mean sq. error 6 log $ times gives a mechanism with good

worst case error.

Gives an efficient algorithm for
2-way marginals with optimal

worst case error

THE DATABASE AS A DISTRIBUTION

The normalized histogram ! = #
$ ℎ is a probability distribution on &

­ ∀(∈ &: !+ = ,:+-.+
$

/! = #
$/ℎ are the normalized query answers

­ Approximating /! within error 0 ⟺ Approximating /ℎ within error 02

Notation: 3 ! = /! 4 = ∑+∈& 3 (!+

Learning 6 ⟺ Learning !

PRIVATE MULTIPLICATIVE WEIGHTS [HARDT, ROTHBLUM 10]
[HARDT, LIGETT, MCSHERRY 12]

Strategy: keep guessing distributions !", !$, … , !&
­ Privately find a ' ∈) such that |' ! − ' !, | > .
­ If not found, we are done: return current !,
­ If found, update !, to !,/$

Finding a distinguishing query: exponential mechanism with score |' ! − ' !, |

Update rule:
­ 0 = sign ' ! − ' !,
­ 6!7,/$ = !7, exp ;<= 7

> and !7,/$ = 6!7,/$/∑A∈B 6!A,/$

uniform

Distinguisher
between ! and !,

If ' !, overshoots, we
clamp down the probability

of the contributing C.

Sensitivity $D

WHY IT WORKS

PMW answers (unnormalized) queries with worst-case error !" if n ≳ %&' |)| %&' *
+,

Relative entropy -(/| 0 = ∑3∈) /3 log
89
:9

as a potential

Initially -(/| /; ≤ log |)|, and -(/| 0 ≥ 0 always

Every update decreases -(/| /? by at least +
,

@
: no more than @ %&')

+,
updates

­ We need to run the exponential mechanism at most @ %&')
+,

times

If n ≳ %&' |)| %&' *
+,

, we can identify 0 ∈ A such that |0 / − 0 /? | > ! for every
update.

Advanced
composition +
exponential

mechanism analysis

errF A,ℳ, " ≲ " log J log |)|
K
@

WHAT WE DID NOT COVER

Synthetic data
­ Projection M and PMW can generate synthetic data
­ Dual Query, GANs, etc.

Answering queries online
­ PMW can be adapted to queries that arrive online
­ Replace exponential mechanism with Sparse Vector

Other ways to answer implicit queries efficiently (e.g. [Thaler Ullman Vadhan 12])
­ Approximate !: # → ℝ by a low degree polynomial
­ Privately compute coefficients

Information theoretic and computational lower bounds

Applied work and much of the work outside the theory community
­ Stay for Gerome!

