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Basic Notions



DATABASE MODEL &
COUNTING QUERIES O e e

15737 M

13555 F PhD 35

63323 F High School 20

12984 M High School 19
Data Universe 1, i.e. set of all possible database rows 16750 M MSc 27
= U = {possible IDs} X {M, F} X {High School, BSc, MSc, PhD} X {0, ..., 150} 46188 M BSc 40

Database X = (x1,...,x™) e U™, x' are the database rows

* each rows corresponds to the data of one person

Predicate q: U — {0,1}
* E.g. IsMale(x) = 1 < Gender attribute of x is Male.
* Weighted version: ¢: I — [0,1]

Counting query: q(X) = Xi-, q(xi) i.e. number of db rows satisfying g.

Normalized counting query: q(X) = —Z —1 q(x )



2017 US Census

QUERY WORKLOAD

SEX AND AGE
Total population 8,560,072
18 years and over 6,765,428
Male 3,164 326
. Female 3,601,102
Normalized Sex ratio {males per 100 females) 87.9
€5 years and over 1,168,268
Male 475903
Female 692 365

Query Workload: a collection Q = {q4, ..., qi} of counting queries

q,(X)
00 = | 0

thX)



HISTOGRAM

The histogram of X = (x1,...,x™) is a vector h € N¥.

Vx € W hy = |{i:x" = x}|

“ i.e. h, is the number of copies of x in X

E.g. U ={0,1}3, X = (001,100,101,111,001,101):
h=(0 2 0 0 1 2 0 1
IAlls = Zxeulhxl =n

If X and X' are neighboring, then ||h — h'||; < 1.

)



QUERY MATRIX

We can encode a query workload Q by a matrix W € [0,1]2*Y,
VqeQ,vxell: W,, =q(x)

E.g. U = {0,1}3 and Q are 1-way marginals: q; (x) = i-th bit of x

W — 0 0 0 0 1 1 ] ]

B o 0 1 1 0 0 ] 1
e 1 0 1 0 1 0 ]

Then the workload answers are the product Q(X) = Wh:
CI(X) = ?:1 Q(xi) = ZxEHQ(x)l{i:xi = x}l = (Wh)q




MEASURING ERROR

Worst-Case Error of a mechanism M

err®(Q, M,n) = max IErCrIngxm(X) — M(Q,X),]

i.e.err®(W,M,n) = ||hm||a§n EllWh — MW, h) ||« (Expectations over the
= randomness of M .)

Mean Squared Error of a mechanism M::

2 _ 1 2

err?(Q, M, n) = max \[IE@ZC,EQICI(X)—M(Q,X)C,I

: 2 1 2 /2

e err?(W, M,n) = max (E—[|Wh — MW,h)|I3) "
|h]|1sn 19|



TYPES OF MECHANISMS

Postprocessing a data
independent mechanism

. ere can introduce data
Data and Workload Independent: noise only depends on the sensitivity

dependence.

* Gaussian and Laplace noise mechanisms

Data Independent, adapted to the Workload: noise optimized for the workload

= Matrix Mechanism

Adapted to the Data: mechanism learns the database
" Private Multiplicative Weights Mechanism



OUTLINE

Data Independent Mechanisms



GAUSSIAN NOISE MECHANISM

?, Sensitivity: 4,(Q) = max|l9(X) — (XDl
Equivalently: A,(W) = max{|[Wh —WHh||,:||h—h'|; <1}
= max{||Wvll,:|lvll, <1}
This is just the largest £,-norm of a column of W. o 0 0 O

8,(Q) = 8,(W) < /12T, SR ERE
Gaussian Noise Mechanism [Dinur Nissim 03, Dwork Nissim 04, DMNS 06]

Mgm(W,h) = Wh+ G, G; ~ N(0,0250,(W)?)

0.5 = 0(e71/log(1/8)).

A, (W) = \/§
1 1 1
O O 1
0O 1 0



HOW WELL DOES IT DO? Wil ignore

dependence on €

and & from now on.

On any workload W of k queries:

err°°(W, Mgm, n) S A, (W) /log(k) < \/k log(k).

[Bun, Ullman, Vadhan 14] Optimal for 1-way marginals on d-dimensional data

1 0 O O

The same query repeated k times? 1 1 0 O
1 1 1 O

Threshold Queries: U = {1, ...,N}, Q = {q:}, q:(x) = 1 if x < t. 1 1 1

* Can do O(log(N)*)

o O O O



FACTORING THE QUERIES 120 = hyg + heg +h

How do you beat the Gaussian Mechanism on Threshold Queries?

Factor workload as: W = RA

Reconstruction Strategy
Matrix Matrix

M (h) = R(Ah + G), where G; ~ N(0, 07 5A,(A)%)

Error vector: M'(h) — Wh = RG
“ (RG); ~ N(0, 025 AZ(A)ZHT‘i”z) , where 1t = i-th row of R

12
Threshold queries: A,(A4)%, max”r‘”z = 0O(log N)
i
* O(log N) noise per query



ERROR BOUNDS

M (h) = R(Ah + G), where W = RA
Error vector: M'(h) — Wh = RG ~ N (O, O'éSAz(A)Z - RR"

err (W, M,n) < p(R)A,(A)+/log(k)

p(R) = ml_ax||ri||2 = max (RR");;



MATRIX MECHANISM [LI, MIKLAU, MCGREGOR, RASTOGI 10]

err® (W, M, n) S p(R)A,(A)/log(k)
How to choose R and A?
Just optimize the above error bound:
y(W) = min{p(R)A,(A): W = RA}
Mmm(h) = R(Ah + G), where R and A achieve y(W).
Then
err® (W, Mmm,n) < ]/(W)m.

Similarly for mean squared error.



GEOMETRIC INTERPRETATION

For neighboring databases with histograms h, h’,
Wh —Wh' =W —h") € WBY = conv{+w,, tw,, ..., twy} .
where wq,w», ..., Wy are the columns of W.

Ky, = WBY is called the sensitivity polytope
* A, (W) = radius of smallest Euclidean ball containing Ky,

If W = RA, then the ellipsoid E = RBQ{(O, A, (A)) contains K,

The Matrix Mechanism finds the smallest ellipsoid that contains Ky,

= Smallest = contained in the smallest cube.



OPTIMIZATION PROBLEM

We need to solve: y(W) = min{p(R)A,(A): W = RA}

Observation: we can always replace R and A by tR and A/t.
* Can assume that p(R) = A,(4) = /y(W).

Semidefinite Program for y(IW):

. min t
“rt =i-throwof R subject to
* aj = j-th column of A L = [, ]
i A= wy Vi
optimal t = y (W) L.yt j
o = - g LA

)




OPTIMALITY OF THE MATRIX MECHANISM

Best achievable error:  opt, s(W,n) = inf{lerr®(W, M, n): M is (¢, 5)—DP}

Reconstruction

Attack Matrix Mechanism

1);2/(?) < sup opt. s (W,n) < y(W)4/log(k)
n

[Nikolov, Talwar, Zhang 13]

Proof sketch:

“If y(W) is large, then W has a submatrix with large minimum singular value

* [Dinur Nissim 03] A mechanism for W with error too small relative to the smallest singular value allows a
reconstruction attack.

Proof shows that

1448,

08 () < opte s(W, k/€)
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Gaussian Noise + Projection



SMALL DATABASES

2-way marginals: U = {0,1}4, q; ;(x) = x; A x;

“y(W) = 0(d) so the Matrix Mechanism has error err™ (W, Mimm,n) = d+/log(d)
1

* Can achieve error \/nd./log(d): MM is suboptimal if n < d®.

The Matrix Mechanism can

be suboptimal for small n.

error

Woant to match the entire curve,
rather than just the limit as n — oo




PROJECTION MECHANISM

Recall: if database has size n, then ||h]|; < n.
So, Wh € nWBY = nKy,
Gaussian noise mechanism: Mom (W, h) = Y=Wh+G

“ If nis small, then very likely ¥ ¢ nKy,

" Postprocess to “bring it back”!

Projection Mechanism [Nikolov Talwar Zhang 13]

Just postprocessing:

]V[pr(W, h) =Y = arg mln{”Y — Z”z: 7 € TLKW} does not affect

privacy.




ERROR BOUND

Using some high school geometry + probability:

1
err? (W, Mopr, n) < Vn(log|U|)=

[Bun, Ullman, Vadhan 14] Optimal for 2-way marginals

Remarks:

* Projection does not affect privacy, but can improve error for small n

" Projection turns a data independent mechanism into a data dependent one




IMPLICIT QUERIES

Often queries of interest are defined compactly: e.g. 7-way marginals
* We want algorithms that run much faster than O (|U]) time.

* [Dwork, Naor, Reingold, Rothblum, Vadhan 09] Computationally hard for artificial queries

Test case: 2-way marginals on d-dimensional data in time poly(d, n)
* We will use the Projection Mechanism to get mean sq error O(y/nd/*)

Projecting on nKy, reduces to solving max{c'z: z € Ky} for arbitrary ¢
* NP-hard for 2-way marginals!

[Dwork, Nikolov, Talwar 14] Project on some nL, Ky € L € 0(1) - Ky,
* Projecting on L is efficient: SDP relaxation of Ky,
* Error is the same as projecting on Ky, up to constants

Open: Is there an algorithm with 0 (\ynd/#) error that computes 3-way marginals on d-
dimensional data in time poly(d, n)?

~Q



COARSE PROJ ECTI ON [BLASIOK, BUN, NIKOLOV, STEINKE 19]

Suppose we want error at most an.

Take an an-net:

* Points vy, ..., Uy € Ky, such that any vertex of K, is within an from some v;

Project on conv{vy, ..., vy}
* Can have much smaller mean width than Ky,

= Y can be outside but this cannot introduce more than an error

* Error after projection is smaller

Achieves error /100 with nearly the smallest possible n among CDP mechanisms. "y
* Open: similar guarantee for approximate DP.



PROJECTION AND MATRIX MECHANISM

[Nikolov Talwar Zhang 13, Nikolov 15] Combine Matrix Mechanism and Projection Mechanism:
= Optimize the upper bound on error over factorizations W = RA
" Add noise: Y = R(4h + () In fact projection is

* Project Y to nKy, slightly modified.

1
Mechanism with mean sq. error < (log(n)log(|u|))4 - opte s(W,n) for every n.
* Open: An efficient mechanism whose error for every nis < log(nk)o(l) - opte s(W,n)

* Open: Similar guarantee for worst-case error?
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Learning the database



QUERY RELEASE AS LEARNING suum, visers sor os

We know how to answer few queries on large database X.

Given a large workload @, can we generalize from few query answers to all of Q2

A change in perspective: X is a function from queries to query answers
X:Q — R defined by X(q) = q(X) for every g € Q

Learning problem: given a few examples (q,X(q)), learn X: Q —» R

Reduces answering many queries to answering few queries.




BOOSTING AVERAGE ERROR GUARANTEES

1 Gives an efficient algorithm for

2
Mean squqred error 1): —quglCI(X) — M(Q; X)ql < 772 2-way marginals with optimal

19
Chebyshev: for all but |Q|/4 queries q, |q(X) — ]V[(Q,X)q| < 2n
l.e. we can approximate X(q) = q(X) on most of Q: we have weakly learned X

worst case error

We want to strongly learn X, i.e. learn it on all of Q

[Freund Schapire 95] Boosting reduces strong learning to weak learning

[Dwork Rothblum Vadhan 10] Private Boosting reduces worst-case error to mean sq. error

* Running a base mechanism with good mean sq. error O(log |Q|) times gives a mechanism with good
worst case error.




THE DATABASE AS A DISTRIBUTION

The normalized histogram p = %h is a probability distribution on U

Vx e p, = —“i:x;:x}'

1
Wp = =WHh are the normalized query answers
n

Approximating Wp within error & <& Approximating Wh within error an

Notation: ¢(p) = (Wp)q = Xyen q(X)Psx

Learning X < Learning p



PRIVATE MULTIPLICATIVE WEIGHTS 1ssx01 rorusuun 10

[HARDT, LIGETT, MCSHERRY 12]

Strategy: keep guessing distributions po,pl, . pT Distinguisher t
* Privately find a g € Q such that |q(p) — q(pY)| > « between p and p

= If not found, we are done: return current pt

* If found, update pt to pttl m

Finding a distinguishing query: exponential mechanism with score |q(p) — q(p")]

If g(p*) overshoots, we
Update rule: clamp down the probability

- o = sign(q(p) — q(»") of the contributing x.
~t+1 aoq(x) ~t+1

¢ pEt = phexp (“L2) and pitt = 55/ Ty eu B




WHY IT WORKS

err”(Q, M,n) < /nlog(k) (log |H|)%

J1og |U| log k
PMW answers (unnormalized) queries with worst-case error an if n = g lazl 5
Relative entropy D(p||q) = Xy Px 108 (%) as a potential

X

Initially D(p||p®) < log |U|, and D(p|lq) = 0 always
2 4 log|Y| Advanced

a
Every update decreases D(p||pt) by at least — : no more than 2 updates composition +
4 log|U i
* We need to run the exponential mechanism at most % | times exponential
a mechanism analysis

, we can identify g € Q such that |g(p) — q(p*)| > «a for every

I > J91og |U| log k
n=< 22

update.



WHAT WE DID NOT COVER

Synthetic data
Projection M and PMW can generate synthetic data
Dual Query, GANs, etc.

Answering queries online
PMW can be adapted to queries that arrive online

Replace exponential mechanism with Sparse Vector

Other ways to answer implicit queries efficiently (e.g. [Thaler Ullman Vadhan 12])
Approximate X: Q — R by a low degree polynomial
Privately compute coefficients

Information theoretic and computational lower bounds

Applied work and much of the work outside the theory community
Stay for Gerome!



