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Task: batch (non-interactive) query answering

the “workload”• Answer: a fixed set of linear counting queries


• complex data analysis task into simpler queries.


• multiple users each issuing one or more queries.


• uncertainty about the eventual query answers 
needed--design workload to include all queries 
possibly of interest.


predicate counting queries

k-dim ranges

1-dim ranges marginals

linear counting queries
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Approach 1: data-agnostic mechanisms

Laplace or 
Gaussian 

Mechanism
database

Workload W
w1 
w2 
w3

w1(D) + noise  
w2(D) + noise 
w3(D) + noise

analystserver

a1 
a2 
a3

a1(D) + noise 
a2(D) + noise 
a3(D) + noise

Measurements A

noisy est. w1(D)  
noisy est. w2(D) 
noisy est. w3(D)

Measure

Reconstruct

Select 
Measurements



Data-agnostic mechanisms

Workload Strategy (Measurements) Citation
any Identity [Dwork, TCC ’06]

low-order marginals Fourier basis queries [Barak, PODS ‘07]

all one-dim range queries Hierarchical ranges [Hay, PVLDB ‘10]

all (multi-dim) range queries Haar wavelet queries [Xiao, ICDE ‘10]

2-dim range queries Quad-tree queries [Cormode, ICDE ’12]

set of linear queries set of linear queries [Li, PODS ‘10] [Li, PVLDB ‘12]

sets of data cubes sets of data cubes [Ding, SIGMOD ’11]

set of linear queries set of linear queries [Yuan, VLDB ’12]

range queries hierarchical ranges [Qardaji, PVLDB ’13]

range queries weighted hierarchical ranges [Li, VLDB ’14]
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• Many algorithms belong to the select-measure-reconstruct paradigm, 
which adapt measurements to the workload



Selected measurements for range queries

Measurement 
Set A Resulting mechanism

A = Identity matrix a common baseline

A = Haar wavelet [Xiao, ICDE ‘10]

A = tree based [Hay, PVLDB ‘10] [Bolot 2011] 
 [Cormode, ICDE ’12] [Qardaji, PVLDB ’13]

Given workload W of range queries:



Strategy matrices for 1D range queries

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

1 1 -1 -1

1 -1 0 0

0 0 1 -1

1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

H YI

Identity
Hierarchical

Wavelet

A good strategy has low sensitivity but permits 

low-error reconstruction of the workload queries.

(for a domain of size 4)



Error: workload of all range queries

ε = 0.1

n = 1024
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Strategy matrices equivalent to wavelet

1 1 1 1
1 1 -1 -1
1 -1 0 0
0 0 1 -1

Wavelet Y
||Y||1 = 3

Y’
||Y’’||1 = 2.414

The haar wavelet observation matrix Y is 
dominated by alternative matrix Y’’.

Y’’
||Y’||1 = 3

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

≡ >
1 1 0 0

0 0 1 1

√2 0 0 0

0 √2 0 0

0 0 √2 0

0 0 0 √2Equivalent 
error for all 

queries

Lower 
 error for all 

queries



The matrix mechanism

Given a workload W, and any full-rank strategy matrix A, 
the following randomized algorithm is ε-differentially private:

MatrixA(W,x) = Wx + (||A||1/ε) WA+ b b=Lap(1)

Laplace(W,x) = Wx + (||W||1/ε)b

Compare with the Laplace mechanism:

instantiated with

measurements A true answer scaling by 


||A||1
transformation


 by WA+



OPTMM: Matrix mechanism optimization [Li et al., 2010]

• For any A that supports W, expected total squared error is:

Error(W,A) = (2/✏2) kAk21
��WA+

��2
F

�11

Measurement 

error

Reconstruction

Error

} }

Error independent of the input data



• It is hard for a number of reasons: 

1. There are many parameters to optimize

2. The pseudo inverse is expensive to compute and not well-behaved 
3. The constraints are hard to encode 
4. The problem is not smooth or convex

Matrix Mechanism optimization is hard

Expected Error


A supports W 

minimize
A

kAk21
��WA+

��2
F

subject to WA+A = W

• To find the A that minimizes error on W: 



Optimal selection of observations

Privacy Optimization Objective Problem Type Runtime

ε

DP

Given W consisting of data cube queries, choose A 
consisting of data cube queries to minimize simplified error 
measure. [Ding, SIGMOD ’11]

set-cover 
approx O(n)

ε

DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10]

SDP w/ rank 
constraints O(n8)

(ε,δ)

DP

Given W, choose A to minimize TotalErrorA(W) 
[Li, PODS ‘10] SDP O(n8)

ε

DP

Given W, choose AB≈W to minimize 
TotalErrorA(AB) [Yuan, VLDB ’12]

bi-convex

opt O(n4)

(ε,δ)

DP

Given W, choose optimal scaling of eigenvectors 
of W to minimize TotalErrorA(W)  [Li, PVLDB ‘12]

convex

opt O(n4)

Objective:  given workload W, find the observation 
matrix A that minimizes the total error.



Approach 2: data-adaptive mechanisms

Laplace or 
Gaussian 

Mechanism
database

Workload W
w1 
w2 
w3

analystserver

a1 
a2 
a3

Measurements 
 A

T test 

noisy resultT’

a1(D) + noise 
a2(D) + noise 
a3(D) + noise

noisy est. w1(D)  
noisy est. w2(D) 
noisy est. w3(D)

Select 
Measurements

Measure

Test or model 
dataset

Reconstruct

*DualQuery 



Selected data-adaptive mechanisms

Workload Measurements Citation

1D range queries approx. v-optimal histogram [Xu, ICDE ’12]

2D range queries kd-tree queries [Xiao, SDM ‘10]

2D range queries hybrid kd-tree queries [Cormode, ICDE ’12]

Marginals scaled workload queries [Xiao, SIGMOD ’11]

Linear queries subset of workload [Hardt, NIPS ’12]

Any (none specified) stats of Bayes Net [Zhang, SIGMOD ’14]

1D/2D range queries tree queries; reduced domain [Li, VLDB ’14]

Linear queries minimum payoff records [Gaboardi, ICML ’14]



Comparison of approaches

Data-agnostic Data-adaptive

Most fit the “select-measure-
reconstruct” paradigm Greater variety of techniques

Workload query error easily 
computable and non-sensitive.

Workload query error is data-
dependent and sensitive.

Unbiased query answers Reduce variance by introducing 
bias into query answers

Lower error in “high signal” settings Lower error in “low signal” settings

Scalability challenges Scalability challenges (with some 
exceptions)
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Census of Population and Housing

U.S. Department of Commerce
Economics and Statistics Administration
U.S. CENSUS BUREAU

2010 Census of Population and Housing
SF1/10-4 (RV)

Issued September 20122010 Census Summary File 1

Technical Documentation

Describes Persons and their Households

SF1 = “Summary File 1”



Example data and workload

• Persons table:


• sex (2)


• relation (17)


• age (115)


• race/ethnicity (126)


• geography-state (52)


• geography-tract (73,768)


• geography-blocks (10,620,683)

U.S. Department of Commerce
Economics and Statistics Administration
U.S. CENSUS BUREAU

2010 Census of Population and Housing
SF1/10-4 (RV)

Issued September 20122010 Census Summary File 1

Technical Documentation

Workload

4151 predicate 

counting queries 


on Persons



Person table, in vector form

• Persons table:


• sex (n1=2)


• relation (n2=17)


• age (n3=115)


• race/ethnicity (n4=126)


• geography-state (n5=52)


• geography-tract (n6=73,768)


• geography-blocks (n7=10,620,683)

} 492,660  

25,618,320 
36,342,542,880   

5,232,385,686,780       

Num. entries in data vector

“domain size”

national



Product workloads

Given a set of predicates on each attribute, a product workload 
consists of all predicate queries that conjunctively combine one 
predicate on each attribute.

age>18	
age=65	
age∈[18..25]

Wage
race∈[1,2,3]	
race=3

Wrace

X =

age>18	AND	race∈[1,2,3]	
age>18	AND	race=3	
age=65	AND	race∈[1,2,3]	
age=65	AND	race=3	
age∈[18..25]	AND	race∈[1,2,3]	
age∈[18..25]	AND	race=3

Iage Iracex

Note: marginals are product workloads where predicate sets 
are either {True} or “Identity”:

x {True}relp {True}sexx



Product workload example

• Many SF1 “tables” can be represented as product workloads


• For example, table P12 (excluding the Total) is:

sex=M	
sex=F

Wsex
True	
age∈[0,5)	
age∈[5,9)	
…	
age∈[85,115]

Wagex

6-36    Data Dictionary

U.S. Census Bureau, 2010 Census Summary File 1

Table 
number Table contents

Data 
dictionary 
reference 

name
Seg- 

ment
Max 
size

POPULATION SUBJECTS SUMMARIZED TO THE BLOCK LEVEL—Con. 

P12. SEX BY AGE [49]
Universe: Total population
Total: P0120001 04 9

Male: P0120002 04 9
Under 5 years P0120003 04 9
5 to 9 years P0120004 04 9
10 to 14 years P0120005 04 9
15 to 17 years P0120006 04 9
18 and 19 years P0120007 04 9
20 years P0120008 04 9
21 years P0120009 04 9
22 to 24 years P0120010 04 9
25 to 29 years P0120011 04 9
30 to 34 years P0120012 04 9
35 to 39 years P0120013 04 9
40 to 44 years P0120014 04 9
45 to 49 years P0120015 04 9
50 to 54 years P0120016 04 9
55 to 59 years P0120017 04 9
60 and 61 years P0120018 04 9
62 to 64 years P0120019 04 9
65 and 66 years P0120020 04 9
67 to 69 years P0120021 04 9
70 to 74 years P0120022 04 9
75 to 79 years P0120023 04 9
80 to 84 years P0120024 04 9
85 years and over P0120025 04 9

Female: P0120026 04 9
Under 5 years P0120027 04 9
5 to 9 years P0120028 04 9
10 to 14 years P0120029 04 9
15 to 17 years P0120030 04 9
18 and 19 years P0120031 04 9
20 years P0120032 04 9
21 years P0120033 04 9
22 to 24 years P0120034 04 9
25 to 29 years P0120035 04 9
30 to 34 years P0120036 04 9
35 to 39 years P0120037 04 9
40 to 44 years P0120038 04 9
45 to 49 years P0120039 04 9
50 to 54 years P0120040 04 9
55 to 59 years P0120041 04 9
60 and 61 years P0120042 04 9
62 to 64 years P0120043 04 9
65 and 66 years P0120044 04 9
67 to 69 years P0120045 04 9
70 to 74 years P0120046 04 9

TABLE (MATRIX) SECTION—Con.

Wracethn Wrelp

True True

x x



Products and Union of Products

• A product workload can encode a cartesian product of counting 
queries in which conditions are combined conjunctively.  Examples 
include:

• All multi-dimensional range queries

• a single marginal

• all marginals 

• A union of products workload can encode an arbitrary 
collection of counting queries in which conditions are combined 
conjunctively.  Examples include:

• Arbitrary collection of multi-dimensional range queries

• Arbitrary collection of marginals

• Census Summary File 1 (SF1): union of 32 product workloads, sensitivity=50



Census SF1 workload (Person queries)

sex age race ethnicity relp geo
I {coarse 

ranges}
T T T {Block}

I {under 20} T T T {Block}

T T I T T {Block}

T T {race-comb} T T {Block}

T {over 18} {race-comb} I T {Block}

I I I I T {Tract}

….

Public Law 94-171:

Important Redistricting data



Can we scale the matrix mechanism?

x ← vectorize(R)
W ← vectorize(W)
A ← OPTMM(W)
ΔA ← ||A||1
a ← Ax
y ← a + Lap(ΔA/ϵ)
x̄ ← A+y

ans ← Wx̄

Input

Select

Measure

Reconstruct

�25



Can we scale the matrix mechanism?

Matrix Mechanism (MM)

x ← vectorize(R)
W ← vectorize(W)
A ← OPTMM(W)
ΔA ← ||A||1
a ← Ax
y ← a + Lap(ΔA/ϵ)
x̄ ← A+y

ans ← Wx̄ 🤯solve optimization problem?

also watch out for reconstruction 😩

workload matrix 
is enormous 😵

SF1-national 8 GB
SF1-state 22 TB

data vector  
is big 😳

SF1-national ~106

SF1-state ~107
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Matrix Mechanism vs. HDMM

x ← vectorize(R)
W ← vectorize(W)
A ← OPTMM(W)
ΔA ← ||A||1
a ← Ax
y ← a + Lap(ΔA/ϵ)
x̄ ← A+y

ans ← Wx̄

Input

Select

Measure

Reconstruct

x ← vectorize(R)
W ← impl-vect(W)
A ← OPTHDMM(W)
ΔA ← sensitivity(A)
a ← mult(A,x)
y ← a + Lap(ΔA/ϵ)
x̄ ← LstSqr(A, y)

ans ← mult(W, x̄)

101

102

103

104

105

106

107

108

109

101

102

103

104

105

106

107

108

109

Main obstacles ➠ solution:

1. OPTMM is intractable ➠ local, parameterized search

2. W is too big to represent ➠ implicit workloads

MM HDMM

�28



OPT0: Optimizing over p-Identity strategies

All Possible 
Strategies

p-Identity 
Strategies

Optimization within this 
region is much easier



OPT0: Optimizing over p-Identity strategies

A(Θ) = [ I
Θ] diag(1 + 1TΘ)−1

�30

• Key Idea: Instead of optimizing over all strategies, optimize over 
the space of “p-Identity” strategies:

Learnable parameter

Structural zero

Carefully designed to 
make optimization easier



OPT0: Optimizing over p-Identity strategies

• Sensitivity is always 1 by construction: 

• A supports all workloads because it has full column rank:

||A(⇥)||1 = 1

WA+A = W for all A(⇥)

minimize
⇥

��WA(⇥)+
��2
F

• Optimization is much simpler over this space:

• Objective can be evaluated 240X faster by exploiting structure of A(Θ) 
(for n=8192, p=512)

101

102

103

104

105

106

107

108

109



Visualizing OPT0 output

Both strategies include the 256 identity queries (not shown)

The strategy computed by 
OPT0 for this workload (p=12)

Workload of all range queries on 1D domain n=256

A competing strategy, H16, 
using hierarchical queries 

with 16-way branching



Error on Prefix workload

Domain HDMM Identity H2 Privelet HB GreedyH

128 1.00 1.80 1.79 1.78 1.80 1.20

256 1.00 2.18 1.79 1.78 1.22 1.24

512 1.00 2.68 1.80 1.79 1.28 1.41

1024 1.00 3.34 1.80 1.80 1.34 1.49

2048 1.00 4.18 1.80 1.79 1.42 1.71

4096 1.00 5.25 1.78 1.78 1.22 1.84

8192 1.00 6.40 1.71 1.70 1.20 2.09



Implicit workload representation

We can represent large multi-dimensional workloads 
by storing only small sub-workloads

sex=Male     ∧ grade ≥ A
sex=Male     ∧ grade ≥ B
sex=Male     ∧ grade ≥ C
sex=Male     ∧ grade ≥ D
sex=Male     ∧ grade ≥ F
sex=Female ∧ grade ≥ A
sex=Female ∧ grade ≥ B
sex=Female ∧ grade ≥ C
sex=Female ∧ grade ≥ D
sex=Female ∧ grade ≥ F

= sex=Male
sex=Female

grade ≥ A
grade ≥ B
grade ≥ C
grade ≥ D
grade ≥ F

×

Wsex Wgrade

⊗

Implicit Matrix

Kronecker Product

Example:

�34

• Idea: we can store some workloads more efficiently



Implicit representations are extremely compact

Workload Explicit size Implicit size

P12 table 96 MB 24 KB

SF1-national 8 GB 335 KB

SF1-state 22 TB 687 KB



Properties of Kronecker products

(A ⊗ B)(C ⊗ D) = AC ⊗ BD

(A ⊗ B)+ = A+ ⊗ B+

||A ⊗ B|| = ||A|| ⋅ ||B||

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) Associativity

Matrix multiplication

Pseudo inverse

Matrix norm

σC
ij = σA

i σB
jC = A ⊗ B Singular values



OPT⊗: Optimizing Kronecker product workloads

• Given a Kronecker product workload:


• What can we do?

• Finding a p-Identity strategy won’t work - workload may be too 

large to represent as a dense matrix

𝕎 = W1 ⊗ … ⊗ Wd

𝔸 = A1 ⊗ … ⊗ Ad

• A natural idea: try to find a Kronecker product strategy



OPT⊗: Optimizing over Kronecker product strategies

• Given a Kronecker product workload and strategy: 

𝕎 = W1 ⊗ … ⊗ Wd 𝔸 = A1 ⊗ … ⊗ Ad

�38

||A||1 =
dY

i=1

||Ai||1

||WA+||F =
dY

i=1

||WiA
+
i ||F

• Sensitivity and error profile decompose over the factors:• Expected error decomposes over the factors

Error(W,A) =
dY

i=1

Error(Wi,Ai)

• SVD lower bound decomposes over the factors:

SV DB(W) =
dY

I=1

SV DB(Wi)



OPT⊗: Optimizing over Kronecker product strategies

• Given a Kronecker product workload and strategy: 

𝕎 = W1 ⊗ … ⊗ Wd 𝔸 = A1 ⊗ … ⊗ Ad

�39

solve d small optimization problems over the sub-workloads  
(which we can do efficiently using p-Identity strategies)

To minimize error:
101

102

103

104

105

106

107

108

109

• Expected error decomposes over the factors

Error(W,A) =
dY

i=1

Error(Wi,Ai)



OPT⊗: Optimizing over Kronecker product strategies

• Given a union of Kronecker product workload: 

𝕎 =
𝕎(1)

⋮
𝕎(k)

=
W(1)

1 ⊗ … ⊗ W(1)
d

⋮ ⊗ … ⊗ ⋮
W(k)

1 ⊗ … ⊗ W(k)
d

• There are three strategy optimization routines:

1. OPT+ - searches over union of Kron product of p-Identity strategies


2. OPT⊗ - searches over Kron product of p-Identity strategies


3. OPTM - searches over weighted marginals strategies

}Makes 
calls


 to OPT0



Optimizing Union of Product Workloads

All Possible 
Strategies

Kronecker 
Products 

Optimization within these 
regions is tractable

Union of 
Kronecker 
Products

Weighted 
Marginals

(Note: these regions 
aren’t actually disjoint)

• OPT⊗


• OPT+


• OPTM

p-Identity 
Strategies

Do these regions contain high quality strategies? 
It depends on the workload, but experimental evidence suggests Yes. 



OPT+: Optimizing union of Kronecker product strategies

• Simple idea: optimize each sub workload separately:

𝔸( j) = OPT⊗(𝕎( j))

𝔸 =
𝔸(1)

⋮
𝔸(k)

• And form a union of Kronecker strategy:

Error(W,A) 
X

j

Error(W(j),A(j))



OPT⊗: Optimizing over Kronecker product strategies

• Expected error still decomposes for a union of Kronecker workload:

Error(𝕎, 𝔸) =
k

∑
j=1

Error(𝕎( j), 𝔸)

=
k

∑
j=1

d

∏
i=1

Error(W( j)
i , Ai)

• Thus we can solve the optimization problem efficiently

𝔸 = A1 ⊗ … ⊗ Ad

• Given a Kronecker product strategy: 



OPTM: Optimizing marginals strategies

M1100 = I⌦ I⌦T⌦T

• Marginals are Kronecker products:

M(✓) =

2

64
✓1(T⌦ · · ·⌦T)

...
✓2d(I⌦ · · ·⌦ I)

3

75

• A collection of weighted marginals is a union of Kronecker 
products:

Error(W,M(✓)) = ||M(✓)||21||WM(✓)+||2F

Can compute pseudo inverse 
efficiently by exploiting structure

�X

i

✓i
�2



Overview: running HDMM

1. Represent workload implicitly as union of Kronecker products

• Combine columns if necessary 

2. Select best strategy from OPT⊗, OPT+, and OPTM

•  (Optional) perform multiple random restarts 

3. Run the matrix mechanism:

•  Measure queries in A with Laplace mechanism 

•  Reconstruct W answers (by solving least squares problem)

Given: schema of R, and (logical) workload W

All 3D range queries → OPT⊗  

All up-to-3 way marginals → OPTM 

Some other workloads → OPT+ 



How close to optimal are we?

• For (ε, δ)-differential privacy:

• We have algorithms that can find globally optimal strategy

• For all 2D range queries, we can get within a factor 1.04 of the 

SVD bound with a Kronecker product strategy.


• For ε-differential privacy:

• Algorithms are approximate

• 2-3X difference between lower bounds and what we can 

currently achieve

• Open problem: need better bounds and/or optimization routines 

to close gap in (ε, 0)-differential privacy
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More accuracy results: multi-dimensional workloads

Dataset/
Domain Workload HDMM 

Error
Best competitor
Error Method

CPH 
2 x 2 x 17 x 51 x 63 x 115

SF1 1.00 3.07 Identity

SF1+ 1.00 3.15 Identity

Adult 
2 x 5 x 16 x 20 x 75

All Marginals 1.00 1.38 Identity

2-way Marginals 1.00 2.01 DataCube

CPS 
2 x 4 x 7 x 50 x 100

All Range 
Marginals

1.00 1.49 Identity
2-way Range 

Marginals 1.00 5.79 Identity

• HDMM is one of the only algorithms that is general and scalable 
enough to handle complex multi-dimensional workloads 

• HDMM offers lower error than competing methods

�48



Many additional Census challenges

• Materializing data vector is prohibitive for full geography.


• Sophisticated post-processing is required on HDMM output: non-
negativity, consistency (structural zeros and other known counts).


• Workload “tuning”:


• What if we want lower error for sub-workload X?


• What if we omit sub-workload Y?  Is error improved elsewhere?


• Multiple releases: optimize and release sub-workload X; later, optimize and 
release related sub-workload Y consistent with X.


• Error rates can be computed and published, but how should they be 
communicated and utilized by stakeholders?




Tuning workload error
• The PL94 queries are an important subset of the SF1 workload.  

• PL94: 288 queries 
• SF1: 4151 queries

�50
ε = 1

Optimized Workload Avg. Per Query Error On …

SF1

SF1 7.28

PL94 16.45

SF1 - PL94 6.07

PL94 PL94 3.91



Tuning workload error
• Optimizing for a workload in which PL94 is weighted 

• W = c*PL94 + 1*SF1 for positive constant c

�51

The Census Bureau can 
choose how much to 

prioritize PL94
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Data-adaptive mechanisms

• Understanding and evaluating data-adaptive algorithms is 
complex.


• The differential privacy community lacks benchmarks and 
standards for empirical evaluation.
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Frequency vector representation of input

N
o.

 re
co

rd
s 

of
 ty

pe
 i

0

25

50

75

100

x1 x2 x3 x4 x5 x6 … xn

Properties: 
• domain size: length of frequency vector 
• scale: total number of records in database 
• shape: the frequency vector normalized by scale.

Desideratum: datasets that are diverse with respect to all three 
properties.



Data-dependent algorithms for low-
dimensional linear queries

Uniform baseline Noisy total count; uniformity

MWEM [Hardt ’12] Multiplicative Weights Exp. Mech.
AHP [Zhang ’14] Private data reduction; measurement

DAWA [Li ’14] Private data reduction; measurement

PHP [Acs ’12] Private data reduction; measurement
QuadTree [Cormode ’12] 2D adaptive grid-based techniques

UGrid [Qardaji ’13] 2D adaptive grid-based techniques

AGrid [Qardaji ’13] 2D adaptive grid-based techniques
EFPA [Acs ’12] Fourier; top-k coefficients



Error metric

a stronger “signal” about the underlying properties of the data. We
will show that for many current algorithms, increasing scale and
increasing the privacy parameter ✏, have equivalent effects – they
both result a stronger signal. In addition, this sampling strategy
always results in datasets with integral counts (simply multiplying
the distribution by some scale factor may not). Finally, as we ex-
plain below, the sampling approach allows us to relate error rates
of privacy algorithms to empirically measured error.

4.3 Algorithm Repair Functions R
While automatically verifying whether an algorithm performs

additional pre- or post-processing that violates differential privacy
is out of the scope of this benchmark, we discuss two repair func-
tions help adhere to the free parameters and side information prin-
ciples (6 and 7, respectively).

Learning Free Parameter Settings Rparam. We present a
first cut solution to handling free parameters. Recall K✓ denotes
that private algorithmK is instantiated with a vector of free param-
eters, ✓. The basic idea is to use a separate set of datasets to tune the
parameters; these datasets will not be used in the evaluation. Given
a set of training datasets Dtrain, we apply data generator G and
learn a function Rparam ∶ (✏, �x�1 , n) → ✓ that given the domain
size, scale and ✏ outputs parameters ✓ that result in the lowest error
for the algorithm. Note that, if an algorithm satisfies scale-epsilon
exchangeability (Sec. 4.6), it is sufficient to vary the product of
scale and ✏, and not both independently. Given this function, the
benchmark extends the algorithm by adaptively selecting param-
eter settings based on scale and epsilon. If the parameter setting
depends on scale, a part of the privacy budget is spent estimating
scale, and this introduces a new free parameter, namely the budget
spent for estimating scale. The best setting for this parameter can
also be learned in a similar manner.

Side Information Rside. Algorithms which use non-private side
information can typically be corrected by devoting a portion of the
privacy budget to learning the required side information, then us-
ing the noisy value in place of the side information. This process is
difficult to automate but may be possible with program analysis in
some cases. This has the side-effect of introducing a new parame-
ter which determines the fraction of the privacy budget to devote to
this component of the algorithm, which in turn can be set using our
learning algorithm from Sec. 4.3.

4.4 Standards for Measuring Error EM
Error. DPBENCH uses scaled average per-query error to quan-
tify an algorithm’s error on a workload.

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let
W be a workload of q queries, x a data vector and s = �x�1 its
scale. Let ŷ = K(x,W, ✏) denote the noisy output of algorithm K.
Given a loss function L, we define scale average per-query error as
1
s⋅qL(ŷ,Wx).

By reporting scaled error, we avoid considering a fixed absolute
error rate to be equivalent on a small scale dataset and a large scale
dataset. For example, for a given workload query, an absolute error
of 100 on a dataset of scale 1000 has very different implications
than an absolute error of 100 for a dataset with scale 100,000. In
our scaled terms, these common absolute errors would be clearly
distinguished as 0.1 and 0.001 scaled error. Accordingly, scaled
error can be interpreted in terms of population percentages. Using
scaled error also helps us define the scale-epsilon exchangeability
property in Sec. 4.6.

Considering per-query error allows us to compare the error on
different workloads of potentially different sizes. For instance,
when examining the effect of domain size n on the accuracy of
algorithms answering the identity workload, the number of queries
q equals n and hence would vary as n varies.

DPBENCH also uses a second notion of error, called population-
based per-query error. The data vector x can be considered a sam-
ple from a potentially infinite population with shape p = x� �x�1.
Rather than measuring the error between the algorithm answers ŷ,
and the true answers Wx on the sample x, population based error
measures the error between ŷ and the answers on the population p.

DEFINITION 8 (POPULATION-BASED AVERAGE PER-QUERY ERROR).
Let W be a workload of q queries, x a data vector, s = �x�1 its
scale and p = x� �x�1 its shape. Let ŷ = K(x,W) denote the
noisy output of algorithm K. Given a loss function L, we define
population-based average per-query error as 1

s⋅qL(ŷ, sWp).
Population-based error captures a combination of two errors –

the error esample = L(Wx, sWp) incurred by using a sample x

of size s, and the error eprivacy = L(ŷ,Wx) incurred by using a
differentially private algorithm. As we will show in the sequel,
population-based error aids in interpreting absolute error rates of
algorithms.

Measuring Error. The error measures (Definitions 7 and 8) are
random variables. We can estimate properties such as their mean
and variance through repeated executions of the algorithm. In ad-
dition to comparing algorithms using mean error, DPBENCH also
compares algorithms based on the 95 percentile of the error. This
takes into account the variability in the error (adhering to Princi-
ple 8) and might be an appropriate measure for a “risk averse” an-
alyst who prefers an algorithm with reliable performance over an
algorithm that has lower mean performance but is more volatile.
Means and 95 percentile error values are computed on multiple
independent repetitions of the algorithm over multiple samples x

drawn from the data generator to ensure high confidence estimates.
DPBENCH also identifies algorithms that are competitive for

state-of-the-art performance for each setting of scale, shape and do-
main size. An algorithm is competitive if it either (i) achieves the
lowest error, or (ii) the difference between its error and the lowest
error is not statistically significant. Significance is assessed using a
unpaired t-test with a Bonferroni corrected ↵ = 0.05�(nalgs − 1),
for running (nalgs − 1) tests in parallel. nalgs denotes the num-
ber of algorithms being compared. Competitive algorithms can be
chosen both based on mean error (a “risk neutral” analyst) and 95
percentile error (a “risk averse” analyst). DPBENCH also empiri-
cally decomposes the error into bias and variance, using standard
statistical techniques.

4.5 Standards for Interpreting Error EI
When drawing conclusions from experimental results, Principles

10 and 11 should be respected. One way to put error in context is
by comparing with appropriate baselines.

We use IDENTITY and UNIFORM (described in Sec. 2.3) as upper-
bound baselines. Since IDENTITY is a straightforward application
of the Laplace mechanism, we expect a more sophisticated algo-
rithm to provide a substantial benefit over the error achievable with
IDENTITY. Similarly, UNIFORM learns very little about x, only
its scale. An algorithm that offers error rates comparable or worse
than UNIFORM is unlikely to provide useful information in prac-
tical settings. Note that there might be a few settings where these
baselines can’t be beaten (e.g., when shape of x is indeed uniform).
However, an algorithm should be able to beat these baselines in a
majority of settings.

6

Scale Absolute Error
Scaled 

Absolute Error

Dataset 1 1,000 100 0.100

Dataset 2 100,000 100 0.001

Example (scaled error):

Scaled error is also error in units of a “population percentage”



Variation with “shape”
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Error for a dataset 
Workload: Prefix 
Shape: Patent  
Domain size: 4096 
Scale: 1000
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Variation with shape
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Variation across shape}
1D

Dom. size: 4096 Scale: 1k
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(for fixed dimension, domain size, scale)
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Algorithm error varies significantly with dataset shape

1D 2D
Dom. size: 4096 Scale: 1k
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Scale: 1k
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Identity

Data-independent alternatives
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1D
Identity: Laplace noise added  
             to frequency vector x

HB: hierarchy of noisy counts
[Qardaji et al. ICDE 2013]

Data independent yardsticks



Scale: 1k
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Data-dependence can offer significant improvements in 
error (at smaller scales or lower epsilon).

1D
Scale: 1k
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Scale: 1k
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1D

Scale: 1k
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Increasing scale
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1D

2D

Some data-dependent algorithms fail to offer benefits at 
larger scales (or higher epsilons).

Increasing scale

Increasing scale



Summary
• Empirical study on 1D and 2D range query workloads 

shows: 

• Significant variation in error for data-dependent 
methods 

• Significant trade-offs with “signal strength” 

• Low signal: data-dependent methods outperform 

• High signal: data-independent method outperform

�64



Outline

1. Algorithm landscape


2. Motivating challenge: a Census workload


3. Scaling the matrix mechanism


4. Results on the Census workload


5. Data-adaptive algorithms and trade-offs


6. Open problems



Open problems

• Scaling to high dimensional data


• HDMM: strategy selection is no longer bottleneck; data vector is.


• Recent approach: measure low-dimensional projections, use 
graphical model techniques for global inference


• Mis-match between strategy optimization and inference


• Better understanding of tradeoffs between algorithmic 
approaches in high dimensions.



Open problems

• Beyond linear queries


• Common SQL aggregate queries are not linear; how do we 
answer them effectively? 
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