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Task: batch (non-interactive) query answering

- Answer: a fixed set of linear counting queries @R o]d [ F-1o &

« complex data analysis task into simpler queries.
« multiple users each issuing one or more queries.
* uncertainty about the eventual query answers

needed--design workload to include all queries
possibly of interest.

e R
linear counting queries

[ 1-dim ranges ] [marginals]

k-dim ranges

L predicate counting queries )
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Approach 1: data-agnostic mechanisms

server

database

Laplace or

Gaussian
Mechanism

Workload W

W1
W2
W3

aﬁqlet;yanaasas

as

Se
Se

o
o L 2
—

ai(D) + noise
az(D) + noise
as(D) + noise

U

noisy est. wi(D)
noisy est. wz(D)
noisy est. wz(D)

analyst

Select
Measurements

Measure

Reconstruct




Data-agnostic mechanisms

- Many algorithms belong to the select-measure-reconstruct paradigm,
which adapt measurements to the workload

Workload

Strategy (Measurements)

Citation

any

low-order marginals

|dentity

[Dwork, TCC ’06]

Fourier basis queries

[Barak, PODS ‘07]

all one-dim range queries g Hierarchical ranges [Hay, PVLDB “10]

all (multi-dim) range queries LL [Haar wavelet queries [Xiao, ICDE ‘10]
2-dim range queries Quad-tree queries [Cormode, ICDE ’12]
set of linear queries set of linear queries [Li, PODS “10] [Li, PVLDB ‘12]
sets of data cubes § sets of data cubes [Ding, SIGMOD ’11]
set of linear queries € |set of linear queries [Yuan, VLDB *12]
range queries g— hierarchical ranges [Qardaiji, PVLDB *13]

range queries

weighted hierarchical ranges

[Li, VLDB *14]




Selected measurements for range queries

Given workload W of range queries:

Measurement : :
Set A Resulting mechanism
A = Identity matrix a common baseline
A = Haar wavelet [Xiao, ICDE ‘10]
A =tree based [Corm[::: IPCYLI)-ED I’31 ‘21]0[];:;::;,2 2\1/:_]03 3]




Strategy matrices for 1D range queries

(for a domain of size 4)

Hierarchical
|dentity 11 1 1 Wavelet
1 0 0 0 I 100 1 1 1 1
01 0 0 0011 1 1 -1 -1
0 0 1 0 1101010 1 -1 0 0
01 0 0
0 0 0 1 0 0 1 -1
00 1 0
00 0 1
| H Y

A good strategy has low sensitivity but permits
low-error reconstruction of the workload queries.



Error: workload of all range queries

e-differential privacy
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Strategy matrices equivalent to wavelet

1 1 0 0
1 1 1 1
1 0 0 O 0 0 1 1
1111 — 01 0 0 V2 0 0 0
1 -1 0 O — 0 0 1 0 >
0 v2 0 0
0 0 1 -1 /\ 019911
1 0 0 0 0 0 v2 0
[Equivalen’j 0 1 0 0 Lower 0 0 0 v2
error for all error for all
. 0 0 1 0 )
queries queries
0 0 0 1
Wavelet Y Y’ Y”
Yl =3 Y’ll1 =3 Y"1 =2.414

The haar wavelet observation matrix Y is
dominated by alternative matrix Y”.



The matrix mechanism
Given a workload W, and any full-rank strategy matrix A,
the following randomized algorithm is e-differentially private:

Matrixa(W,x) = Wx + (I1All1/ €) WA+ D b=Lap(1)

instantiated with o scaling by transformation

measurements A A by WA+

Compare with the Laplace mechanism:

Laplace(W,x) = Wx + (IIWll1/ €)b



OPTwum: Matrix mechanism optimization [Li et al., 2010]

* For any A that supports W, expected total squared error is:

Error(W,A) = (2/) | A |[WA* ||

L J L _J
-~ -~

Measurement Reconstruction
error Error

Error independent of the input data

11



Matrix Mechanism optimization is hard

* To find the A that minimizes error on W:

minliAmize HAH? HVVAJr H? +<—— Expected Error
subject to WATA =W «——— A supports W

e Itis hard for a number of reasons:

There are many parameters to optimize

The pseudo inverse is expensive to compute and not well-behaved
The constraints are hard to encode

The problem is not smooth or convex

W~



Optimal selection of observations

Objective: given workload W, find the observation
matrix A that minimizes the total error.

Privacy Optimization Objective Problem Type Runtime
¢ |Given W consisting of data cube queries, choose A et e
pp |consisting of data cube queries to minimize simplified error | = O(n)
measure. [Ding, SIGMOD ’11]
e |Given W, choose A to minimize TotalErrora(W) SDP w/ rank o9
DP |[Li, PODS 10] constraints
(£,6) |Given W, choose A to minimize TotalErrora(W) SDP O
DP |[Li, PODS “10] (n8)
¢ |Given W, choose AB=W to minimize bi-convex | o,
DP |TotalErrora(AB) [yuan, vLDB 12] opt ()
(,6) |Given W, choose optimal scaling of eigenvectors | convex o)
DP |(of W to minimize TotalErrora(W) [Li, PVLDB ‘12] opt




Approach 2: data-adaptive mechanisms
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Selected data-adaptive mechanisms

Workload

Measurements

Citation

1D range queries

approx. v-optimal histogram

[Xu, ICDE ’12]

2D range queries

kd-tree queries

[Xiao, SDM ‘10]

2D range queries

hybrid kd-tree queries

[Cormode, ICDE ’'12]

Marginals

scaled workload queries

[Xiao, SIGMOD ’11]

Linear queries

subset of workload

[Hardt, NIPS ’12]

Any (none specified)

stats of Bayes Net

[Zhang, SIGMOD ’14]

1D/2D range queries

tree queries; reduced domain

[Li, VLDB ’14]

Linear queries

minimum payoff records

[Gaboardi, ICML ’14]




Comparison of approaches

Data-agnostic Data-adaptive

Most fit the “select-measure-

reconstruct” paradigm Greater variety of techniques

Workload query error easily Workload query error is data-
computable and non-sensitive. dependent and sensitive.

Reduce variance by introducing

Unbiased query answers o
bias into query answers

Lower error in “high signal” settings |Lower error in “low signal” settings

Scalability challenges (with some

Scalability challenges exceptions)
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Census of Population and Housing

2010 Census Summary File 1

USCENSUSBUREAUSCE
_Technical Documentation
USCENSUSBUREAUSCEI

USCENSUSBUREAUSCE

Describes Persons and their Households

SF1 = “Summary File 1”



Example data and workload

* Persons table:

Workload

* sex (2)

2010 Census Summary File 1

- relation (17)

. USCENSUSBUREAUSCE

age (119) et e |
. race/ethnicity (1 26) USCENSUSBUREAUSCE
-« geography-state (52) @

 geography-tract (73,768)

4151 predicate
 geography-blocks (10,620,683) X

counting queries
on Persons



Person table, in vector form

- Persons table: Num. entries in data vector

“domain size”
- sex (n1=2) )
* relation (nz=17) > national 492,660
- age (n3=1195)
- race/ethnicity (n4s=126) ~
- geography-state (ns=52) 25,618,320
- geography-tract (ne=73,768) 36,342,542,880

- geography-blocks (n7=10,620,683) 5,232,385,686,780



Product workloads

Given a set of predicates on each attribute, a product workload
consists of all predicate queries that conjunctively combine one
predicate on each attribute.

Wage

age>18
age=65
agee[18..25]

Wrace

racee[1,2,3]
race=3

age>18 AND racee[1,2,3]
age>18 AND race=3

age=65 AND racee[1,2,3]
age=65 AND race=3
agee[18..25] AND racee[1,2,3]
agee[18..25] AND race=3

Note: marginals are product workloads where predicate sets

are either {True} or “ldentity”:

Iage X lrace X {True}relp X {True}sex




Product workload example

- Many SF1 “tables” can be represented as product workloads

- For example, table P12 (excluding the Total) is:

P12. SEX BY AGE [49]
Universe: Total population
Total:
Male:

Under 5 years

5 to 9 years

10 to 14 years

15 to 17 years

18 and 19 years

20 years

Wesex X Wage X Whacethn X Wrelp

sex=M True True True
sex=F agee[0,5)
agee[5,9)

agee[85,115]




Products and Union of Products

* A product workload can encode a cartesian product of counting
queries in which conditions are combined conjunctively. Examples
include:

 All multi-dimensional range queries
*+ a single marginal
+ all marginals

« A union of products workload can encode an arbitrary

collection of counting queries in which conditions are combined
conjunctively. Examples include:

« Arbitrary collection of multi-dimensional range queries
* Arbitrary collection of marginals
« Census Summary File 1 (SF1): union of 32 product workloads, sensitivity=50



Census SF1 workload (Person queries)

I icoarse T T T {Block}
ranges}
I - {Block}
Public Law 94-171:
T {Block}

Important Redistricting data
T T {race-comb} T T {Block}




Can we scale the matrix mechanism??

X < vectorize(R) Input
W < vectorize(W)
A < OPTwm(W)
Measure

Reconstruct

25



Can we scale the matrix mechanism?

Matrix Mechanism (MM)

X < vectorize(R)

data vector |[SF1-national ~106
is big SF1-state ~107

workload matrix | SF1-national
IS enormous SF1-state

8 GB
22 1B

X)

solve optimization problem?

=o'2-N
Hﬁ

also watch out for reconstruction

(XN “
(

X)
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Matrix Mechanism vs. HDMM

o MM HDMM
A/\;

108 X < vectorize(R) Input X < vectorize(R) 108
<ot W — impl-vectW) | 97oor
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OPTo: Optimizing over p-ldentity strategies

Optimization within this
region is much easier




OPTo: Optimizing over p-ldentity strategies

* Key Idea: Instead of optimizing over all strategies, optimize over
the space of “p-ldentity” strategies:

A(©) = [(f)] diag(1 +17@)"!

A

Carefully designed to
make optimization easier

. Learnable parameter
. | Structural zero

.........

30



OPTo: Optimizing over p-ldentity strategies

- Sensitivity is always 1 by construction:

|A(@)]1 =1

- A supports all workloads because it has full column rank:

WATA =W forall A(®)

e Optimization is much simpler over this space:

mini@])fnize WA (©)* Hi,
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e Objective can be evaluated 240X faster by exploiting structure of A(©)

(for n=8192, p=512)



Visualizing OPTo output

Workload of all range queries on 1D domain n=256

A competing strategy, His,
using hierarchical queries
with 16-way branching

The strategy computed by
OPTy for this workload (p=12)

il | | | | [ f 1 f .
R || | | i | mm } ‘ } ]
Sl | | | | - i i -
| i | | l |  mm ; ; o
:’ A : : :‘ { —- : : :’
| " ] 4 ; M ]
| | B — | L ]
| . | -
(’) 200 A250 (l) ?:0

Both strategies include the 256 identity queries (not shown)



Error on Prefix workload

128 1.00 1.80 1.79 1.78 1.80 1.20
256 1.00 2.18 1.79 1.78 1.22 1.24
512 1.00 2.68 1.80 1.79 1.28 1.41
1024 1.00 3.34 1.80 1.80 1.34 1.49
2048 1.00 418 1.80 1.79 1.42 1.71
4096 1.00 5.25 1.78 1.78 1.22 1.84
38192 1.00 6.40 1.71 1.70 1.20 2.09




Implicit workload representation

* |dea: we can store some workloads more efficiently

Example: Implicit Matrix

Kronecker Product

We can represent large multi-dimensional workloads
by storing only small sub-workloads

34



Implicit representations are extremely compact

Workload Explicit size Implicit size
P12 table 96 MB 24 KB
SF1-national 8 GB 335 KB

SF1-state 22 1B 087 KB




Properties of Kronecker products

A®B)QC=AQB®C) Associativity
AQRXB)(C®D)=ACQ®BD  Matrix multiplication
A®B)"=A"QB" Pseudo inverse
|A @ B|| = [[A[] - [|B]] Matrix norm

C_ .AB .
C=AQ®B 0, = 0; C; Singular values



OPTe: Optimizing Kronecker product workloads

 Given a Kronecker product workload:

« What can we do?

 Finding a p-ldentity strategy won’t work - workload may be too
large to represent as a dense matrix

- A natural idea: try to find a Kronecker product strategy



OPTe: Optimizing over Kronecker product strategies

- Given a Kronecker product workload and strategy:

« Brpeitiityaarat elsooprplitedenemipestaci@sthe factors:

d
ETTOT(WU&):: ] HE%"M?IT(WM A;)

'i,:
« SVD lower bound decomposes over the factors:

[WA™||F = H (WA |7
SVDB(W) = ﬁ SVDB(W;)
I=1

38



OPTe: Optimizing over Kronecker product strategies

- Given a Kronecker product workload and strategy:

2|

—
o
(00)

o o
(e)) ~l

- Expected error decomposes over the factors

o o
LN (@)

d
Error(W,A) = H Error(W;, A;)
i=1

)2)2)

To minimize error: P

—
=

)

solve d small optimization problems over the sub-workloads
(which we can do efficiently using p-ldentity strategies)

39




OPTe: Optimizing over Kronecker product strategies

- Given a union of Kronecker product workload:

| wlh ...
W | wWh e ..

 There are three strategy optimization routines:
1. OPT. - searches over union of Kron product of p-ldentity strategies

2. OPTs - searches over Kron product of p-ldentity strategies

@W(
X :

®Wy

3. OPTwm - searches over weighted marginals strategies

Makes
calls
to OPTyo



Optimizing Union of Product Workloads

Optimization within these
regions is tractable

¢ OPT+
* OPTwm

Kronecker
Products

(Note: these regions
aren’t actually disjoint)

Do these regions contain high quality strategies?
It depends on the workload, but experimental evidence suggests Yes.



OPT.: Optimizing union of Kronecker product strategies

- Simple idea: optimize each sub workload separately:
AV = O pT®(W(J))
- And form a union of Kronecker strategy:

_A(l)_

A K)

Error(W,A) < Z Error(WW) AW

J



OPTe: Optimizing over Kronecker product strategies

- Given a Kronecker product strategy:

« Expected error still decomposes for a union of Kronecker workload:

Error(W, A) = Z Error(WWY), A)

k
j=1

k

= Z HErmr(Wl(.j), A)

=1 =1

~

« Thus we can solve the optimization problem efficiently



OPTwm: Optimizing marginals strategies

* Marginals are Kronecker products:

Mi1go =1IRIXT T

* A collection of weighted marginals is a union of Kronecker

products:
01(T®R---®T)]
Error(W(BI®)) = ||M(6)||7|[WML(O) ||
}l/ ® - 1) \
Z 6’- Can compute pseudo inverse
¢ efficiently by exploiting structure



Overview: running HDMM

Given: schema of R, and (logical) workload W

1. Represent workload implicitly as union of Kronecker products
- Combine columns if necessary

2. Select best strategy from OPTe, OPT., and OPTwm

(Optional) perform multiple random restarts

~
. . \ All 3D range queries = OPTe
3. Run the matrix mechanism: _
All up-to-3 way marginals - OPTwm

- Measure queries in A with Laplace mechanism S N A
« Reconstruct W answers (by solving least squares prol y




How close to optimal are we?

- For (g, §)-differential privacy:
- We have algorithms that can find globally optimal strategy

- For all 2D range queries, we can get within a factor 1.04 of the
SVD bound with a Kronecker product strategy.

- For e-differential privacy:
» Algorithms are approximate

« 2-3X difference between lower bounds and what we can
currently achieve

- Open problem: need better bounds and/or optimization routines
to close gap in (g, 0)-differential privacy
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More accuracy results: multi-dimensional workloads

e HDMM is one of the only algorithms that is general and scalable
enough to handle complex multi-dimensional workloads

e HDMM offers lower error than competing methods

Dataset/
. Workload
Domain
SF1 1.00 3.07 |dentit
CPH y
2x2x17x51x63x 115 SF1+ 1.00 315 |dentity
o All Marginals 1.00 1.38 |dentity
2x5x16x20x 75 2-way Marginals 1.00 2 01 DataCube
All Range |
CPS Marginals 100 14 dontlty
2x4x7x50x100 2-way Range '
Marginals 1.00 >-19 dentlty X




Many additional Census challenges

- Materializing data vector is prohibitive for full geography.

 Sophisticated post-processing is required on HDMM output: non-
negativity, consistency (structural zeros and other known counts).

« Workload “tuning”:
- What if we want lower error for sub-workload X?
- What if we omit sub-workload Y? Is error improved elsewhere?

« Multiple releases: optimize and release sub-workload X; later, optimize and
release related sub-workload Y consistent with X.

* Error rates can be computed and published, but how should they be
communicated and utilized by stakeholders?



Tuning workload error

* The PL94 queries are an important subset of the SF1 workload.

 PL94: 288 queries
* SF1: 4151 queries

Optimized Workload Avg. Per Query Error On ...

SF1 7.28

SF1 PLO4 16.45
SF1 - PL94 6.0/

PLO4 PLO94 3.91




Erroron SF1 - PL94

Tuning workload error

e Optimizing for a workload in which PL94 is weighted

e W=c*PL94 + 1*SF1 for positive constant ¢

Error on SF1 - PL94 vs. Error on PL94

o0.00

The Census Bureau can
choose how much to
- prioritize PL94

Error on PL94
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Data-adaptive mechanisms

- Understanding and evaluating data-adaptive algorithms is
complex.

 The differential privacy community lacks benchmarks and
standards for empirical evaluation.

Welcome to DPComp

Version
DPComp is a web-based tool designed to help both practitioners and researchers assess
the accuracy of state-of-the-art differentially private algorithms.

A collaborative research project of Colgate University, Duke
University, and the University of Massachusetts, Amherst

Colgate ~ Duke TS




Frequency vector representation of input

100
75
50
25

No. records
of type |

Properties:
- domain size: length of frequency vector
- scale: total number of records in database
- shape: the frequency vector normalized by scale.

Desideratum: datasets that are diverse with respect to all three

properties.
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Data-dependent algorithms for low-
dimensional linear queries

Uniform | baseline [Noisy total count; uniformity

MWEM | [Hardt*12] |Multiplicative Weights Exp. Mech.

AHP [Zhang '14] [Private data reduction; measurement

DAWA [Li’14] |Private data reduction; measurement

PHP [Acs '12] (Private data reduction; measurement

QuadTree |icormode 121 (2D adaptive grid-based techniques

UGrid | [Qardaji’13] (2D adaptive grid-based techniques

AGrid | I[Qardaji’13] |2D adaptive grid-based techniques

EFPA [Acs '12] |Fourier; top-k coefficients




Error metric

DEFINITION 7 (SCALED AVERAGE PER-QUERY ERROR). Let
W be a workload of q queries, x a data vector and s = |x|, its
scale. Let y = K(x, W, €) denote the noisy output of algorithm IC.

Given a loss function L, we define scale average per-query error as
L L(y, Wx).
S-q

Example (scaled error):

Scaled

Scale Absolute Error Absolute Error
Dataset 1 1,000 100 0.100
Dataset 2 100,000 100 0.001

Scaled error is also error in units of a “population percentage”



Variation with “shape”

1D

Dom. size: 4096 Scale: 1k

6e-3E

5e-3

4e-3
L3e-3—
gZe-3—
e ___—Error for a dataset
0 16.3- / ,
e 0 Workload: Prefix
- Shape: Patent

4e-4 H . .

304 - Domain size: 4096

e — Scale: 1000

S L3 F 8L 6 E

Algorithm (€=0.1 throughout)
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Variation with shape

1D

Dom. size: 4096 Scale: 1k

6e-3
5e-3 -
4e-3 -

3e-3 —

(o)

2e-3

aEd ©

Variation across shape

le-3- (for fixed dimension, domain size, scale)

Scaled error

L1
O 000

6e-4 —
5e-4
de-4 —

3e-4

2e-4 -

DAWA H
MWEM* —
MWEM -
PHP -
EFPA
DPCube
AHP* S
SF
Uniform -

Algorithm
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Data-independent alternatives

(9 o))
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Algorithm

Data independent yardsticks
+—|dentity: Laplace noise added
to frequency vector X

+—HB: hierarchy of noisy counts
[Qardaji et al. ICDE 2013]
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caled error
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Data-dependence can offer significant improvements in

error (at smaller scales or lower epsilon).
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Increasing scale ==
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1D

2D

Some data-dependent algorithms fail to offer benefits at

larger scales (or higher epsilons).
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Summary

- Empirical study on 1D and 2D range query workloads

Shows:

« Significant variation in error for data-dependent
methods

* Significant trade-offs with “signal strength”
* Low signal: data-dependent methods outperform

e High signal: data-independent method outperform
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Outline

1. Algorithm landscape

2. Motivating challenge: a Census workload
3. Scaling the matrix mechanism

4. Results on the Census workload

5. Data-adaptive algorithms and trade-offs

6. Open problems



Open problems

 Scaling to high dimensional data
- HDMM: strategy selection is no longer bottleneck; data vector is.

* Recent approach: measure low-dimensional projections, use
graphical model techniques for global inference

- Mis-match between strategy optimization and inference

- Better understanding of tradeoffs between algorithmic
approaches in high dimensions.



Open problems

- Beyond linear queries

- Common SQL aggregate queries are not linear; how do we
answer them effectively?



Thank you

* Optimizing Error of High-Dimensional Statistical Queries Under
Differential Privacy. Ryan McKenna, Gerome Miklau, Michael Hay,
Ashwin Machanavajjhala PVLDB 2018

- The matrix mechanism: optimizing linear counting queries under
differential privacy. Chao Li, Gerome Miklau, Michael Hay, Andrew
McGregor and Vibhor Rastogi VLDB Journal 2015

¢ Principled Evaluation of Differentially Private Algorithms using
DPBench. Michael Hay, Ashwin Machanavajjhala, Gerome Miklau,
Yan Chen, and Dan Zhang. SIGMOD 2016



