
+

Differential Privacy in the Streaming World   

Aleksandar (Sasho) Nikolov 
Rutgers University 



+
The Streaming Model 

n  Underlying frequency vector A = A [1], …, A[n]  
n  start with A[i] = 0 for all i.  

n  We observe an online sequence of updates: 
n  Increments only (cash register):  

n  Update is it   à  A[it] := A[it] + 1 
n  Fully dynamic (turnstile): 

n  Update is (it ,  ±1) à A[it] := A[it] ± 1 

n  Requirements: compute statistics on A  
n  Online, O(1) passes over the updates 
n  Sublinear space, polylog(n,m) 

1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
+, -, +,   -,      +,   + , -, +,   -,  + 



+
Typical Problems 

n  Frequency moments:  Fk = |A[1]|k + … + |A[n]|k 

n  related: Lp norms 

n  Distinct elements:   F0 = #{i: A[i] ≠ 0} 

n  k-Heavy Hitters: output all i  such that A[i] ≥ F1/k 

n  Median:  smallest i such that A[1] + … + A[i] ≥ F1/2 
n  Generalize to Quantiles  

n  Different models: 
n  Graph problems: a stream of edges, increments or dynamic 

n  matchings, connectivity, triangle count 
n  Geometric problems: a stream of points 

n  various clustering problems 



+
When do we need this? 

n  The universe size n is huge. 

n  Fast arriving stream of updates: 
n  IP traffic monitoring 

n  Web searches, tweets  

n  Large unstructured data, external storage: 
n  multiple passes make sense 

n  Streaming algorithms can provide a first rough approximation 
n  decide whether and when to analyze more 

n  fine tune a more expensive solution 

n  Or they can be the only feasible solution 



+
Outline 

n  Introduction to small space streaming 

n  Small space & differential privacy 

n  Privacy under continual observation 

n  Pan-privacy 



+
A taste: the AMS sketch for F2   [Alon 
Matias Szegedy 96] 
 

 

 

   

 

        

h:[n] à {± 1} is 4-wise independent 

+ 

h(i1) = ± 1  h(i4)   h(i3)   h(i2)   

X   

 E[X2] = F2   E[X4]1/2 ≤ O(F2) 



+
The Median of Averages Trick 

X11 X12 X13 X14 

X21 X22 X23 X24 

X31 X32 X33 X34 

X41 X42 X43 X44 

X51 X52 X53 X54 

Average 
X1 

X2 

X3 

X4 

X5 

Median 
X 

1/α2 

ln 1/δ 

Average: reduces variance by α2. 
 
Median: reduces probability of large error to δ.  



+
Outline 

n  Introduction to small space streaming 

n  Small space & differential privacy 

n  Privacy under continual observation 

n  Pan-privacy 



+
Defining Privacy for Streams 

n  We will use differential privacy. 

n  The database is represented by a stream 
n  online stream of transactions 
n  offline large unstructured database 

n  Need to define neighboring inputs: 
n  Event level privacy: differ in a single update 
                               1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
                               1, 1, 5, 19, 145, 14 , 5, 5, 16, 4 
n  User level privacy: replace some updates to i with updates to j  
                               1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
                               1, 4, 3, 19, 145, 14 , 3, 5, 16, 4 
n  We also allow the changed updates to be placed somewhere else 



+
Streaming & DP? 

n  Large unstructured database of transactions 

n  Estimate how many distinct users initiated transactions? 
n  i.e. F0 estimation 

 

n  Can we satisfy both the streaming and privacy constraints? 
n  F0  has sensitivity 1 (under user privacy) 

n  Computing  F0  exactly takes Ω(n) space 

n  Classic sketches from streaming may have large sensitivity  



+
Oblivious Sketch 

n  Flajolet and Martin [FM 85] show a sketch f(S) 
n  O(log n) bits of storage 
n  F0/2 ≤ f(S) ≤ 2F0  with constant probability 

n  Obliviousness: distribution of f(S) is entirely determined by F0 
n  similar to functional privacy [Feigenbaum Ishai Malkin Nissim Strauss Wright 01] 

n  Why it helps:  
n  Pick noise ηfrom discretized Lap(1/ε) 
n  Create new stream S’ to feed to f: 

n  If η< 0, ignore first η distinct elements 
n  If η> 0, insert elements n+1, …, n+η 

n  Distribution of f(S’) is a function of max{F0 +η, 0 }: ε-DP (user) 

n  Error:  F0/2 – O(1/ε)≤ f(S) ≤ 2F0 + O(1/ε) 

n  Space: O(1/ε + log n)  
n  can make log n w.h.p. by first inserting   O(1/ε) elements 



+
Open Problems 

n  When can a streaming estimate of a low-sensitivity function 
be computed privately, in small space? 
n  does privacy & small space ever require more error than either? 

n  Can we go beyond low-sensitivity, and local sensitivity? 
n  F2 has high sensitivity and high local sensitivity 

n  Lipschitz extensions [Kasiviswanathan Nissim Raskhodnikova 
Smith 13] relevant? 

n  What can we say about graph problems, clustering 
problems? 
n  Private coresets [Feldman Fiat Kaplan Nissim 09] 



+
Outline 

n  Introduction to small space streaming 

n  Small space & differential privacy 

n  Privacy under continual observation 

n  Pan-privacy 



+
Continual Observation 

n  In an online stream, often need to track the value of a statistic.  
n  number of reported instances of a viral infection 
n  sales over time 
n  number of likes on Facebook 

n  Privacy under continual observation [Dwork Naor Pitassi 
Rothblum 10]: 
n  At each time step the algorithm outputs the value of the statistic 
n  The entire sequence of outputs is ε-DP (usually event level) 

n  Results: 
n  A single counter (number of 1’s in a bit stream) [DNPR10] 
n  Time-decayed counters [Bolot Fawaz Muthukrishnan Nikolov Taft 13] 
n  Online learning [DNPR10] [Jain Kothari Thakurta 12] [Smith Thakurka 

13] 
n  Generic transformation for monotone algorithms [DNPR10] 



+
Binary Tree Technique [DPNR10], 
[Chan Shi Song 10] 

1      0    1      1    1      0     0      1 

1+0 

1 + 2 1+1 

3+2 

1 + 1 1+0 0+1 

Sensitivity of tree: log m 
 
Add Lap(log m/ε) to each node 



+
Binary Tree Technique 

1      0    1      1    1      0     0      1 

1+0 

1 + 2 1+1 

3+2 

1 + 1 1+0 0+1 

Each prefix: sum of log m nodes 
 
         à polylog error per query 



+
Open Problems 

n  What is the optimal error possible for the counter problem? 

n  Privacy under continual observation for statistics that are not 
easily decomposable? 

n  User level? 

n  Expect privacy under continual observation to be ever more 
relevant 
n  We usually want to track our statistics over time 

n  Work on it! 



+
Outline 

n  Introduction to small space streaming 

n  Small space & differential privacy 

n  Privacy under continual observation 

n  Pan-privacy 



+
Pan Privacy 

n  Differential privacy guarantees that the results  of our 
computation are private 

n  What if data is requests by subpoena, leaked after a security 
breach, an unauthorized employee looks at it? 

n  Can we guarantee that intermediate states are also private? 
n  Makes sense for online data: not stored 

n  Pan-privacy [Dwork Naor Pitassi Rothblum Yekhanin 10]: 
n  For each t: the state of the algorithm after processing the t-th 

update and the final output are jointly ε-DP 
n  Can be event level or user level  

n  Strategy: keep private statistics on top of sketches 



+
Warm-up: F0 [DNPRY10] 

n  Solution: randomized response 

n  Two distributions: D0  and D1 on {-1,1} 
n  D0 is 1 w.p. 1/2;  

n  D1 is 1 w.p. (1 + ε)/2 

n  Store a big table X[1], …, X[n] 
n  Initialize all X[i] from D0  

n  When update it arrives, pick X[it] from D1  

n  Can compute O(n1/2 /ε) additive approximation 
n  X = (X[1] + … + X[n])/ε 

n  E[X] = F0    and   E[X2] = n/ε2 



+
Cropped F1 [Mir Muthukrishnan 
Nikolov Wright 11] 
n  Cropped moments: 

n  Fk (τ) = |min{A[1], τ}|k + |min{A[2], τ}|k + … + |min{A[n], τ}|k 

n  We’ll be interested in F1(τ) 

n  Can pan-privately compute X s.t.  
        F1(τ)/2 – O(τn1/2/ε) ≤ X ≤ F1(τ) + O(τn1/2/ε)  

n  Idea: keep each A[i] mod τ, with initial noise 
n  What if A[i] = τ + 1?  
n  Multiply each A[i] by a random ci uniform in [1, 2] 
n  Small A[i] (≤τ/2) get distorted by at most factor 2 
n  For large A[i], ci A[i] mod τ is large on average 

n  Range is τ, so noise O(τ/ε) per modular counter suffices 

A[i] 

ciA[i] 

0 2τ τ 



+
Heavy Hitters [DNPRY10][MMNW11] 

n  Recall, the k-Heavy Hitters (k-HH) are i s.t.  A[i] ≥ F1/k 
n  at most  k of them 

n  Approximate the number of k-HH 
n  notation: Hk 

n  a measure of how skewed the data is 

n  Will get pan-private estimator X s.t.: 

    Hk/2 – O(k1/2) ≤ X ≤ Hk log k + O(k1/2) 

 



+
k-HH and Cropped F1 

n  Say we want to compute an estimate X in [Hk, Hck]  

n  Consider: 

  (F1(F1/k) - F1(F1/ck))/(F1/k – F1/ck) 

n  k-Heavy Hitters contribute 1 

n  ck-Heavy Hitters contribute between 0 and 1 

n  Anything else contributes 0 

n  Error of O(F1n1/2/kε)  for F1(F1/k) is too much! 

n  Sketch to reduce the universe size n 



+
Idea: Use a (CM-type) Sketch 

n  Hash [n] into [O(k)] (with a pairwise-independent hash) 

 

 

 

 

n  Compute the number of heavy buckets (weight ≥ F1/k) 
n  at least Hk/2  (balls and bins) 

n  no bucket containing items of weight ≤ F1/(k * log k) is heavy 

n  Essentially keeping private statistics on a CM sketch 

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9] A[10] 

B[1] B[2] B[3] B[4] 



+
Lower bounds and Open Problems 

n  The O(n1/2) additive error for F0 is optimal 
n  also O(k1/2) for Hk, by reduction 

n  Idea: combine streaming-style LBs with reconstruction attacks 
[MMNW11] 
n  stop the algorithm at some time step and grab the private state 
n  different continuations of the stream: answer many counting queries 

from the same state 
n  invoke [Dinur Nissim 03] type attacks 

n  Lower bounds against many passes via connections to 
randomness extraction [McGregor Mironov Pitassi Reingold 
Talwar Vadhan 10] 

n  Do all problems of low streaming complexity admit accurate 
pan-private algorithm 
n  intuitively: less state à easier to make  private 



+
Summary 

n  Private analysis of massive online data presents new 
challenges 
n  small space 

n  continuous monitoring 

n  Data is not stored: can ask for algorithms private inside and 
out 

n  Tools from small-space streaming algorithms can be useful 
n  but we need to view them from a new angle 


