

Differential Privacy in the Streaming World

Aleksandar (Sasho) Nikolov Rutgers University

+ The Streaming Model

1, 4, 5, 19, 145, 14 , 5, 5, 16, 4

+, -, +, -, +, +, -, +, -, +

Underlying frequency vector A = A [1], ..., A[n] start with A[i] = 0 for all i.

• We observe an <u>online sequence of updates:</u>

Increments only (cash register):

- Update is $i_t \rightarrow A[i_t] := A[i_t] + 1$
- Fully dynamic (turnstile):

• Update is $(i_t, \pm 1) \rightarrow A[i_t] := A[i_t] \pm 1$

Requirements: compute statistics on A

- Online, O(1) passes over the updates
- Sublinear space, polylog(n,m)

+ Typical Problems

- Frequency moments: $F_k = |A[1]|^k + \dots + |A[n]|^k$
 - related: L_p norms
- Distinct elements: $F_0 = \#\{i: A[i] \neq 0\}$
- k-Heavy Hitters: output all *i* such that $A[i] \ge F_1/k$
- Median: smallest *i* such that $A[1] + ... + A[i] \ge F_1/2$
 - Generalize to Quantiles
- Different models:
 - Graph problems: a stream of edges, increments or dynamic
 - matchings, connectivity, triangle count
 - Geometric problems: a stream of points
 - various clustering problems

• When do we need this?

- The universe size *n* is *huge*.
- Fast arriving stream of updates:
 - IP traffic monitoring
 - Web searches, tweets
- Large unstructured data, external storage:
 - multiple passes make sense
- Streaming algorithms can provide a *first rough approximation*
 - decide whether and when to analyze more
 - fine tune a more expensive solution
- Or they can be the *only feasible solution*

Small space & differential privacy

Privacy under continual observation

A taste: the AMS sketch for F_2 [Alon Matias Szegedy 96]

h:[n] \rightarrow {± 1} is 4-wise independent $E[X^2] = F_2$ $E[X^4]^{1/2} \le O(F_2)$

+ The Median of Averages Trick

Average: reduces variance by α^2 .

Median: reduces probability of large error to $\,\delta\,$.

Small space & differential privacy

Privacy under continual observation

Defining Privacy for Streams

- We will use *differential privacy*.
- The database is represented by a stream
 - online stream of transactions
 - offline large unstructured database
- Need to define *neighboring inputs:*
 - Event level privacy: differ in a single update

1, 4, 5, 19, 145, 14, 5, 5, 16, 4

1, 1, 5, 19, 145, 14, 5, 5, 16, 4

<u>User level privacy</u>: replace some updates to *i* with updates to *j*

1, 4, 5, 19, 145, 14, 5, 5, 16, 4

1, 4, 3, 19, 145, 14, 3, 5, 16, 4

• We also allow the changed updates to be placed somewhere else

- Large unstructured database of transactions
- Estimate how many distinct users initiated transactions?
 - i.e. *F*₀ estimation
- Can we satisfy <u>both</u> the streaming and privacy constraints?
 - F_0 has sensitivity 1 (under user privacy)
 - Computing F_0 exactly takes $\Omega(n)$ space
 - Classic sketches from streaming may have large sensitivity

+ Oblivious Sketch

- Flajolet and Martin [FM 85] show a sketch f(S)
 - O(log n) bits of storage
 - $F_0/2 \le f(S) \le 2F_0$ with constant probability
- Obliviousness: distribution of f(S) is *entirely* determined by F_0
 - similar to <u>functional privacy</u> [Feigenbaum Ishai Malkin Nissim Strauss Wright 01]
- Why it helps:
 - Pick noise η from discretized Lap(1/ ε)
 - Create new stream S' to feed to f:
 - If $\eta < 0$, ignore first η distinct elements
 - If $\eta > 0$, insert elements $n+1, ..., n+\eta$
- Distribution of f(S') is a function of $max{F_0 + \eta, 0}$: ε -DP (user)
- Error: $F_0/2 O(1/\varepsilon) \le f(S) \le 2F_0 + O(1/\varepsilon)$
- Space: $O(1/\varepsilon + \log n)$
 - can make log n w.h.p. by first inserting $O(1/\varepsilon)$ elements

- When can a streaming estimate of a low-sensitivity function be computed privately, in small space?
 - does privacy & small space ever require more error than either?
- Can we go beyond low-sensitivity, and local sensitivity?
 - F_2 has high sensitivity and high local sensitivity
 - Lipschitz extensions [Kasiviswanathan Nissim Raskhodnikova Smith 13] relevant?
- What can we say about graph problems, clustering problems?
 - Private coresets [Feldman Fiat Kaplan Nissim 09]

Small space & differential privacy

Privacy under continual observation

Continual Observation

■ In an online stream, often need to *track* the value of a statistic.

- number of reported instances of a viral infection
- sales over time
- number of likes on Facebook
- Privacy under continual observation [Dwork Naor Pitassi Rothblum 10]:
 - At each time step the algorithm outputs the value of the statistic
 - The entire sequence of outputs is ε -DP (usually event level)
- Results:
 - A single counter (number of 1's in a bit stream) [DNPR10]
 - Time-decayed counters [Bolot Fawaz Muthukrishnan Nikolov Taft 13]
 - Online learning [DNPR10] [Jain Kothari Thakurta 12] [Smith Thakurka 13]
 - Generic transformation for monotone algorithms [DNPR10]

- What is the optimal error possible for the counter problem?
- Privacy under continual observation for statistics that are not easily decomposable?
- User level?
- Expect privacy under continual observation to be ever more relevant
 - We usually want to *track* our statistics over time
 - Work on it!

Small space & differential privacy

Privacy under continual observation

- What if data is requests by subpoena, leaked after a security breach, an unauthorized employee looks at it?
- Can we guarantee that *intermediate states* are also private?
 - Makes sense for online data: not stored
- Pan-privacy [Dwork Naor Pitassi Rothblum Yekhanin 10]:
 - For each t: the state of the algorithm after processing the t-th update and the final output are jointly ε -DP
 - Can be event level or user level
- Strategy: keep private statistics on top of sketches

Warm-up: F_0 [DNPRY10]

- Solution: <u>randomized response</u>
- Two distributions: D_0 and D_1 on $\{-1,1\}$
 - D_0 is 1 w.p. 1/2;
 - D_1 is 1 w.p. (1 + ϵ)/2
- Store a big table X[1], ..., X[n]
 - Initialize all X[i] from D₀
- When update i_t arrives, pick $X[i_t]$ from D_1
- Can compute $O(n^{1/2} / \varepsilon)$ additive approximation
 - $X = (X[1] + \dots + X[n]) / \varepsilon$
 - $E[X] = F_0$ and $E[X^2] = n/\varepsilon^2$

Cropped *F*₁ [Mir Muthukrishnan Nikolov Wright 11]

- Cropped moments:
 - $F_k(\tau) = |\min\{A[1], \tau\}|^k + |\min\{A[2], \tau\}|^k + ... + |\min\{A[n], \tau\}|^k$

 $C_i A[i]$

τ1

A[i]

 2τ

• We'll be interested in $F_1(\tau)$

• Can pan-privately compute X s.t. $F_1(\tau)/2 - O(\tau n^{1/2}/\varepsilon) \le X \le F_1(\tau) + O(\tau n^{1/2}/\varepsilon)$

- Idea: keep each $A[i] \mod \tau$, with initial noise
 - What if $A[i] = \tau + 1$?
 - Multiply each A[i] by a random c_i uniform in [1, 2]
 - Small A[i] ($\leq \tau / 2$) get distorted by at most factor 2
 - For large A[i], c_i A[i] mod τ is large on average

Range is τ , so noise O(τ / ε) per modular counter suffices

+ Heavy Hitters [DNPRY10][MMNW11]

- Recall, the k-Heavy Hitters (k-HH) are i s.t. $A[i] \ge F_1/k$
 - at most k of them
- Approximate the number of k-HH
 - notation: H_k
 - a measure of how skewed the data is
- Will get pan-private estimator *X* s.t.:

 $H_k/2 - O(k^{1/2}) \le X \le H_{k \log k} + O(k^{1/2})$

k-HH and Cropped F_1

• Say we want to compute an estimate X in $[H_k, H_{ck}]$

Consider:

$$(F_1(F_1/k) - F_1(F_1/ck))/(F_1/k - F_1/ck)$$

- k-Heavy Hitters contribute 1
- *ck*-Heavy Hitters contribute between 0 and 1
- Anything else contributes 0
- Error of $O(F_1 n^{1/2}/k \varepsilon)$ for $F_1(F_1/k)$ is too much!
 - Sketch to reduce the universe size n

Idea: Use a (CM-type) Sketch

Hash [n] into [O(k)] (with a pairwise-independent hash)

• Compute the number of heavy buckets (weight $\geq F_1/k$)

- at least $H_k/2$ (balls and bins)
- no bucket containing items of weight $\leq F_1/(k * \log k)$ is heavy

Essentially keeping private statistics on a CM sketch

Lower bounds and Open Problems

- The $O(n^{1/2})$ additive error for F_0 is optimal
 - also $O(k^{1/2})$ for H_k , by reduction
- Idea: combine streaming-style LBs with reconstruction attacks [MMNW11]
 - stop the algorithm at some time step and grab the private state
 - different continuations of the stream: answer many counting queries from the same state
 - invoke [Dinur Nissim 03] type attacks
- Lower bounds against many passes via connections to randomness extraction [McGregor Mironov Pitassi Reingold Talwar Vadhan 10]
- Do all problems of low streaming complexity admit accurate pan-private algorithm
 - intuitively: less state \rightarrow easier to make private

- Private analysis of massive online data presents new challenges
 - small space
 - continuous monitoring
- Data is not stored: can ask for algorithms private inside and out
- Tools from small-space streaming algorithms can be useful
 - but we need to view them from a new angle