Differential Privacy in the Streaming World

Aleksandar (Sasho) Nikolov
Rutgers University
The Streaming Model

1, 4, 5, 19, 145, 14, 5, 5, 16, 4
+, -, +, -, +, +, -, +, -, +

- Underlying frequency vector $A = A[1], ..., A[n]$
 - start with $A[i] = 0$ for all i.

- We observe an online sequence of updates:
 - Increments only (cash register):
 - Update is $i_t \rightarrow A[i_t] := A[i_t] + 1$
 - Fully dynamic (turnstile):
 - Update is $(i_t, \pm 1) \rightarrow A[i_t] := A[i_t] \pm 1$

- Requirements: compute statistics on A
 - Online, $O(1)$ passes over the updates
 - Sublinear space, $\text{polylog}(n,m)$
Typical Problems

 - related: L_p norms

- Distinct elements: $F_0 = \#\{i: A[i] \neq 0\}$

- k-Heavy Hitters: output all i such that $A[i] \geq F_1/k$

- Median: smallest i such that $A[1] + \ldots + A[i] \geq F_1/2$
 - Generalize to Quantiles

- Different models:
 - Graph problems: a stream of edges, increments or dynamic
 - matchings, connectivity, triangle count
 - Geometric problems: a stream of points
 - various clustering problems
When do we need this?

- The universe size \(n \) is huge.

- Fast arriving stream of updates:
 - IP traffic monitoring
 - Web searches, tweets

- Large unstructured data, external storage:
 - multiple passes make sense

- Streaming algorithms can provide a \textit{first rough approximation}
 - decide whether and when to analyze more
 - fine tune a more expensive solution

- Or they can be the \textit{only feasible solution}
Outline

- Introduction to small space streaming
- Small space & differential privacy
- Privacy under continual observation
- Pan-privacy
A taste: the AMS sketch for F_2

$h:[n] \rightarrow \{\pm 1\}$ is 4-wise independent

$$E[X^2] = F_2 \quad E[X^4]^{1/2} \leq O(F_2)$$
The Median of Averages Trick

Average: reduces variance by α^2.

Median: reduces probability of large error to δ.

<table>
<thead>
<tr>
<th>X_{11}</th>
<th>X_{12}</th>
<th>X_{13}</th>
<th>X_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{21}</td>
<td>X_{22}</td>
<td>X_{23}</td>
<td>X_{24}</td>
</tr>
<tr>
<td>X_{31}</td>
<td>X_{32}</td>
<td>X_{33}</td>
<td>X_{34}</td>
</tr>
<tr>
<td>X_{41}</td>
<td>X_{42}</td>
<td>X_{43}</td>
<td>X_{44}</td>
</tr>
<tr>
<td>X_{51}</td>
<td>X_{52}</td>
<td>X_{53}</td>
<td>X_{54}</td>
</tr>
</tbody>
</table>

Average: $rac{1}{\alpha^2}$

Median: X
Outline

- Introduction to small space streaming
- Small space & differential privacy
- Privacy under continual observation
- Pan-privacy
Defining Privacy for Streams

- We will use *differential privacy*.
- The database is represented by a stream
 - online stream of transactions
 - offline large unstructured database
- Need to define *neighboring inputs*:
 - **Event level privacy**: differ in a single update
 1, 4, 5, 19, 145, 14, 5, 5, 16, 4
 1, 1, 5, 19, 145, 14, 5, 5, 16, 4
 - **User level privacy**: replace some updates to i with updates to j
 1, 4, 5, 19, 145, 14, 5, 5, 16, 4
 1, 4, 3, 19, 145, 14, 3, 5, 16, 4
- We also allow the changed updates to be placed somewhere else
Streaming & DP?

- Large unstructured database of transactions

- Estimate how many distinct users initiated transactions?
 - i.e. F_0 estimation

- Can we satisfy both the streaming and privacy constraints?
 - F_0 has sensitivity 1 (under user privacy)
 - Computing F_0 exactly takes $\Omega(n)$ space
 - Classic sketches from streaming may have large sensitivity
Oblivious Sketch

- Flajolet and Martin [FM 85] show a sketch $f(S)$
 - $O(\log n)$ bits of storage
 - $F_0/2 \leq f(S) \leq 2F_0$ with constant probability

- **Obliviousness:** distribution of $f(S)$ is *entirely* determined by F_0
 - similar to functional privacy [Feigenbaum Ishai Malkin Nissim Strauss Wright 01]

- Why it helps:
 - Pick noise η from discretized $\text{Lap}(1/\varepsilon)$
 - Create new stream S' to feed to f:
 - If $\eta < 0$, ignore first η distinct elements
 - If $\eta > 0$, insert elements $n+1, \ldots, n+\eta$

- Distribution of $f(S')$ is a function of $\max\{F_0 + \eta, 0\}$: ε-DP (user)

- **Error:** $F_0/2 - O(1/\varepsilon) \leq f(S) \leq 2F_0 + O(1/\varepsilon)$

- **Space:** $O(1/\varepsilon + \log n)$
 - can make $\log n$ w.h.p. by first inserting $O(1/\varepsilon)$ elements
Open Problems

- When can a streaming estimate of a low-sensitivity function be computed privately, in small space?
 - does privacy & small space ever require more error than either?

- Can we go beyond low-sensitivity, and local sensitivity?
 - F_2 has high sensitivity and high local sensitivity
 - Lipschitz extensions [Kasiviswanathan Nissim Raskhodnikova Smith 13] relevant?

- What can we say about graph problems, clustering problems?
 - Private coresets [Feldman Fiat Kaplan Nissim 09]
Outline

- Introduction to small space streaming
- Small space & differential privacy
- Privacy under continual observation
- Pan-privacy
Continual Observation

- In an online stream, often need to *track* the value of a statistic.
 - number of reported instances of a viral infection
 - sales over time
 - number of likes on Facebook

- **Privacy under continual observation** [Dwork Naor Pitassi Rothblum 10]:
 - At each time step the algorithm outputs the value of the statistic
 - The *entire sequence* of outputs is ε-DP (usually event level)

- **Results:**
 - A single counter (number of 1’s in a bit stream) [DNPR10]
 - Time-decayed counters [Bolot Fawaz Muthukrishnan Nikolov Taft 13]
 - Online learning [DNPR10] [Jain Kothari Thakurta 12] [Smith Thakurka 13]
 - Generic transformation for monotone algorithms [DNPR10]
Binary Tree Technique [DPNR10], [Chan Shi Song 10]

Sensitivity of tree: $\log m$

Add $\text{Lap}(\log m/ \varepsilon)$ to each node
Binary Tree Technique

Each prefix: sum of \(\log m \) nodes

\(\rightarrow \) polylog error per query
Open Problems

- What is the optimal error possible for the counter problem?

- Privacy under continual observation for statistics that are not easily decomposable?

- User level?

- Expect privacy under continual observation to be ever more relevant
 - We usually want to track our statistics over time
 - Work on it!
Outline

- Introduction to small space streaming
- Small space & differential privacy
- Privacy under continual observation
- Pan-privacy
Pan Privacy

- Differential privacy guarantees that the results of our computation are private.

- What if data is requests by subpoena, leaked after a security breach, an unauthorized employee looks at it?

- Can we guarantee that intermediate states are also private?
 - Makes sense for online data: not stored.

- **Pan-privacy** [Dwork Naor Pitassi Rothblum Yekhanin 10]:
 - For each t: the state of the algorithm after processing the t-th update and the final output are jointly ε-DP.
 - Can be event level or user level.

- Strategy: keep private statistics on top of sketches.
Warm-up: F_0 [DNPRY10]

- Solution: randomized response
- Two distributions: D_0 and D_1 on {-1, 1}
 - D_0 is 1 w.p. 1/2;
 - D_1 is 1 w.p. $(1 + \varepsilon)/2$
- Store a big table $X[1], \ldots, X[n]$
 - Initialize all $X[i]$ from D_0
- When update i_t arrives, pick $X[i_t]$ from D_1
- Can compute $O(n^{1/2}/\varepsilon)$ additive approximation
 - $X = (X[1] + \ldots + X[n])/\varepsilon$
 - $E[X] = F_0$ and $E[X^2] = n/\varepsilon^2$
Cropped F_1 [Mir Muthukrishnan Nikolov Wright 11]

- Cropped moments:
 - $F_k(\tau) = |\min\{A[1], \tau\}|^k + |\min\{A[2], \tau\}|^k + \ldots + |\min\{A[n], \tau\}|^k$
 - We’ll be interested in $F_1(\tau)$

- Can pan-privately compute X s.t.
 $F_1(\tau)/2 - O(\tau n^{1/2}/\varepsilon) \leq X \leq F_1(\tau) + O(\tau n^{1/2}/\varepsilon)$

- Idea: keep each $A[i] \mod \tau$, with initial noise
 - What if $A[i] = \tau + 1$?
 - Multiply each $A[i]$ by a random c_i uniform in $[1, 2]$
 - Small $A[i]$ ($\leq \tau/2$) get distorted by at most factor 2
 - For large $A[i]$, $c_i A[i] \mod \tau$ is large on average

- Range is τ, so noise $O(\tau/\varepsilon)$ per modular counter suffices
Recall, the k-Heavy Hitters (k-HH) are i s.t. $A[i] \geq F_1/k$ at most k of them.

Approximate the number of k-HH

- notation: H_k
- a measure of how skewed the data is

Will get pan-private estimator X s.t.:

$$H_k/2 - O(k^{1/2}) \leq X \leq H_k \log k + O(k^{1/2})$$
Say we want to compute an estimate X in $[H_k, H_{ck}]$

Consider:

$$\frac{(F_1(F_1/k) - F_1(F_1/ck))(F_1/k - F_1/ck)}{F_1(F_1/k)}$$

k-Heavy Hitters contribute 1

ck-Heavy Hitters contribute between 0 and 1

Anything else contributes 0

Error of $O(F_1 n^{1/2}/k \epsilon)$ for $F_1(F_1/k)$ is too much!

Sketch to reduce the universe size n
Idea: Use a (CM-type) Sketch

- Hash \([n]\) into \([O(k)]\) (with a pairwise-independent hash)

- Compute the number of heavy buckets (weight \(\geq F_1/k\))
 - at least \(H_k/2\) (balls and bins)
 - no bucket containing items of weight \(\leq F_1/(k \cdot \log k)\) is heavy

- Essentially keeping private statistics on a CM sketch
Lower bounds and Open Problems

- The $O(n^{1/2})$ additive error for F_0 is optimal
 - also $O(k^{1/2})$ for H_k, by reduction

- Idea: combine streaming-style LBs with reconstruction attacks [MMNW11]
 - stop the algorithm at some time step and grab the private state
 - different continuations of the stream: answer many counting queries from the same state
 - invoke [Dinur Nissim 03] type attacks

- Lower bounds against many passes via connections to randomness extraction [McGregor Mironov Pitassi Reingold Talwar Vadhan 10]

- Do all problems of low streaming complexity admit accurate pan-private algorithm
 - intuitively: less state \rightarrow easier to make private
Summary

- Private analysis of massive online data presents new challenges
 - small space
 - continuous monitoring

- Data is not stored: can ask for algorithms private inside and out

- Tools from small-space streaming algorithms can be useful
 - but we need to view them from a new angle